26,399 research outputs found

    A revised Moore bound for mixed graphs

    Get PDF
    The degree-diameter problem seeks to find the maximum possible order of a graph with a given (maximum) degree and diameter. It is known that graphs attaining the maximum possible value (the Moore bound) are extremely rare, but much activity is focused on finding new examples of graphs or families of graph with orders approaching the bound as closely as possible. There has been recent interest in this problem as it applies to mixed graphs, in which we allow some of the edges to be undirected and some directed. A 2008 paper of Nguyen and Miller derived an upper bound on the possible number of vertices of such graphs. We show that for diameters larger than three, this bound can be reduced and we present a corrected Moore bound for mixed graphs, valid for all diameters and for all combinations of undirected and directed degrees

    Sequence mixed graphs

    Get PDF
    A mixed graph can be seen as a type of digraph containing some edges (or two opposite arcs). Here we introduce the concept of sequence mixed graphs, which is a generalization of both sequence graphs and literated line digraphs. These structures are proven to be useful in the problem of constructing dense graphs or digraphs, and this is related to the degree/diameter problem. Thus, our generalized approach gives rise to graphs that have also good ratio order/diameter. Moreover, we propose a general method for obtaining a sequence mixed diagraph by identifying some vertices of certain iterated line digraph. As a consequence, some results about distance-related parameters (mainly, the diameter and the average distance) of sequence mixed graphs are presented.Postprint (author's final draft

    A family of mixed graphs with large order and diameter 2

    Get PDF
    A mixed regular graph is a connected simple graph in which each vertex has both a fixed outdegree (the same indegree) and a fixed undirected degree. A mixed regular graphs is said to be optimal if there is not a mixed regular graph with the same parameters and bigger order. We present a construction that provides mixed graphs of undirected degree qq, directed degree View the MathML sourceq-12 and order 2q22q2, for qq being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to View the MathML source9q2-4q+34 the defect of these mixed graphs is View the MathML source(q-22)2-14. In particular we obtain a known mixed Moore graph of order 1818, undirected degree 33 and directed degree 11 called Bosák’s graph and a new mixed graph of order 5050, undirected degree 55 and directed degree 22, which is proved to be optimal.Peer ReviewedPostprint (author's final draft

    The Symmetric Group Defies Strong Fourier Sampling

    Get PDF
    The dramatic exponential speedups of quantum algorithms over their best existing classical counterparts were ushered in by the technique of Fourier sampling, introduced by Bernstein and Vazirani and developed by Simon and Shor into an approach to the hidden subgroup problem. This approach has proved successful for abelian groups, leading to efficient algorithms for factoring, extracting discrete logarithms, and other number-theoretic problems. We show, however, that this method cannot resolve the hidden subgroup problem in the symmetric groups, even in the weakest, information-theoretic sense. In particular, we show that the Graph Isomorphism problem cannot be solved by this approach. Our work implies that any quantum approach based upon the measurement of coset states must depart from the original framework by using entangled measurements on multiple coset states

    Moore mixed graphs from Cayley graphs

    Get PDF
    A Moore (r, z, k)-mixed graph G has every vertex with undirected degree r, directed in- and outdegree z, diameter k, and number of vertices (or order) attaining the corresponding Moore bound M(r, z, k) for mixed graphs. When the order of G is close to M(r, z, k) vertices, we refer to it as an almost Moore graph. The first part of this paper is a survey about known Moore (and almost Moore) general mixed graphs that turn out to be Cayley graphs. Then, in the second part of the paper, we give new results on the bipartite case. First, we show that Moore bipartite mixed graphs with diameter three are distance-regular, and their spectra are fully characterized. In particular, an infinity family of Moore bipartite (1, z, 3)-mixed graphs is presented, which are Cayley graphs of semidirect products of groups. Our study is based on the line digraph technique, and on some results about when the line digraph of a Cayley digraph is again a Cayley digraph.This research has been partially supported by AGAUR from the Catalan Government under project 2021SGR00434 and MICINN from the Spanish Government under project PID2020-115442RBI00.Peer ReviewedPostprint (published version

    Degree/diameter problem for mixed graphs

    Get PDF
    The Degree/diameter problem asks for the largest graphs given diameter and maximum degree. This problem has been extensively studied both for directed and undirected graphs, ando also for special classes of graphs. In this work we present the state of art of the degree/diameter problem for mixed graphs

    An improved upper bound for the order of mixed graphs

    Get PDF
    A mixed graph G can contain both (undirected) edges and arcs (directed edges). Here we derive an improved Moore-like bound for the maximum number of vertices of a mixed graph with diameter at least three. Moreover, a complete enumeration of all optimal (1, 1)-regular mixed graphs with diameter three is presented, so proving that, in general, the proposed bound cannot be improved.Postprint (author's final draft
    corecore