36 research outputs found

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Recognising behaviours of multiple people with hierarchical probabilistic model and statistical data association

    Full text link
    Recognising behaviours of multiple people, especially high-level behaviours, is an important task in surveillance systems. When the reliable assignment of people to the set of observations is unavailable, this task becomes complicated. To solve this task, we present an approach, in which the hierarchical hidden Markov model (HHMM) is used for modeling the behaviour of each person and the joint probabilistic data association filters (JPDAF) is applied for data association. The main contributions of this paper lie in the integration of multiple HHMMs for recognising high-level behaviours of multiple people and the construction of the Rao-Blackwellised particle filters (RBPF) for approximate inference. Preliminary experimental results in a real environment show the robustness of our integrated method in behaviour recognition and its advantage over the use of Kalman filter in tracking people.<br /

    Accurate estimation of object location in an image sequence using helicopter flight data

    Get PDF
    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path

    Swarm Coordination for Pursuit Evasion Games Using Sensor Networks

    Get PDF
    Abstract — In this work we consider the problem of pursuit evasion games (PEGs) where a group of pursuers is required to detect, chase and capture a group of evaders with the aid of a sensor network in minimum time. Differently from standards PEGs where the environment and the location of evaders is unknown and a probabilistic map is built based on the pursuer onboard sensors, here we consider a scenario where a sensor network, previously deployed in the region of concern, can detect the presence of moving vehicles and can relay this information to the pursuers. Here we propose a general framework for the design of a hierarchical control architecture that exploit the advantages of a sensor networks by combining both centralized and decentralized real-time control algorithms. We also propose a coordination scheme for the pursuers to minimize the time-to-capture of all evaders. In particular, we focus on PEGs with sensor networks orbiting in space for artificial space debris detection and removal. Index Terms — Sensor networks, pursuit evasion games, vehicle coordination, space vehicles, space debris over the area of interest. This constraint makes designing a cooperative pursuit algorithm harder because lack of complete observability only allows for suboptimal pursuit policies. See Figure 1(left). Furthermore, a smart evaders makes the map-building process dynamic since their location changes over time. The map-learning phase is, by itself, time-consuming and computationally intensive even for simple two-dimensional rectilinear environments [5]. Moreover, inaccurate sensors complicate this process and a probabilistic approach is often required [21]. I
    corecore