\mathbf{C} ter
 Discussion paper

CRM CBM
 R
 8414 1989

28

No. 8928
THE D_{1}-TRIANGULATION OF R^{n} FOR SIMPLICIAL ALGORITHMS FOR COMPUTING SOLUTIONS OF NONLINEAR EQUATIONS
by Dang Chuangyin

June, 1989

The D_{1}-Triangulation of R^{n} for Simplicial Algorithms for Computing Solutions of Nonlinear Equations

Dang Chuangyin
CentER for Economic Research
Tilburg University
The Netherlands

Abstract

We present a new triangulation of \mathbb{R}^{n}, which is called the D_{1} triangulation, for computing zero points or fixed points of nonlinear mappings. The D_{1}-triangulation subdivides the unit cube and is based on very elementary pivot rules. We compare the D_{1}-triangulation to several well-known triangulations of \mathbf{R}^{n} which are also based upon pivot rules and triangulate the unit cube. According to several measures of efficiency the new triangulation is superior, such as the number of simplices in the unit cube, the diameter of a triangulation, the average directional density, and the surface density.

Key Words: Simplicial Algorithms, Triangulations, Unit Cube, Diameter, Surface Density

Acknowledgement: The author would like to thank Dolf Talman for his remarks on an earlier version of this paper, and Gerard van der Laan, He Xuchu and Chen Kaizhou for their encouragement.

1. Introduction

There are now a number of simplicial algorithms for computing zero pints or fixed points using triangulations of R^{n}, for example, Merrill's homotopy restart method [1] and van der Laan and Talman's variable dimension simplicial restart algorithms without an extra dimension [4], see also Wright [8] and Kojima and Yamamoto [3]. Allgower and Georg's paper [1] is an excellent survey of this field.

It has been accepted by now that the efficiency of the various simplicial homotopy and restart algorithms for solving equations is influenced in a critical manner by the triangulation employed. To evaluate and design triangulations for these algorithms, Todd, and Saigal, Solow and Wolsey established several measures in [5] and [6], such as the number of simplices in the unit cube, the diameter of a triangulation, the average directional density, and the surface density. Eaves and Yorke [2] showed that the average directional density and the surface density are equivalent.

To improve the efficiency of simplicial fixed point algorithms, we construct a new triangulation of \mathbf{R}^{n}, and show that according to these measures it is the best of all known triangulations of \mathbf{R}^{n}, which both subdivide the unit cube and are based on pivot rules.

The second section introduces the D_{1}-triangulation. We describe the pivot rules of the D_{1}-triangulation in section 3 . The number of simplices in the unit cube, the diameter, and the surface density are calculated in section 4 , section 5 , and section 6 , respectively.
2. The D_{1}-triangulation of R^{n}

Let $y^{0}, y^{1}, \ldots, y^{k}$ be a set of vectors in R^{n}. If they are affinely independent, then we call their convex hull, σ, a k-simplex and write $\sigma=$ $\left[y^{0}, y^{1}, \ldots, y^{k}\right]=\operatorname{conv}\left\{y^{0}, y^{1} \ldots, y^{k}\right\}$. A simplex τ is called a face of a simplex σ if all the vertices of τ are vertices of σ. If $\operatorname{dim} \tau=\operatorname{dim} \sigma-1$, we call τ a facet of σ. In addition, if y is the vertex of σ which is not a vertex of τ, τ is called the facet of σ opposite y.

Let C be a closed, convex subset of R^{n} and let $\operatorname{dim} C=m$. We call G a triangulation of C if
(1) G is a collection of m-simplices;
(2) $\mathrm{C}=\bigcup_{\sigma \in G}^{u} \sigma$;
(3) for any $\sigma^{1}, \sigma^{2} \in G, \sigma^{1} \cap \sigma^{2}$ is either empty or a common face of both σ^{1} and σ^{2};
(4) each $x \in C$ has a neighborhood meeting only a finite number of simplices of G.

We denote the collection of j-simplices that are faces of simplices of G by G^{j}, for $j=0,1, \ldots, m$.

For ease of notation, let $N=\{1,2, \ldots, n\}$, let $D_{1}^{0 c}=$ $\left\{y \in R^{n} \mid\right.$ all components of y are even\}, and for $i=1,2, \ldots, n$, let u^{i} be the i-th unit vector in \mathbb{R}^{n}.

As follows, we construct the simplices of a new triangulation of \mathbf{R}^{n}. We assume $n \geq 2$.

Definition 2.1. Let s denote a sign vector in \mathbb{R}^{n} such that $s_{i} \in\{-1,+1\}$ for all $i \in N$. Let $0 \leq p \leq n-1$ be an integer. Let $\pi=(\pi(1), \pi(2), \ldots, \pi(n))$ be a permutation of the n elements of N such that $\pi(p)<\ldots<\pi(n)$ if $p \geq 1$ and $\pi(1)<\ldots<\pi(n)$ if $p=0$.

Let $y \in D_{1}^{0 c}$.
If $p=0$, let $y^{0}=y$, and

$$
y^{k}=y+s_{\pi(k)}^{u^{\pi(k)}}, k=1,2, \ldots, n .
$$

If $p \geq 1$, let $y^{0}=y+s$,

$$
\begin{aligned}
& y^{k}=y^{k-1}-s_{\pi(k)^{u^{\pi(k)}}}, k=1,2, \ldots, p-1, \text { and } \\
& y^{k}=y+s_{\pi(k)} u^{\pi(k)}, k=p, \ldots, n .
\end{aligned}
$$

Lemma 2.1. Let $\mathrm{y}^{0}, \mathrm{y}^{1}, \ldots, \mathrm{y}^{\mathrm{n}}$ be obtained from Definition 2.1. Then y^{0}, y^{1}, \ldots, y^{n} are affinely independent.

