14,999 research outputs found

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Intelligent XML Tag Classification Techniques for XML Encryption Improvement

    Get PDF
    Flexibility, friendliness, and adaptability have been key components to use XML to exchange information across different networks providing the needed common syntax for various messaging systems. However excess usage of XML as a communication medium shed the light on security standards used to protect exchanged messages achieving data confidentiality and privacy. This research presents a novel approach to secure XML messages being used in various systems with efficiency providing high security measures and high performance. system model is based on two major modules, the first to classify XML messages and define which parts of the messages to be secured assigning an importance level for each tag presented in XML message and then using XML encryption standard proposed earlier by W3C [3] to perform a partial encryption on selected parts defined in classification stage. As a result, study aims to improve both the performance of XML encryption process and bulk message handling to achieve data cleansing efficiently

    Software Defect Association Mining and Defect Correction Effort Prediction

    Get PDF
    Much current software defect prediction work concentrates on the number of defects remaining in software system. In this paper, we present association rule mining based methods to predict defect associations and defect-correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that for the defect association prediction, the accuracy is very high and the false negative rate is very low. Likewise for the defect-correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect-correction effort prediction method with other types of methods: PART, C4.5, and Na¨ıve Bayes and show that accuracy has been improved by at least 23%. We also evaluated the impact of support and confidence levels on prediction accuracy, false negative rate, false positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy
    • …
    corecore