1,895 research outputs found

    Discrete time quantum walks on percolation graphs

    Get PDF
    Randomly breaking connections in a graph alters its transport properties, a model used to describe percolation. In the case of quantum walks, dynamic percolation graphs represent a special type of imperfections, where the connections appear and disappear randomly in each step during the time evolution. The resulting open system dynamics is hard to treat numerically in general. We shortly review the literature on this problem. We then present our method to solve the evolution on finite percolation graphs in the long time limit, applying the asymptotic methods concerning random unitary maps. We work out the case of one dimensional chains in detail and provide a concrete, step by step numerical example in order to give more insight into the possible asymptotic behavior. The results about the case of the two-dimensional integer lattice are summarized, focusing on the Grover type coin operator.Comment: 22 pages, 3 figure

    Efficient algorithms for reconfiguration in VLSI/WSI arrays

    Get PDF
    The issue of developing efficient algorithms for reconfiguring processor arrays in the presence of faulty processors and fixed hardware resources is discussed. The models discussed consist of a set of identical processors embedded in a flexible interconnection structure that is configured in the form of a rectangular grid. An array grid model based on single-track switches is considered. An efficient polynomial time algorithm is proposed for determining feasible reconfigurations for an array with a given distribution of faulty processors. In the process, it is shown that the set of conditions in the reconfigurability theorem is not necessary. A polynomial time algorithm is developed for finding feasible reconfigurations in an augmented single-track model and in array grid models with multiple-track switche

    Enhancing sustainability in logistics through stochastic network routing mechanism optimization using ant colony algorithm

    Get PDF
    Stochastic networks are one of the most prevalent types of networks these days. Therefore, many researchers directed to study them and summarize the essential points and challenges they face in developing these types of networks, especially optimal route path selection. In this paper, a solution to this problem was addressed using the evolutionary algorithm ACO (Ant Colony Optimization), where the path with the lowest cost was obtained according to several scenarios studied in the research, which consider the fact that, the traffic information in the network is available either in a static or in a dynamic form in real-time. The proposed method presented contributions for real networks that can be used in many applications. The results are essential in solving the problem of choosing the optimal route. Also, they can be applied to various scenarios of the stochastic networks that exist in real life. Optimization improves logistics efficiency, which contributes to sustainability by minimizing fuel consumption, reducing emissions, and conserving resources

    A new heuristic algorithm for two-dimensional defective stock guillotine cutting stock problem with multiple stock sizes

    Get PDF
    U radu se uglavnom raspravlja o problemu rezanja giljotinom dvodimenzijske oštećene robe raspoložive u različitim veličinama. Za raspravu o problemu predlaže se novi heuristički algoritam u obliku stabla. Takav se algoritam sastoji od dva dijela: prvi dio je početno rješenje problema rezanja robe kad ne postoje oštećenja robe; drugi dio je konačno rješenje optimizacije utemeljeno na prvom dijelu uz razmatranje oštećenja. U radu se također ocjenjuju rezultati predloženog algoritma. Eksperimentalnim se rezultatima demonstrira učinkovitost algoritma za problem rezanja dvodimenzijske oštećene robe i pokazuje da se algoritmom može poboljšati ne samo stopa iskoristivosti robe već i stopa ponovne uporabe ostataka smanjenjem fragmentacije ostataka.This paper mainly addresses a two-dimensional defective stocks guillotine cutting stock problem where stock of different sizes is available. Herein a new heuristic algorithm which is based on tree is proposed to discuss this problem. In particular, such an algorithm consists of two parts: the first part is an initial solution of the cutting stock problem where there are no defects on the stocks; the second part is the final optimization solution which is set up on the basis of the first part and takes the defects into consideration. This paper also evaluates the performance of the proposed algorithm. The experimental results demonstrate the effectiveness of the algorithm for the two-dimensional defective stocks cutting stock problem and show that the algorithm can improve not only the utilization rate of stocks, but also the reuse rate of remainders by reducing the fragmentation of remainders

    An Improved Whale Optimization Algorithm for Vehicle Routing Problem with Time Windows

    Get PDF
    The vehicle routing problem with time windows (VRPTW) is a pivotal problem in logistics operation management which attempts to establish routes for vehicles to deliver goods to customers. The objective of VRPTW is to find the optimal set of routes for a fleet of vehicles in order to serve a given set of customers within time window constraints. As the VRPTW is known to be NP-hard combinatorial problem, it is hard to be solved in reasonable computational time. Therefore, this paper proposes the modification of the whale optimization algorithm with local search to solve the VRPTW. The local search comprised 2-Operator and single insertion for solution improvement. Furthermore, the 2-Operator is used after the exploration phase and single insertion in the exploitation phase. The computational experiments were applied to Solomon’s instance that included small to large size problems. The experiment results show that the average gap of the total distance between the Best Known Solution (BKS) and the proposed solutions is within 5.82%. In addition, the best solution was found 29 out of 56 instances that is better than the PSO at 1.09%. This shows that this proposed provides a minimum value and outperforms other metaheuristics approaches.Keywords: Whale Optimization Algorithm; Vehicle Routing Problem; Time Constraint

    Extracting Data-Level Parallelism in High-Level Synthesis for Reconfigurable Architectures

    Get PDF
    High-Level Synthesis (HLS) tools are a set of algorithms that allow programmers to obtain implementable Hardware Description Language (HDL) code from specifications written high-level, sequential languages such as C, C++, or Java. HLS has allowed programmers to code in their preferred language while still obtaining all the benefits hardware acceleration has to offer without them needing to be intimately familiar with the hardware platform of the accelerator. In this work we summarize and expand upon several of our approaches to improve the automatic memory banking capabilities of HLS tools targeting reconfigurable architectures, namely Field-Programmable Gate Arrays or FPGA\u27s. We explored several approaches to automatically find the optimal partition factor and a usable banking scheme for stencil kernels including a tessellation based approach using multiple families of hyperplanes to do the partitioning which was able to find a better banking factor than current state-of-the-art methods and a graph theory methodology that allowed us to mathematically prove the optimality of our banking solutions. For non-stencil kernels we relaxed some of the conditions in our graph-based model to propose a best-effort solution to arbitrarily reduce memory access conflicts (simultaneous accesses to the same memory bank). We also proposed a non-linear transformation using prime factorization to convert a small subset of non-stencil kernels into stencil memory accesses, allowing us to use all previous work in memory partition to them. Our approaches were able to obtain better results than commercial tools and state-of-the-art algorithms in terms of reduced resource utilization and increased frequency of operation. We were also able to obtain better partition factors for some stencil kernels and usable baking schemes for non-stencil kernels with better performance than any applicable existing algorithm

    A cooperative framework for molecular biology database integration using image object selection

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration' and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: diversity of molecular biology databases schemas, schema constructs and schema implementation multi-database query using image object keying, database integration technologies using context graph, automated navigation among these databases. This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work
    corecore