Proof. If $p=0$, then let

$$
\begin{aligned}
& z^{1}=y^{1}-y^{0}=s_{\pi(1)^{u^{\pi(1)}}} \\
& z^{2}=y^{2}-y^{1}=s_{\pi(2)^{u^{\pi(2)}}-s_{\pi(1)^{u^{\pi(1)}}}} \\
& \cdots \cdots \cdots \cdots \cdots \\
& z^{n}=y^{n}-y^{n-1}=s_{\pi(n)} u^{u^{\pi(n)}}-s_{\pi(n-1)^{u^{\pi(n-1)}}} .
\end{aligned}
$$

Obviously, z^{1}, \ldots, z^{n} are linearly independent.
If $p \geq 1$, then let

$$
\begin{aligned}
& z^{k}=y^{k}-y^{k-1}=-s_{\pi(k)} u^{u^{\pi(k)}}, k=1,2, \ldots, p-1, \\
& z^{p}=y^{p}-y^{p-1}=-\sum_{k=p+1}^{n} s^{\pi}(k)^{u^{\pi(}(k)}, \text { and } \\
& z^{k}=y^{k}-y^{k-1}=s_{\pi(k)} u^{\pi(k)}-s_{\pi(k-1)^{u^{\pi}(k-1)}}, k=p+1, \ldots, n .
\end{aligned}
$$

Suppose that z^{1}, \ldots, z^{n} are linearly dependent. Then there exists a
$q=\left(q_{1}, \ldots, q_{n}\right)^{T} \neq 0$ such that $q_{1} z^{1}+\ldots+q_{n} z^{n}=0$. If $p=n-1$, it is necessary that $q_{1}=\ldots=q_{n-2}=0,-q_{n-1}+q_{n}=0$ and $q_{n}=0$. We conclude $q_{1}=\ldots=q_{n}=0$. If $p<n-1$, we must have that $q_{1}=\ldots=q_{p-1}=0, q_{p+1}=$ $0, q_{k}-q_{k+1}-q_{p}=0$ for $k=p+1, \ldots, n-1$, and $q_{n}-q_{p}=0$.
Therefore, $q_{p}=q_{n}, q_{n-1}=2 q_{n}, q_{n-2}=3 q_{n}, \ldots, q_{p+2}=(n-(p+1)) q_{n}$, and $q_{p+2}+q_{p}=0$. Hence, $(n-(p+1)+1) q_{n}=0$. Since $p<n-1$, we have $q_{1}=q_{2}=\ldots$ $=q_{n}=0$. Thus the hypothesis is incorrect, i.e., z^{1}, \ldots, z^{n} are linearly independent. Therefore, $y^{0}, y^{1}, \ldots, y^{n}$ are affinely independent. The proof is completed.

Let $y^{0}, y^{1}, \ldots, y^{n}$ be obtained from Definition 2.1. Then their convex hull is an n-simplex by Lemma 2.2 , which is denoted by $D_{1}(x, \pi, s, p)$. Let D_{1} be the collection of all such simplices $D_{1}(y, \pi, s, p)$.

Lemma 2.2. ${\underset{\sigma}{ } \in \mathrm{D}_{1}} \quad{ }^{\sigma}=\mathrm{R}^{\mathrm{n}}$.

Proof. Let x be an arbitrary point of R^{n}. For each $i \in N$, let $y_{i}=\left\{\begin{array}{l}\left\lfloor x_{i}\right\rfloor, \text { if }\left\lfloor x_{i}\right\rfloor \text { is even, } \\ \left\lfloor x_{i}\right\rfloor+1, \text { otherwise }\end{array}\right.$ and $s_{i}= \begin{cases}+1, & \text { if }\left\lfloor x_{i}\right\rfloor \text { is even, } \\ -1, & \text { otherwise. }\end{cases}$
We have $0 \leq \operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)(x-y) \leq u$, where $u=(1, \ldots, 1)^{T}$. Let π ' be a permutation of N such that
$0 \leq s_{\pi^{\prime}(1)}\left(x_{\pi^{\prime}(1)}-y_{\pi^{\prime}(1)}\right) \leq \ldots \leq s_{\pi^{\prime}(n)}\left(x_{\pi^{\prime}(n)}-y_{\pi^{\prime}(n)}\right) \leq 1$.
If $\sum_{i=1}^{n} s_{i}\left(x_{i}-y_{i}\right) \leq 1$, let $q_{1}^{\prime}=s_{\pi^{\prime}(1)}\left(x_{\pi^{\prime}(1)}-y_{\pi^{\prime}(1)}\right), \ldots, q_{n}^{\prime}=$ $s_{\pi^{\prime}(n)}\left(x_{\pi^{\prime}(n)}-y_{\pi^{\prime}(n)}\right)$, and $q_{0}^{\prime}=1-\sum_{j=1}^{n} q_{j}^{\prime}$. Obviously, $q_{j}^{\prime} \geq 0$ for all j and $\sum_{j=0}^{n} q_{j}^{\prime}=1$. Let $\pi=(1,2, \ldots, n), p=0, y^{0}=y$, and $y^{k}=y+s_{k} u^{k}$ for
$\mathrm{k}=1,2, \ldots, \mathrm{n}$. It is easily seen that

$$
x=\sum_{j=0}^{n} q_{j} y^{j} \text {, where } q_{0}=q_{0}^{\prime} \text { and, for } j=1, \ldots, n, q_{j}=q_{h}^{\prime} \text { with } h
$$ the index for which $\pi^{\prime}(h)=j$. Thus $x \in D_{1}(y, \pi, s, p)$.

