3,465 research outputs found

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    The Quantum Curriculum Transformation Framework for the development of Quantum Information Science and Technology Education

    Full text link
    The field of Quantum Information Science and Technology (QIST) is booming. Due to this, many new educational courses and programs are needed in order to prepare a workforce for the developing industry. Owing to its specialist nature, teaching approaches in this field can suffer from being disconnected to the substantial degree of science education research which aims to support the best approaches to teaching in STEM fields. In order to connect these two communities with a pragmatic and repeatable methodology, we have generated an innovative approach, the Quantum Curriculum Transformation Framework (QCTF), intended to provide a didactical perspective on the creation and transformation of quantum technologies curricula. For this, we propose a decision tree consisting of four steps: 1. choose a topic, 2. choose one or more targeted skills, 3. choose a learning goal and 4. choose a teaching approach that achieves this goal. We show how this can be done using an example curriculum and more specifically quantum teleportation as a basic concept of quantum communication within this curriculum. By approaching curriculum creation and transformation in this way, educational goals and outcomes are more clearly defined which is in the interest of the individual and the industry alike. The framework is intended to structure the narrative of QIST teaching, and will form a basis for further research in the didactics of QIST, as the need for high quality education in this field continues to grow.Comment: 19+12 pages, 10 figures. S. Goorney and J. Bley contributed equally to this wor

    A Light-speed Linear Program Solver for Personalized Recommendation with Diversity Constraints

    Full text link
    We study a structured linear program (LP) that emerges in the need of ranking candidates or items in personalized recommender systems. Since the candidate set is only known in real time, the LP also needs to be formed and solved in real time. Latency and user experience are major considerations, requiring the LP to be solved within just a few milliseconds. Although typical instances of the problem are not very large in size, this stringent time limit appears to be beyond the capability of most existing (commercial) LP solvers, which can take 2020 milliseconds or more to find a solution. Thus, reliable methods that address the real-world complication of latency become necessary. In this paper, we propose a fast specialized LP solver for a structured problem with diversity constraints. Our method solves the dual problem, making use of the piece-wise affine structure of the dual objective function, with an additional screening technique that helps reduce the dimensionality of the problem as the algorithm progresses. Experiments reveal that our method can solve the problem within roughly 1 millisecond, yielding a 20x improvement in speed over efficient off-the-shelf LP solvers. This speed-up can help improve the quality of recommendations without affecting user experience, highlighting how optimization can provide solid orthogonal value to machine-learned recommender systems

    Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers

    Full text link
    A massive gap exists between current quantum computing (QC) prototypes, and the size and scale required for many proposed QC algorithms. Current QC implementations are prone to noise and variability which affect their reliability, and yet with less than 80 quantum bits (qubits) total, they are too resource-constrained to implement error correction. The term Noisy Intermediate-Scale Quantum (NISQ) refers to these current and near-term systems of 1000 qubits or less. Given NISQ's severe resource constraints, low reliability, and high variability in physical characteristics such as coherence time or error rates, it is of pressing importance to map computations onto them in ways that use resources efficiently and maximize the likelihood of successful runs. This paper proposes and evaluates backend compiler approaches to map and optimize high-level QC programs to execute with high reliability on NISQ systems with diverse hardware characteristics. Our techniques all start from an LLVM intermediate representation of the quantum program (such as would be generated from high-level QC languages like Scaffold) and generate QC executables runnable on the IBM Q public QC machine. We then use this framework to implement and evaluate several optimal and heuristic mapping methods. These methods vary in how they account for the availability of dynamic machine calibration data, the relative importance of various noise parameters, the different possible routing strategies, and the relative importance of compile-time scalability versus runtime success. Using real-system measurements, we show that fine grained spatial and temporal variations in hardware parameters can be exploited to obtain an average 2.92.9x (and up to 1818x) improvement in program success rate over the industry standard IBM Qiskit compiler.Comment: To appear in ASPLOS'1
    corecore