5 research outputs found

    Review on Networks Defined by Software

    Get PDF
    Heretofore, most network equipment had to be configured individually by connecting manually into it. This approach is time consuming for large networks and prone to human errors. The Software Defined Networking paradigm defines several standards and protocols in order to read the network states and act on its configuration from distant servers. These protocols authorize a reconfiguration of the network in a centralized way by the use of transactions that acts on one or more devices. In general, transactions are implemented as APIs for use by third- party programs and on software components separate from the orchestrator called controllers for more modularity. Nowadays, SDN receives a lot of interest from researchers and manufacturers aiming for the modernization of the networks especially with the emergence of the loT, 5G and WAN technologies

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA

    RESULTS AND CHALLENGES OF ARTIFICIAL NEURAL NETWORKS USED FOR DECISION-MAKING AND CONTROL IN MEDICAL APPLICATIONS

    Get PDF
    The aim of this paper is to present several approaches by which technology can assist medical decision-making. This is an essential, but also a difficult activity, which implies a large number of medical and technical aspects. But, more important, it involves humans: on the one hand, the patient, who has a medical problem and who requires the best solution; on the other hand, the physician, who should be able to provide, in any circumstances, a decision or a prediction regarding the current and the future medical status of the patient. The technology, in general, and particularly the Artificial Intelligence (AI) tools could help both of them, and it is assisted by appropriate theory regarding modeling tools. One of the most powerful mechanisms that can be used in this field is the Artificial Neural Networks (ANNs). This paper presents some of the results obtained by the Process Control group of the Politehnica University Timisoara, Romania, in the field of ANNs applied to modeling, prediction and decision-making related to medical systems. An Iterative Learning Control-based approach to batch training a feedforward ANN architecture is given. The paper includes authors’ concerns in this domain and emphasizes that these intelligent models, even if they are artificial, are able to make decisions, being useful tools for prevention, early detection and personalized healthcare

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3
    corecore