$$
\text { If } \sum_{i=1}^{n} s_{i}\left(x_{i}-y_{i}\right) \geq 1 \text {, then we show that there exists an integer } 1 \leq p \leq
$$ $\mathrm{n}-1$ such that the following system has a nonnegative solution,

$$
\begin{aligned}
& q_{0}^{\prime}=s_{\pi^{\prime}(1)}\left(x_{\pi^{\prime}(1)}-y_{\pi^{\prime}(1)}\right), \\
& q_{0}^{\prime}+q_{1}^{\prime}=s_{\pi^{\prime}(2)}\left(x_{\pi^{\prime}(2)}-y_{\pi^{\prime}(2)}\right), \\
& \ldots \ldots \ldots \ldots \ldots \\
& q_{0}^{\prime}+q_{1}^{\prime}+\ldots+q_{p-2}^{\prime}=s_{\pi^{\prime}(p-1)}\left(x_{\pi^{\prime}(p-1)}-y_{\pi^{\prime}(p-1)}\right), \\
& q_{0}^{\prime}+\ldots+q_{p-1}^{\prime}+q_{k}^{\prime}=s_{\pi^{\prime}(k)}\left(x_{\pi^{\prime}(k)}-y_{\pi^{\prime}(k)}\right), \\
& k=p, \ldots, n, \\
& q_{0}^{\prime}+q_{1}^{\prime}+\ldots+q_{n}^{\prime}=1 .
\end{aligned}
$$

In fact, rewriting the system, we obtain
$q_{0}^{\prime}=s_{\pi^{\prime}(1)}\left(x_{\pi^{\prime}(1)}-y_{\pi^{\prime}(1)}\right)$,
$q_{1}^{\prime}=s_{\pi^{\prime}(2)}\left(x_{\pi^{\prime}(2)}-y_{\pi^{\prime}(2)}\right)-s_{\pi^{\prime}(1)}\left(x_{\pi^{\prime}(1)}-y_{\pi^{\prime}(1)}\right)$,
$q_{p-2}^{\prime}=s_{\pi^{\prime}(p-1)}\left(x_{\pi^{\prime}(p-1)}-y_{\pi^{\prime}(p-1)}\right)-s_{\pi^{\prime}(p-2)}\left(x_{\pi^{\prime}(p-2)}-y_{\pi^{\prime}(p-2)}\right)$,
$q_{p-1}^{\prime}=-s_{\pi^{\prime}(p-1)}\left(x_{\pi^{\prime}(p-1)}-y_{\pi^{\prime}(p-1)}\right)+\left(\sum_{j=p}^{n} s_{\pi^{\prime}(j)}\left(x_{\pi^{\prime}(j)}-y_{\pi^{\prime}(j)}\right)-1\right) /(n-$ p),
$q_{k}^{\prime}=s_{\Pi^{\prime}(k)}\left(x_{\pi^{\prime}(k)}-y_{\pi^{\prime}(k)}\right)+\left(1-\sum_{j=p}^{n} s_{\pi^{\prime}(j)}\left(x_{\pi^{\prime}(j)}-y_{\pi^{\prime}(j)}\right)\right) /(n-p)$. $\mathrm{k}=\mathrm{p}, \ldots, \mathrm{n}$.

Let $N_{0}=\{0,1, \ldots, n\}$. If $q_{n-2}^{\prime} \geq 0$ for $p=n-1$, it is clear that $q_{j}^{\prime} \geq 0$ for all $j \in N_{0}$; otherwise, there exists a $p_{0}, 1 \leqslant p_{0} \leq n-2$, such that
$-s_{\pi^{\prime}}\left(p_{0}-1\right)\left(x_{\pi^{\prime}}\left(p_{0}-1\right)-y_{\pi^{\prime}\left(p_{0}-1\right)}\right)+\left(\sum_{j=p_{0}}^{n} s_{\pi^{\prime}(j)}\left(x_{\pi^{\prime}(j)}-y_{\pi^{\prime}(j)}\right)-\right.$

1) $/\left(n-p_{0}\right) \geq 0$
and

$$
\begin{aligned}
& -s_{\pi^{\prime}}\left(p_{0}\right)\left(x_{\pi^{\prime}}\left(p_{0}\right)-y_{\pi^{\prime}}\left(p_{0}\right)\right)+\left(\sum_{j=p_{0}+1}^{n} s_{\pi^{\prime}(j)}\left(x_{\pi^{\prime}(j)}-y_{\pi^{\prime}(j)}\right)-1\right) / \\
& \left(n-p_{0}-1\right)<0
\end{aligned}
$$

