14 research outputs found

    A Framework for Devanagari Script-based Captcha

    Full text link
    Human Interactive Proofs (HIPs) are automatic reverse Turing tests designed to distinguish between various groups of users. Completely Automatic Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a HIP system that distinguish between humans and malicious computer programs. Many CAPTCHAs have been proposed in the literature that text-graphical based, audio-based, puzzle-based and mathematical questions-based. The design and implementation of CAPTCHAs fall in the realm of Artificial Intelligence. We aim to utilize CAPTCHAs as a tool to improve the security of Internet based applications. In this paper we present a framework for a text-based CAPTCHA based on Devanagari script which can exploit the difference in the reading proficiency between humans and computer programs. Our selection of Devanagari script-based CAPTCHA is based on the fact that it is used by a large number of Indian languages including Hindi which is the third most spoken language. There is potential for an exponential rise in the applications that are likely to be developed in that script thereby making it easy to secure Indian language based applications.Comment: 10 pages, 8 Figures, CCSEA 2011 - First International Conference, Chennai, July 15-17, 201

    Embedded noninteractive continuous bot detection

    Get PDF
    Multiplayer online computer games are quickly growing in popularity, with millions of players logging in every day. While most play in accordance with the rules set up by the game designers, some choose to utilize artificially intelligent assistant programs, a.k.a. bots, to gain an unfair advantage over other players. In this article we demonstrate how an embedded noninteractive test can be used to prevent automatic artificially intelligent players from illegally participating in online game-play. Our solution has numerous advantages over traditional tests, such as its nonobtrusive nature, continuous verification, and simple noninteractive and outsourcing-proof design. © 2008 ACM

    Improving Auditory CAPTCHA Security

    Get PDF
    CAPTCHAs are tests used by resource-rich websites to ensure that humans, but not malicious automated programs, have access to their resources. Most CAPTCHAs are visual tests (e.g. identifying distorted text), but auditory versions are necessary to provide access to the visually impaired, and are currently deployed at commonly used websites such as Google and Facebook. To be effective at deterring automated programs, they must be at least as secure as their visual counterparts. Assuming that the attacks against auditory CAPTCHAs will depend on automatic speech recognition systems (ASRs), we undertook the project of designing auditory CAPTCHAs that would take advantage of the weaknesses in ASRs as compared to the human auditory system. Examples of such weaknesses of ASRs, relative to humans, include impeded recognition in the presence of broadband and time-varying noise such as multiple simultaneous speakers. Results show that a combination of such disruptive noise types can outperform currently employed techniques while still maintaining human intelligibility.NSF #064732

    A Survey of Adversarial CAPTCHAs on its History, Classification and Generation

    Full text link
    Completely Automated Public Turing test to tell Computers and Humans Apart, short for CAPTCHA, is an essential and relatively easy way to defend against malicious attacks implemented by bots. The security and usability trade-off limits the use of massive geometric transformations to interfere deep model recognition and deep models even outperformed humans in complex CAPTCHAs. The discovery of adversarial examples provides an ideal solution to the security and usability trade-off by integrating adversarial examples and CAPTCHAs to generate adversarial CAPTCHAs that can fool the deep models. In this paper, we extend the definition of adversarial CAPTCHAs and propose a classification method for adversarial CAPTCHAs. Then we systematically review some commonly used methods to generate adversarial examples and methods that are successfully used to generate adversarial CAPTCHAs. Also, we analyze some defense methods that can be used to defend adversarial CAPTCHAs, indicating potential threats to adversarial CAPTCHAs. Finally, we discuss some possible future research directions for adversarial CAPTCHAs at the end of this paper.Comment: Submitted to ACM Computing Surveys (Under Review

    A Survey on Breaking Technique of Text-Based CAPTCHA

    Get PDF
    The CAPTCHA has become an important issue in multimedia security. Aimed at a commonly used text-based CAPTCHA, this paper outlines some typical methods and summarizes the technological progress in text-based CAPTCHA breaking. First, the paper presents a comprehensive review of recent developments in the text-based CAPTCHA breaking field. Second, a framework of text-based CAPTCHA breaking technique is proposed. And the framework mainly consists of preprocessing, segmentation, combination, recognition, postprocessing, and other modules. Third, the research progress of the technique involved in each module is introduced, and some typical methods of segmentation and recognition are compared and analyzed. Lastly, the paper discusses some problems worth further research

    Generalized CAPTCHA with security applications

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 51-53).A puzzle only solvable by humans, or POSH, is a prompt or question with three important properties: it can be generated by a computer, it can be answered consistently by a human, and a human answer cannot be efficiently predicted by a computer. In fact, a POSH does not necessarily have to be verifiable by a computer at all. One application of POSHes is a scheme proposed by Canetti et al. that limits on-line dictionary attacks against password-protected local storage, without the use of any secure hardware or secret storage. We explore the area of POSHes, implement several candidate POSHes and have users solve them, to evaluate their effectiveness. Given these data, we then implement the above scheme as an extension to the Mozilla Firefox web browser, where it is used to protect user certificates and saved passwords. In the course of doing so, we also define certain aspects of the threat model for our implementation (and the scheme) more precisely.by Waseem S. Daher.M.Eng

