4,046 research outputs found

    A Bio-Inspired Tensegrity Manipulator with Multi-DOF, Structurally Compliant Joints

    Full text link
    Most traditional robotic mechanisms feature inelastic joints that are unable to robustly handle large deformations and off-axis moments. As a result, the applied loads are transferred rigidly throughout the entire structure. The disadvantage of this approach is that the exerted leverage is magnified at each subsequent joint possibly damaging the mechanism. In this paper, we present two lightweight, elastic, bio-inspired tensegrity robotics arms which mitigate this danger while improving their mechanism's functionality. Our solutions feature modular tensegrity structures that function similarly to the human elbow and the human shoulder when connected. Like their biological counterparts, the proposed robotic joints are flexible and comply with unanticipated forces. Both proposed structures have multiple passive degrees of freedom and four active degrees of freedom (two from the shoulder and two from the elbow). The structural advantages demonstrated by the joints in these manipulators illustrate a solution to the fundamental issue of elegantly handling off-axis compliance.Comment: IROS 201

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Actuation Technologies for Soft Robot Grippers and Manipulators: A Review

    Get PDF
    Purpose of Review The new paradigm of soft robotics has been widely developed in the international robotics community. These robots being soft can be used in applications where delicate yet effective interaction is necessary. Soft grippers and manipulators are important, and their actuation is a fundamental area of study. The main purpose of this work is to provide readers with fast references to actuation technologies for soft robotic grippers in relation to their intended application. Recent Findings The authors have surveyed recent findings on actuation technologies for soft grippers. They presented six major kinds of technologies which are either used independently for actuation or in combination, e.g., pneumatic actuation combined with electro-adhesion, for certain applications. Summary A review on the latest actuation technologies for soft grippers and manipulators is presented. Readers will get a guide on the various methods of technology utilization based on the application

    Development of a SMA-fishing-line-McKibben bending actuator

    Get PDF
    High power-to-weight ratio soft artificial muscles are of overarching importance to enable inherently safer solutions to human-robot interactions. Traditional air driven soft McKibben artificial muscles are linear actuators. It is impossible for them to realize bending motions through a single McKibben muscle. Over two McKibben muscles should normally be used to achieve bending or rotational motions, leading to heavier and larger systems. In addition, air driven McKibben muscles are highly nonlinear in nature, making them difficult to be controlled precisely. A SMA(shape memory alloy)–fishing–line–McKibben (SFLM) bending actuator has been developed. This novel artificial actuator, made of a SMA-fishing-line muscle and a McKibben muscle, was able to produce the maximum output force of 3.0 N and the maximum bending angle (the rotation of the end face) of 61°. This may promote the application of individual McKibben muscles or SMA-fishing-line muscles alone. An output force control method for SFLM is proposed, and based on MATLAB/Simulink software the experiment platform is set up, the effectiveness of control system is verified through output force experiments. A three-fingered SFLM gripper driven by three SFLMs has been designed for a case study, which the maximum carrying capacity is 650.4 ± 0.2 g

    A 3D-Printed Omni-Purpose Soft Gripper

    Get PDF
    Numerous soft grippers have been developed based on smart materials, pneumatic soft actuators, and underactuated compliant structures. In this article, we present a three-dimensional (3-D) printed omni-purpose soft gripper (OPSOG) that can grasp a wide variety of objects with different weights, sizes, shapes, textures, and stiffnesses. The soft gripper has a unique design that incorporates soft fingers and a suction cup that operate either separately or simultaneously to grasp specific objects. A bundle of 3-D-printable linear soft vacuum actuators (LSOVA) that generate a linear stroke upon activation is employed to drive the tendon-driven soft fingers. The support, fingers, suction cup, and actuation unit of the gripper were printed using a low-cost and open-source fused deposition modeling 3-D printer. A single LSOVA has a blocked force of 30.35 N, a rise time of 94 ms, a bandwidth of 2.81 Hz, and a lifetime of 26 120 cycles. The blocked force and stroke of the actuators are accurately predicted using finite element and analytical models. The OPSOG can grasp at least 20 different objects. The gripper has a maximum payload-to-weight ratio of 7.06, a grip force of 31.31 N, and a tip blocked force of 3.72 N

    3D printed pneumatic soft actuators and sensors: their modeling, performance quantification, control and applications in soft robotic systems

    Get PDF
    Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are primarily made of highly compliant and deformable materials, provide inherently safe features, unlike conventional robots that are made of stiff and rigid components. These robots are ideal for interacting safely with humans and operating in highly dynamic environments. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. This work presents novel soft pneumatic actuators and sensors that are directly 3D printed in one manufacturing step without requiring postprocessing and support materials using low-cost and open-source fused deposition modeling (FDM) 3D printers that employ an off-the-shelf commercially available soft thermoplastic poly(urethane) (TPU). The performance of the soft actuators and sensors developed is optimized and predicted using finite element modeling (FEM) analytical models in some cases. A hyperelastic material model is developed for the TPU based on its experimental stress-strain data for use in FEM analysis. The novel soft vacuum bending (SOVA) and linear (LSOVA) actuators reported can be used in diverse robotic applications including locomotion robots, adaptive grippers, parallel manipulators, artificial muscles, modular robots, prosthetic hands, and prosthetic fingers. Also, the novel soft pneumatic sensing chambers (SPSC) developed can be used in diverse interactive human-machine interfaces including wearable gloves for virtual reality applications and controllers for soft adaptive grippers, soft push buttons for science, technology, engineering, and mathematics (STEM) education platforms, haptic feedback devices for rehabilitation, game controllers and throttle controllers for gaming and bending sensors for soft prosthetic hands. These SPSCs are directly 3D printed and embedded in a monolithic soft robotic finger as position and touch sensors for real-time position and force control. One of the aims of soft robotics is to design and fabricate robotic systems with a monolithic topology embedded with its actuators and sensors such that they can safely interact with their immediate physical environment. The results and conclusions of this thesis have significantly contributed to the realization of this aim

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society
    • …
    corecore