Hence, $s_{\pi^{\prime}}\left(p_{0}\right)\left(x_{\pi^{\prime}}\left(p_{0}\right)-y_{\pi^{\prime}}\left(p_{0}\right)\right)+\left(1-\sum_{j=p_{0}}^{n} s_{\pi^{\prime}(j)}\left(x_{\pi^{\prime}(j)}-y_{\pi^{\prime}(j)}\right)\right) /\left(n-p_{0}\right)$
$z s_{\pi^{\prime}\left(p_{0}\right)}\left(x_{\pi^{\prime}}\left(p_{0}\right)-y_{\pi^{\prime}\left(p_{0}\right)}\right)+\left(1-s_{\pi^{\prime}\left(p_{0}\right)}\left(x_{\pi^{\prime}\left(p_{0}\right)}-y_{\pi^{\prime}\left(p_{0}\right)}\right)\right.$
$-\left(n-p_{0}-1\right) s_{\pi^{\prime}}\left(p_{0}\right)\left(x_{\pi^{\prime}}\left(p_{0}\right)-y_{\pi^{\prime}}\left(p_{0}\right)-1\right) /\left(n-p_{0}\right)=0$.
Therefore, by taking p equal to $p_{0}, q_{j}^{\prime} \geq 0$ for all $j \in N_{0}$.
Let $1 \leq \mathrm{p} \leq \mathrm{n}-1$ be such that the system above has a nonnegative solution and let π be such that $\pi(k)=\pi^{\prime}(k), k=1,2, \ldots, p-1$, and $\pi(p)<\ldots<$ $\pi(n)$.

$$
\text { Let } \begin{aligned}
y^{0} & =y+s, \\
y^{k} & =y^{k-1}-s_{\pi(k)} u^{\pi(k)}, k=1, \ldots, p-1, \\
y^{k} & =y+s_{\pi(k)} u^{\pi(k)}, k=p, \ldots, n .
\end{aligned}
$$

Let q_{j}^{\prime} be obtained from the system, for $j=0,1, \ldots, n$. Then it is easily seen that
$x=\sum_{j=0}^{n} q_{j} y^{j}$, where $q_{0}=q_{0}^{\prime}$ and, for $j=1, \ldots, n, q_{j}=q_{h}^{\prime}$ with h the index for which $\pi^{\prime}(h)=\pi(j)$. Thus $x \in D_{1}(y, \pi, s, p)$.

From these results, the lemma follows immediately.

Lemma 2.3. For any σ^{1} and $\sigma^{2} \in D_{1}, \sigma^{1} \cap \sigma^{2}$ is either empty or a common face of both σ^{1} and σ^{2}.

Proof. Let $x \in \mathbb{R}^{n}$ be arbitrary. By Lemma 2.2, we may assume that $x \in \sigma$ for some $\sigma=\left[y^{0}, y^{1}, \ldots, y^{n}\right]=D_{1}(y, \pi, s, p)$, i.e., $x=\sum_{i=0}^{n} q_{i} y^{i}$, with $q_{i} \geq 0$ for all i and $\sum_{i=0}^{n} q_{i}=1$. Then x lies in a face of σ whose vertices are y^{j} for $j \in J:=\left\{j \in N_{0} \mid q_{j}>0\right\}$. We show below how each $y^{j}, j \in J$, can be generated from x independent of y, π, s, and p. Thus these vertices are found for any simplex of D_{1} containing x, which proves the lemma.

For each $i \in N$, let
$r_{i}= \begin{cases}\left\lfloor x_{i}\right\rfloor & \text {, if }\left\lfloor x_{i}\right\rfloor \text { is even, } \\ \left\lfloor x_{i}\right\rfloor+1, & \text { if }\left\lfloor x_{i}\right\rfloor \text { is odd, }\end{cases}$
and

Let $w=\sum_{i=1}^{n} t_{i}\left(x_{i}-r_{i}\right)$. Further, let
$y_{i}\left(t_{j}\right)=\left\{\begin{array}{ll}r_{i}+t_{j}, & \text { if } i=j, \\ r_{i} \quad, & \text { otherwise, }\end{array}\right.$ and $y\left(t_{j}\right)=\left(y_{1}\left(t_{j}\right), \ldots, y_{n}\left(t_{j}\right)\right)^{T}$.
Then $\left\{y\left(t_{1}\right), \ldots, y\left(t_{n}\right), r\right\}=\left\{y^{j} \mid j \in J\right\}$ if $w<1$, and $\left\{y\left(t_{1}\right), \ldots, y\left(t_{n}\right)\right\} \backslash\{r\}=\left\{y^{j} \mid j \in J\right\}$ if $w=1$.
 each $1 \leq k \leq g, t_{i}\left(x_{i}-r_{i}\right)=t_{j}\left(x_{j}-r_{j}\right)$ if $i \in T_{k}$ and $j \in T_{k}$ and for any $1 \leq e<f \leq g, t_{i}\left(x_{i}-r_{i}\right)<t_{j}\left(x_{j}-r_{j}\right)$ if $i \in T_{e}$ and $j \in T_{f}$. Let $T_{0}=\varnothing$. Let $i(k) \in T_{k}$ for $k=0, \ldots, g$. Since $w>1$, there exist unique $0 \leq v<g$ and $q \geq$ 0 such that

$$
t_{i(v)}\left(x_{i(v)}-r_{i(v)}\right)+\left(1-\left|T_{v+1}\right|-\ldots-\left|T_{g}\right|\right) q
$$

$+\left|T_{v+1}\right|\left(t_{i(v+1)}\left(x_{i(v+1)}-r_{i(v+1)}\right)-t_{i(v)}\left(x_{i(v)}-r_{i(v)}\right)\right)$
+...
$+\left|T_{g}\right|\left(t_{i(g)}\left(x_{i(g)}-r_{i(g)}\right)-t_{i(v)}\left(x_{i(v)}-r_{i(v)}\right)\right)=1$,
and

$$
t_{i(j)}\left(x_{i(j)}-r_{i(j)}\right)-t_{i(v)}\left(x_{i(v)}-r_{i(v)}\right)-q \geq 0, j=v+1, \ldots, g
$$