    An email spam filtering proxy using secure authentication and micro-bonds

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 71-74).The Apuma system described in this thesis was designed and implemented as a novel combination of existing technologies in order to give an email user full control over their incoming email. The innate uncertainty of automatic spam detection creates a tension between the desire to filter 100% of spam, and the need to avoid the loss of legitimate mail. Apuma attempts to solve this problem by combining accept-lists with payment systems and content evaluation. Messages from known senders can be exempted from filtering; combined with intelligent automated management of the accept-list this can eliminate the vast majority of false-positives. Remaining mail can thus be subjected to much more rigorous screening. Finally, first time contact and other special cases can be handled with micro-payments or micro-bonds. Apuma includes a plugin interface that allows any financial, proof-of work, or other desired protocol to be integrated into the Apuma filtering framework.by Ariel Lauren Rideout.M.Eng

    Enhancing Online Security with Image-based Captchas

    Get PDF
    Given the data loss, productivity, and financial risks posed by security breaches, there is a great need to protect online systems from automated attacks. Completely Automated Public Turing Tests to Tell Computers and Humans Apart, known as CAPTCHAs, are commonly used as one layer in providing online security. These tests are intended to be easily solvable by legitimate human users while being challenging for automated attackers to successfully complete. Traditionally, CAPTCHAs have asked users to perform tasks based on text recognition or categorization of discrete images to prove whether or not they are legitimate human users. Over time, the efficacy of these CAPTCHAs has been eroded by improved optical character recognition, image classification, and machine learning techniques that can accurately solve many CAPTCHAs at rates approaching those of humans. These CAPTCHAs can also be difficult to complete using the touch-based input methods found on widely used tablets and smartphones.;This research proposes the design of CAPTCHAs that address the shortcomings of existing implementations. These CAPTCHAs require users to perform different image-based tasks including face detection, face recognition, multimodal biometrics recognition, and object recognition to prove they are human. These are tasks that humans excel at but which remain difficult for computers to complete successfully. They can also be readily performed using click- or touch-based input methods, facilitating their use on both traditional computers and mobile devices.;Several strategies are utilized by the CAPTCHAs developed in this research to enable high human success rates while ensuring negligible automated attack success rates. One such technique, used by fgCAPTCHA, employs image quality metrics and face detection algorithms to calculate a fitness value representing the simulated performance of human users and automated attackers, respectively, at solving each generated CAPTCHA image. A genetic learning algorithm uses these fitness values to determine customized generation parameters for each CAPTCHA image. Other approaches, including gradient descent learning, artificial immune systems, and multi-stage performance-based filtering processes, are also proposed in this research to optimize the generated CAPTCHA images.;An extensive RESTful web service-based evaluation platform was developed to facilitate the testing and analysis of the CAPTCHAs developed in this research. Users recorded over 180,000 attempts at solving these CAPTCHAs using a variety of devices. The results show the designs created in this research offer high human success rates, up to 94.6\% in the case of aiCAPTCHA, while ensuring resilience against automated attacks

    Mothers\u27 Adaptation to Caring for a New Baby

    Get PDF
    To date, most research on parents\u27 adjustment after adding a new baby to their family unit has focused on mothers\u27 initial transition to parenthood. This past research has examined changes in mothers\u27 marital satisfaction and perceived well-being across the transition, and has compared their prenatal expectations to their postnatal experiences. This project assessed first-time and experienced mothers\u27 stress and satisfaction associated with parenting, their adjustment to competing demands, and their perceived well-being longitudinally before and after the birth of a baby. Additionally, how maternal and child-related variables influenced the trajectory of mothers\u27 postnatal adaptation was assessed. These variables included mothers\u27 age, their education level, their prenatal expectations and postnatal experiences concerning shared infant care, their satisfaction with the division of infant caregiving, and their perceptions of their infant\u27s temperament. Mothers (N = 136) completed an online survey during their third trimester and additional online surveys when their baby was approximately 2, 4, 6, and 8 weeks old.;First-time mothers prenatally expected a more equal division of infant caregiving between themselves and their partners than did experienced mothers. Both first-time and experienced mothers reported less assistance from their partners than they had prenatally expected. Additionally, they experienced almost twice as many violated expectations than met expectations. Growth curve modeling revealed that a cubic function of time best fit the trajectory of mothers\u27 postnatal parenting satisfaction. Mothers reported less parenting satisfaction at 4 weeks, compared to 2 and 6 weeks, and reported stability in their satisfaction between 6 and 8 weeks. A quadratic function of time best fit the trajectories of mothers\u27 postnatal parenting stress and adjustment to the demands of their baby. Mothers reported more stress and difficulty adjusting to their baby\u27s demands at 4 and 6 weeks, compared to 2 and 8 weeks. A linear function of time best fit the trajectories of mothers\u27 adjustment to home demands, generalized state anxiety, and depressive symptoms. Mothers reported less difficulty meeting home demands, less generalized anxiety, and fewer depressive symptoms across the postnatal period. Mothers\u27 violated expectations were associated with level differences in all aspects of mothers\u27 postnatal adaptation except their adjustment to home demands. Specifically, more violated expectations, in number or in magnitude, were associated with poorer postnatal adaptation. Mothers\u27 violated expectations were not associated with the slope of mothers\u27 postnatal adaptation trajectories. Exploratory models revealed that other maternal and child-related variables also impacted the level and slope of mothers\u27 postnatal adaptation.;Overall, first-time and experienced mothers were more similar than different in regards to their postnatal adaptation. This study suggests that prior findings concerning adults\u27 initial transition to parenthood may also apply to adults during each addition of a new baby into the family unit. Additionally, mothers who reported less of a mismatch between their expectations and experiences concerning shared infant care had fewer issues adapting the postnatal period. Thus, methods to increase the assistance mothers receive from their partner should be sought. Limitations of this study and suggestions for future research are also discussed
    corecore