7,318 research outputs found

    A robust M-estimate adaptive filter for impulse noise suppression

    Get PDF
    In this paper, a robust M-estimate adaptive filter for impulse noise suppression is proposed. The objective function used is based on a robust M-estimate. It has the ability to ignore or down weight large signal error when certain thresholds are exceeded. A systematic method for estimating such thresholds is also proposed. An advantage of the proposed method is that its solution is governed by a system of linear equations. Therefore, fast adaptation algorithms for traditional linear adaptive filters can be applied. In particular, a M-estimate recursive least square (M-RLS) adaptive algorithm is studied in detail. Simulation results show that it is more robust against individual and consecutive impulse noise than the MN-LMS and the N-RLS algorithms. It also has fast convergence speed and a low steady state error similar to its RLS counterpart.published_or_final_versio

    Adaptive control and noise suppression by a variable-gain gradient algorithm

    Get PDF
    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters

    Deep Long Short-Term Memory Adaptive Beamforming Networks For Multichannel Robust Speech Recognition

    Full text link
    Far-field speech recognition in noisy and reverberant conditions remains a challenging problem despite recent deep learning breakthroughs. This problem is commonly addressed by acquiring a speech signal from multiple microphones and performing beamforming over them. In this paper, we propose to use a recurrent neural network with long short-term memory (LSTM) architecture to adaptively estimate real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions which results in a set of timevarying room impulse responses. The LSTM adaptive beamformer is jointly trained with a deep LSTM acoustic model to predict senone labels. Further, we use hidden units in the deep LSTM acoustic model to assist in predicting the beamforming filter coefficients. The proposed system achieves 7.97% absolute gain over baseline systems with no beamforming on CHiME-3 real evaluation set.Comment: in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    A robust M-estimate adaptive equaliser for impulse noise suppression

    Get PDF
    In this paper, a FIR adaptive equaliser for impulse noise suppression is proposed. It is based on the minimization of an M-estimate objective function which has the ability to ignore or down-weight a large error signal when it exceeds certain thresholds. An advantage of the proposed method is that its solution is governed by a system of linear equations, called the M-estimate normal equation. Therefore, traditional fast algorithms like the recursive least squares algorithm can be applied. Using a robust estimation of the thresholds and the recursive least square algorithm, an M-estimate RLS (M-RLS) algorithm is developed. Simulation results show that the proposed algorithm has better convergence performance than the N-RLS and MN-LMS algorithms when the input signal of the equaliser is corrupted by individually or consecutive impulse noises. It also shares the low steady state error of the traditional RLS algorithm.published_or_final_versio

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    A robust statistics based adaptive lattice-ladder filter in impulsive noise

    Get PDF
    In this paper, a new robust adaptive lattice-ladder filter for impulsive noise suppression is proposed. The filter is obtained by applying the non-linear filtering technique in [l] and the robust statistic approach to the gradient adaptive lattice filter. A systematic method is also developed to determine the corresponding threshold parameters for impulse suppression. Simulation results showed that the performance of the proposed algorithm is better than the conventional RLS, N-RLS, the gradient adaptive lattice normalised-LMS (GAL-NLMS), RMN and ATNA algorithms when the input and desired signals are corrupted by individual and consecutive impulses. The initial convergence, steady-state error, computational complexity and tracking capability of the proposed algorithm are also comparable to the conventional GAL-NLMS algorithm.published_or_final_versio

    A Huber recursive least squares adaptive lattice filter for impulse noise suppression

    Get PDF
    This paper proposes a new adaptive filtering algorithm called the Huber Prior Error-Feedback Least Squares Lattice (H-PEF-LSL) algorithm for robust adaptive filtering in impulse noise environment. It minimizes a modified Huber M-estimator based cost function, instead of the least squares cost function. In addition, the simple modified Huber M-estimate cost function also allows us to perform the time and order recursive updates in the conventional PEF-LSL algorithm so that the complexity can be significantly reduced to O(M), where M is the length of the adaptive filter. The new algorithm can also be viewed as an efficient implementation of the recursive least M-estimate (RLM) algorithm recently proposed by the authors [1], which has a complexity of O(M 2). Simulation results show that the proposed H-PEF-LSL algorithm is more robust than the conventional PEF-LSL algorithm in suppressing the adverse influence of the impulses at the input and desired signals with small additional computational cost.published_or_final_versio
    • …
    corecore