For $0 \leq k \leq v$, let
$y_{i}\left(T_{k}\right)= \begin{cases}r_{i}+t_{i}, & \text { if } i \notin T_{0} \cup T_{1} \cup \ldots \Delta T_{k} \\ r_{i} & , \\ \text { otherwise, }\end{cases}$
and $y\left(T_{k}\right)=\left(y_{1}\left(T_{k}\right), \ldots, y_{n}\left(T_{k}\right)\right)^{T}$.
For $\mathrm{v}+1 \leq \mathrm{k} \leq \mathrm{g}$, let for each $\mathrm{j} \in \mathrm{T}_{\mathrm{k}}$,
$\hat{y}_{i}(j)= \begin{cases}r_{i}+t_{j}, & \text { if } i=j, \\ r_{i} \quad, & \text { otherwise }\end{cases}$
and
$\hat{y}(j)=\left(\hat{y}_{1}(j), \ldots, \hat{y}_{n}(j)\right)^{T}$.

Let $\bar{g}=\left\{\begin{array}{l}\left.g-1, \text { if } t_{i(j)}\left(x_{i(j)}\right)_{i(j)}\right)-t_{i(v)}\left(x_{i(v)} r_{i(v)}\right)-q=0 \text { for } j \in T_{g} . \\ g, \text { otherwise. }\end{array}\right.$ If $q=0$, then

$$
\left\{y\left(T_{k}\right) \mid 0 \leq k<v\right\} \cup\left({\underset{k}{k}}_{\bar{g}}^{v}\left\{\hat{y}(j) \mid j \in T_{k}\right\}\right)=\left\{y^{j} \mid j \in J\right\}
$$

and if $q>0$, then

$$
\left\{y\left(T_{k}\right) \mid 0 \leq k \leq v\right\} \cup\left(\underset{k=v+1}{\bar{g}}\left\{\hat{y}(j) \mid j \in T_{k}\right\}\right)=\left\{y^{j} \mid j \in J\right\}
$$

From these results, we obtain the proof of the lemma.
Theorem 2.5. D_{1} is a triangulation of R^{n}.

Proof. Let $x \in \mathbb{R}^{n}$ be arbitrary. It is clear that x is only contained in a finite number of simplices of D_{1}. Using Lemma 2.1, Lemma 2.2, and Lemma 2.3. we complete the proof of the theorem.
3. The Pivot Rules of the $D_{1}-$ Triangulation

Let $\sigma=\left[y^{0}, y^{1}, \ldots, y^{n}\right]=D_{1}(y, \pi, s, p)$ be given. We wish to obtain the unique n-simplex $\bar{\sigma}=\left[\bar{y}^{0}, \bar{y}^{1}, \ldots, \bar{y}^{n}\right]=D_{1}(\bar{y}, \bar{\pi}, \bar{s}, \bar{p})$, containing all vertices of σ except y^{i}. Table 1 shows how $\bar{y}, \bar{\pi}, \bar{s}$, and \bar{p} depend on y, π, s, p, and i. From this table it is easy to obtain each vertex $\bar{y}^{-k}, k=0,1, \ldots$, n, of $\bar{\sigma}$, and in particular its new vertex.
4. Comparison of the Numbers of Simplices in the Unit Cube

Let $I^{n}=\left\{x \in R^{n} \mid 0 \leq x \leq u\right\}$ be the unit cube in R^{n}.

Theorem 4.1. The number of simplices of the D_{1}-triangulation in the unit cube is equal to

$$
d_{n}=n+n(n-1)+\ldots+n(n-1) \ldots 4 \cdot 3+2
$$

Proof. Let $Q=\left\{D_{1}(y, \pi, s, p) \mid y=0, s=(1,1, \ldots, 1)^{T}\right\}$.
From Definition 2.1 , in Q, there is only one simplex for which $p=0$, one simplex for which $p=1$, and $n!/(n-q+1)!$ simplices for which $\mathrm{p}=\mathrm{q}, 2 \leq \mathrm{q} \leq \mathrm{n}-1$. Thus

The Pivot Rules of the D_{1}-Triangulation
Table 1.

p	i	$\overline{\mathrm{y}}$	\bar{s}	$\bar{\Pi}$	\bar{p}
0	0	y	s	π	p+1
0	$i \geq 1$	y	$\mathrm{s}^{-2 s_{\pi(i)}}{ }^{\text {um(i) }}$	π	p
1	0	y	s	π	p-1
$\begin{aligned} & 2 s p \\ & s n-1 \end{aligned}$	0	y	$s-2 s_{\pi(1)} u^{\pi(1)}$	π	p
$\begin{aligned} & 2 \leq p \\ & \leq n-1 \end{aligned}$	$\begin{aligned} & 1 \leq i \\ & <p-1 \end{aligned}$	y	s	$\begin{aligned} & (\pi(1), \ldots, \pi(i+1), \\ & \pi(i), \ldots, \pi(n)) \end{aligned}$	p
$\begin{aligned} & 2 \leq p \\ & \leq n-1 \end{aligned}$	p-1	y	s	$\begin{aligned} & (\pi(1), \ldots, \pi(p-2), \\ & \pi(p), \ldots, \pi(j), \\ & \pi(p-1), \pi(j+1), \\ & \cdots, \pi(n))^{*} \end{aligned}$	p-1
$\begin{aligned} & 1 \leq p \\ & <n-1 \end{aligned}$	i) $\mathrm{p}-1$	y	s	$\begin{aligned} & (\pi(1), \ldots, \pi(p-1), \\ & \pi(i), \pi(p), \ldots, \\ & \pi(i-1), \pi(i+1), \\ & \ldots, \pi(n)) \end{aligned}$	p+1
$\mathrm{n}-1$	n-1	$y_{\pi(n)} u^{\pi(n)}$	$s-2 s_{\pi(n)} u^{\pi(n)}$	π	p
n-1	n	$\mathrm{y}^{+2 s_{\pi(n-1)}} \mathrm{u}^{\mathrm{m}(\mathrm{n}-1)}$		π	p

