8,229 research outputs found

    A global optimization approach to solve multi-aircraft routing problems

    Get PDF
    "This chapter appears in Computational Models, Software Engineering and Advanced Technologies in Air Transportation edited by Dr. Li Weigang and Dr. Alexandre G. de Barros. Chap.12 pp.237-259. Copyright 2009. Posted by permission of the publisher."This paper describes the formulation and solution of a multi-aircraft routing problem which is posed as a global optimization calculation. The paper extends previous work (involving a single aircraft using two dimensions) which established that the algorithm DIRECT is a suitable solution technique. The present work considers a number of ways of dealing with multiple routes using different problem decompositions. A further enhancement is the introduction of altitude to the problems so that full three-dimensional routes can be produced. Illustrative numerical results are presented involving up to three aircraft and including examples which feature routes over real-life terrain data

    Transverse electric scattering on inhomogeneous objects: spectrum of integral operator and preconditioning

    Full text link
    The domain integral equation method with its FFT-based matrix-vector products is a viable alternative to local methods in free-space scattering problems. However, it often suffers from the extremely slow convergence of iterative methods, especially in the transverse electric (TE) case with large or negative permittivity. We identify the nontrivial essential spectrum of the pertaining integral operator as partly responsible for this behavior, and the main reason why a normally efficient deflating preconditioner does not work. We solve this problem by applying an explicit multiplicative regularizing operator, which transforms the system to the form `identity plus compact', yet allows the resulting matrix-vector products to be carried out at the FFT speed. Such a regularized system is then further preconditioned by deflating an apparently stable set of eigenvalues with largest magnitudes, which results in a robust acceleration of the restarted GMRES under constraint memory conditions.Comment: 20 pages, 8 figure

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
    corecore