6,961 research outputs found

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    Combining semantic web technologies with evolving fuzzy classifier eClass for EHR-based phenotyping : a feasibility study

    Get PDF
    In parallel to nation-wide efforts for setting up shared electronic health records (EHRs) across healthcare settings, several large-scale national and international projects are developing, validating, and deploying electronic EHR oriented phenotype algorithms that aim at large-scale use of EHRs data for genomic studies. A current bottleneck in using EHRs data for obtaining computable phenotypes is to transform the raw EHR data into clinically relevant features. The research study presented here proposes a novel combination of Semantic Web technologies with the on-line evolving fuzzy classifier eClass to obtain and validate EHR-driven computable phenotypes derived from 1956 clinical statements from EHRs. The evaluation performed with clinicians demonstrates the feasibility and practical acceptability of the approach proposed
    • …
    corecore