* where j is such that $\pi(\mathrm{j})<\pi(\mathrm{p}-1)<\pi(\mathrm{j}+1)$

$$
\begin{aligned}
|Q| & =1+1+n!/(n-1)!+n!/(n-2)!+\ldots+n!/ 2! \\
& =2+n+n(n-1)+\ldots+n(n-1) \ldots 4 \cdot 3 .
\end{aligned}
$$

Since $u \sigma=I^{n}$, the proof of the theorem follows immediately. $\sigma \in Q$

About the definitions of the $K_{1}-, J_{1}$ - and H_{1}-triangulations, see [7].

Theorem 4.2. The number of simplices in I^{n} of Freudenthal's K_{1} triangulation, that of Tucker's J_{1}-triangulation, and that of Saigal's H_{1} triangulation is $n!$.

Theorem 4.3. If $n \geq 3$, then $d_{n}<n!$. As n goes to infinity, d_{n} / n ! converges to e-2.

Proof. For $n=3$, we have $d_{3}<3!$, since $d_{3}=5$ and $3!=6$. Suppose $d_{n-1}<(n-1)!$. Thus $n d_{n-1}<n!$. From
$n d_{n-1}=n(n-1)+n(n-1)(n-2)+\ldots+n(n-1) \ldots 4 \cdot 3+2 n$ $=d_{n}+(n-2)$.
we obtain $d_{n}<n!$, since $n \geq 3$. By the induction principle, the conclusion $d_{n}<n$! for $n \geq 3$ follows directly. Furthermore,

$$
d_{n} / n!=1 /(n-1)!+1 /(n-2)!+\ldots+1 / 2!+2 / n!,
$$

so d_{n} / n ! converges to $e-2$ as n goes to infinity. The proof is complete.

From these results, we obtain that the number of simplices of the $D_{1}-$ triangulation is the smallest of these triangulations.
5. The Diameter of the D_{1}-Triangulation

Let G be a triangulation of \mathbb{R}^{n} such that its restriction to I^{n}, $G \mid I^{n}=\left\{\sigma \subseteq I^{n} \mid \sigma \in G\right\}$, triangulates I^{n} and all vertices of $G \mid I^{n}$ are vertices of I^{n}. Let τ and τ^{\prime} be two facets of G on the boundary of I^{n}, ∂I^{n}. Let $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m}$ be a sequence of simplices of G such that σ_{i} and σ_{i-1} are adjacent, for $i=1,2, \ldots, m$. If τ is a facet of σ_{0} and τ^{\prime} a facet of σ_{m}, then we say that the sequence of $\sigma_{0}, \sigma_{1}, \cdots, \sigma_{m}$ is a path of length $m+1$ from τ to τ^{\prime}. We define the distance between τ and τ^{\prime} to be the minimum length of a path between τ and τ^{\prime}. The diameter of G is the maximal distance between any two facets in the boundary. It is denoted by diam(G).

Theorem 5.1. $\operatorname{diam}\left(K_{1}\right)=1+n(n-1) / 2=0\left(n^{2}\right)$,

$$
\begin{aligned}
& \operatorname{diam}\left(J_{1}\right)=\operatorname{diam}\left(K_{1}\right) \\
& \operatorname{diam}\left(H_{1}\right) \geq\left(n^{3}-n+6\right) / 6=0\left(n^{3}\right), \text { and } \\
& \operatorname{diam}\left(D_{1}\right)=2 n-3=O(n)
\end{aligned}
$$

Proof. Let $\sigma=\left[y^{0}, y^{1}, \ldots, y^{n}\right]=K_{1}(0, n)$ and $\tau=\left[y^{0}, \ldots, y^{n-1}\right]$, where $\pi=(1,2, \ldots, n)$. Let $\bar{\sigma}=\left[\bar{y}^{0}, \bar{y}^{-1}, \ldots, \bar{y}^{n}\right]=K_{1}(0, \bar{\pi})$ and $\bar{\tau}=\left[\bar{y}^{0}\right.$, $\left.\ldots, \bar{y}^{-\mathrm{n}-1}\right]$, where $\bar{\pi}=(\mathrm{n}, \mathrm{n}-1, \ldots, 1)$. Let $\sigma_{1}, \ldots, \sigma_{m-1}$ in $G \mid I^{n}$ be such that σ_{i-1} and σ_{i} are adjacent for $i=2, \ldots, m-1, \sigma$ and σ_{1} are adjacent, and also σ_{m-1} and $\bar{\sigma}$. It is easily seen that m is at least equal to $n(n-1) / 2$. The distance between τ and $\bar{\tau}$ is obviously the greatest of all distances between two facets in ∂I^{n}. Therefore, $\operatorname{diam}\left(K_{1}\right)=n(n-1) / 2+1$.

