3 research outputs found

    Intelligent classification algorithms in enhancing the performance of support vector machine

    Get PDF
    Performing feature subset and tuning support vector machine (SVM) parameter processes in parallel with the aim to increase the classification accuracy is the current research direction in SVM. Common methods associated in tuning SVM parameters will discretize the continuous value of these parameters which will result in low classification performance. This paper presents two intelligent algorithms that hybridized between ant colony optimization (ACO) and SVM for tuning SVM parameters and selecting feature subset without having to discretize the continuous values. This can be achieved by simultaneously executing the selection of feature subset and tuning SVM parameters simultaneously. The algorithms are called ACOMVSVM and IACOMV-SVM. The difference between the algorithms is the size of the solution archive. The size of the archive in ACOMV is fixed while in IACOMV, the size of solution archive increases as the optimization procedure progress. Eight benchmark datasets from UCI were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy. The average classification accuracies for the proposed ACOMV–SVM and IACOMV-SVM algorithms are 97.28 and 97.91 respectively. The work in this paper also contributes to a new direction for ACO that can deal with mixed variable ACO

    Improved Spiral Dynamics and Artificial Bee Colony Algorithms with Application to Engineering Problems

    Get PDF

    Feature extraction and selection algorithm based on self adaptive ant colony system for sky image classification

    Get PDF
    Sky image classification is crucial in meteorology to forecast weather and climatic conditions. The fine-grained cloud detection and recognition (FGCDR) algorithm is use to extract colour, inside texture and neighbour texture features from multiview of superpixels sky images. However, the FGCDR produced a substantial amount of redundant and insignificant features. The ant colony optimisation (ACO) algorithm have been used to select feature subset. However, the ACO suffers from premature convergence which leads to poor feature subset. Therefore, an improved feature extraction and selection for sky image classification (FESSIC) algorithm is proposed. This algorithm consists of (i) Gaussian smoothness standard deviation method that formulates informative features within sky images; (ii) nearest-threshold based technique that converts feature map into a weighted directed graph to represent relationship between features; and (iii) an ant colony system with self-adaptive parameter technique for local pheromone update. The performance of FESSIC was evaluated against ten benchmark image classification algorithms and six classifiers on four ground-based sky image datasets. The Friedman test result is presented for the performance rank of six benchmark feature selection algorithms and FESSIC algorithm. The Man-Whitney U test is then performed to statistically evaluate the significance difference of the second rank and FESSIC algorithms. The experimental results for the proposed algorithm are superior to the benchmark image classification algorithms in terms of similarity value on Kiel, SWIMCAT and MGCD datasets. FESSIC outperforms other algorithms for average classification accuracy for the KSVM, MLP, RF and DT classifiers. The Friedman test has shown that the FESSIC has the first rank for all classifiers. Furthermore, the result of Man-Whitney U test indicates that FESSIC is significantly better than the second rank benchmark algorithm for all classifiers. In conclusion, the FESSIC can be utilised for image classification in various applications such as disaster management, medical diagnosis, industrial inspection, sports management, and content-based image retrieval
    corecore