12,897 research outputs found

    Integrating model checking with HiP-HOPS in model-based safety analysis

    Get PDF
    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system

    A synthesis of logic and biology in the design of dependable systems

    Get PDF
    The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that combines effectively and throughout the design lifecycle these two techniques which are schematically founded on the two pillars of formal logic and biology. Such a design paradigm would apply these techniques synergistically and systematically from the early stages of design to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems that brings these technologies together to realise their combined potential benefits

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication

    Assisted assignment of automotive safety requirements

    Get PDF
    ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE

    Engineering failure analysis and design optimisation with HiP-HOPS

    Get PDF
    The scale and complexity of computer-based safety critical systems, like those used in the transport and manufacturing industries, pose significant challenges for failure analysis. Over the last decade, research has focused on automating this task. In one approach, predictive models of system failure are constructed from the topology of the system and local component failure models using a process of composition. An alternative approach employs model-checking of state automata to study the effects of failure and verify system safety properties. In this paper, we discuss these two approaches to failure analysis. We then focus on Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) - one of the more advanced compositional approaches - and discuss its capabilities for automatic synthesis of fault trees, combinatorial Failure Modes and Effects Analyses, and reliability versus cost optimisation of systems via application of automatic model transformations. We summarise these contributions and demonstrate the application of HiP-HOPS on a simplified fuel oil system for a ship engine. In light of this example, we discuss strengths and limitations of the method in relation to other state-of-the-art techniques. In particular, because HiP-HOPS is deductive in nature, relating system failures back to their causes, it is less prone to combinatorial explosion and can more readily be iterated. For this reason, it enables exhaustive assessment of combinations of failures and design optimisation using computationally expensive meta-heuristics. (C) 2010 Elsevier Ltd. All rights reserved

    Space station advanced automation

    Get PDF
    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software

    Automatic allocation of safety requirements to components of a software product line

    Get PDF
    Safety critical systems developed as part of a product line must still comply with safety standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system safety requirements to components of a system under design. However, for a Software Product Line (SPL), the safety requirements that need to be allocated to a component may vary in different products. Variation in design can indeed change the possible hazards incurred in each product, their causes, and can alter the safety requirements placed on individual components in different SPL products. Establishing common SILs for components of a large scale SPL by considering all possible usage scenarios, is desirable for economies of scale, but it also poses challenges to the safety engineering process. In this paper, we propose a method for automatic allocation of SILs to components of a product line. The approach is applied to a Hybrid Braking System SPL design
    corecore