Since $J_{1} \mid I^{n}$ is the same as $K_{1} \mid I^{n}, \operatorname{diam}\left(J_{1}\right)=\operatorname{diam}\left(K_{1}\right)$.
Let $\sigma=\left[y^{0}, y^{1}, \ldots, y^{n}\right]=H_{1}\left(y^{0}, \pi\right)$ and $\tau=\left[y^{1}, \ldots, y^{n}\right]$, where
$y^{0}=(1,0, \ldots, 0)^{T}$ and $\pi=(1,2, \ldots, n)$. Let $\bar{\sigma}=\left[\bar{y}^{-0}, \bar{y}^{-1}, \ldots, \bar{y}^{-n}\right]=$ $\mathrm{H}_{1}\left(\bar{y}^{-0}, \bar{\pi}\right)$ and $\bar{\tau}=\left[\bar{y}^{0}, \ldots, \bar{y}^{\mathrm{n}-1}\right]$, where $\bar{y}^{-0}=(1, \ldots, 1)^{\mathrm{T}}$ and $\pi=(n, n-1$, 1).

Let $\sigma_{1}, \ldots, \sigma_{m-1}$ be a sequence such that σ_{i-1} and σ_{i} are adjacent for $i=2, \ldots, m-1, \sigma$ and σ_{1} are adjacent, and also σ_{m-1} and $\bar{\sigma}$. Then m is at least equal to $\left(n^{3}-n+6\right) / 6-1$. Thus the distance between τ and $\bar{\tau}$ is $\left(n^{3}-\right.$ $n+6) / 6$. This means $\operatorname{diam}\left(H_{1}\right) \geq 0\left(n^{3}\right)$.

Finally, let $\sigma=\left[y^{0}, y^{1}, \ldots, y^{n}\right]=D_{1}(y, \pi, s, p)$ and $\tau=\left[y^{1}, y^{2}, \ldots\right.$, $\left.y^{n}\right]$, where $\mathrm{y}=0, \mathrm{~s}=(1, \ldots, 1)^{\mathrm{T}}, \mathrm{p}=\mathrm{n}-1$, and $\pi=(1,2, \ldots, n)$. Let $\bar{\sigma}=$ $\left[\bar{y}^{0}, \bar{y}^{1}, \ldots, \bar{y}^{-n}\right]=D_{1}(\bar{y}, \bar{\pi}, \bar{s}, \bar{p})$ and $\bar{\tau}=\left[\bar{y}^{1}, \ldots, \bar{y}^{n}\right]$, where $\bar{y}=0, \bar{s}=(1$, $1, \ldots, 1)^{T}, \bar{p}=n-1$, and $\bar{\pi}=(n, n-1, \ldots, 3,1,2)$. Let $\sigma_{1}, \ldots, \sigma_{m-1}$ be a sequence such that σ and σ_{1}, σ_{i-1} and σ_{i} for $i=2, \ldots, m-1$, and $\bar{\sigma}$ and σ_{m-1} are adjacent. Then m is at least equal to $2 n-4$. The distance between τ and $\bar{\tau}$ is obviously the greatest of all distances between two facets in ∂I^{n}. Therefore, $\operatorname{diam}\left(D_{1}\right)=2 n-3$.

From these results, the theorem follows immediately.
6. The Average Directional Density and Surface Density

From Eaves and Yorke [2], we know that for a triangulation the average directional density and surface density are equivalent. We calculate below the surface density, and obtain the average directional density from the surface density.

First we calculate the surface density of the D_{1}-triangulation.
Let $\sigma^{0}=\left[0, u^{1}, \ldots, u^{n}\right], \sigma^{1}=\left[u, u^{1}, \ldots, u^{n}\right], \sigma^{2}=\left[u, u-u^{1}, u^{2}\right.$, $\left.\ldots, u^{n}\right], \ldots, \sigma^{n-1}=\left[u, u-u^{1}, \ldots, u-u^{1}-u^{2}-\ldots-u^{n-2}, u^{n-1}, u^{n}\right]$.

The volume of a simplex σ is denoted by $V(\sigma)$. The surface area of a simplex σ is denoted by $\mathrm{SA}(\sigma)$.

$$
\text { Let } \tau_{0}^{0}=\left[u^{1}, u^{2}, \ldots, u^{n}\right], \tau_{1}^{0}=\left[0, u^{2}, \ldots, u^{n}\right], \ldots, \tau_{n-1}^{0}=\left[0, u^{1}\right.
$$

$\left.\ldots, u^{n-2}, u^{n}\right], \tau_{n}^{0}=\left[0, u^{1}, \ldots, u^{n-1}\right]$, be the facets of σ^{0}. Then SA(σ^{0})
$=\sum_{i=0}^{n} V\left(\tau_{i}^{0}\right)=n V\left(\tau_{n}^{0}\right)+V\left(\tau_{0}^{0}\right)$.
Clearly, $V\left(\tau_{n}^{0}\right)=(1 /(n-1)!)\left|\operatorname{det}\left[u^{1}, u^{2}, \ldots, u^{n}\right]\right|=1 /(n-1)!$,
and $V\left(\tau_{0}^{0}\right)=(1 /(n-1)!)\left|\operatorname{det}\left[\frac{1}{\sqrt{n}} u, u^{2}-u^{1}, \ldots, u^{n}-u^{1}\right]\right|=\sqrt{n} /(n-1)!$,
so $\mathrm{SA}\left(\sigma^{0}\right)=(\mathrm{n}+\sqrt{\mathrm{n}}) /(\mathrm{n}-1)$!.
Since $V\left(\sigma^{0}\right)=1 / n!$, we obtain that

$$
\mathrm{SA}\left(\sigma^{0}\right) / \mathrm{V}\left(\sigma^{0}\right)=\mathrm{n}(\mathrm{n}+\sqrt{\mathrm{n}}) .
$$

For $k=2, \ldots, n-1$, let $\tau_{j}^{k}=\left[u, u-u^{1}, \ldots, u-u^{1}-\ldots-u^{k-1}, u^{k}, \ldots\right.$, $\left.u^{j-1}, u^{j+1}, \ldots, u^{n}\right], j=k, \ldots, n, \tau_{0}^{k}=\left[u-u^{1}, \ldots, u-u^{1}-\ldots-u^{k-1}\right.$, $\left.u^{k}, \ldots, u^{n}\right]$, and $\tau_{j}^{k}=\left[u, u-u^{1}, \ldots, u-u^{1}-\ldots-u^{j-1}, u-u^{1}-\ldots-\right.$ $\left.u^{j+1}, \ldots, u-u^{1}-\ldots-u^{k-1}, u^{k}, \ldots, u^{n}\right], j=1,2, \ldots, k-1$, denote the facets of σ^{k}.
Then $S A\left(\sigma^{k}\right)=V\left(\tau_{0}^{k}\right)+\sum_{j=1}^{k-1} V\left(\tau_{j}^{k}\right)+(n-k+1) V\left(\tau_{n}^{k}\right)$.
Let $q_{1}=q_{2}=\ldots=q_{n-k}=\left((n-k+1)^{2}-3(n-k+1)+3\right)^{-\frac{1}{2}}$ and $q_{n-k+1}=$
$-\left((\mathrm{n}-\mathrm{k}+1)^{2}-3(\mathrm{n}-\mathrm{k}+1)+3\right)^{-\frac{1}{2}}(\mathrm{n}-\mathrm{k}-1)$. Then

$$
\begin{aligned}
V\left(\tau_{n}^{k}\right) & =(1 /(n-1)!)\left|\operatorname{det}\left[\begin{array}{cccccccc}
1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 1 & q_{1} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots & \vdots \\
. & . & & . & 1 & \ldots & 0 & q_{n-k} \\
0 & 0 & \ldots & 0 & 1 & \ldots & 1 & q_{n-k+1}
\end{array}\right]\right| \\
& \left.=\left((n-k+1)^{2}-3(n-k+1)+3\right)\right)^{\frac{1}{2}} /(n-1)!,
\end{aligned}
$$

and

$$
\begin{aligned}
V\left(\tau_{0}^{\mathbf{k}}\right) & =(1 /(n-1)!)\left|\operatorname{det}\left[\begin{array}{cccccccc}
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 1 \\
1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 & \ldots & 0 & 0
\end{array}\right]\right| \\
& =(n-k) /(n-1)!.
\end{aligned}
$$

Now suppose $1 \leq j \leq k-1$. If $j<k-1$, let $q_{j}=1 / \sqrt{2}, q_{j+1}=-1 / \sqrt{2}$, and $q_{j+2}=\ldots=q_{n}=0$. If $j=k-1$, let $q_{k-1}=-(n-k)\left((n-k+1)^{2^{j+1}}-(n-k+1)+1\right)^{-\frac{1}{2}}$ and $q_{k}=\ldots=q_{n}=\left((n-k+1)^{2}-(n-k+1)+1\right)^{-\frac{1}{2}}$. Then for all $j \in\{1, \ldots$, $\mathrm{k}-1$ \},

$$
\begin{aligned}
V\left(\tau_{j}^{k}\right) & =(1 /(n-1)!) \left\lvert\, \operatorname{det}\left[\begin{array}{ccccccccccc}
1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 1 & \ldots & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1 & \ldots & 1 & 1 & \ldots & 1 & q_{j} \\
\vdots & \vdots & & \vdots & 1 & \ddots & \vdots & \vdots & & \vdots & \vdots \\
. & . & & . & 0 & \ldots & 1 & 1 & \ldots & 1 & q_{k-1} \\
. & . & & . & 0 & \ldots & 0 & 0 & \ldots & 1 & q_{k} \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & 1 & \ldots & 0 & q_{n}
\end{array}\right]\right. \\
& =\left\{\begin{array}{l}
(n-k) \sqrt{2} /(n-1)!, \\
\left((n-k+1)^{2}-(n-k+1)\right)^{\frac{1}{2}} /(n-1)!, \text { if } j=k-1 .
\end{array}\right.
\end{aligned}
$$

Thus $S A\left(\sigma^{k}\right)=(n-k) /(n-1)!+(n-k+1)\left((n-k+1)^{2}-3(n-k+1)+3\right)^{\frac{1}{2}} /(n-1)!$ $+(\mathrm{k}-2)(\mathrm{n}-\mathrm{k}) \sqrt{2} /(\mathrm{n}-1)!+\left((\mathrm{n}-\mathrm{k}+1)^{2}-(\mathrm{n}-\mathrm{k}+1)+1\right)^{\frac{1}{2}} /(\mathrm{n}-1)!$.

Moreover,

$$
\begin{aligned}
\mathrm{V}\left(\sigma^{\mathrm{k}}\right) & =(1 / \mathrm{n}!) \left\lvert\, \operatorname{det}\left[\begin{array}{ccccccc}
1 & 1 & \ldots & 1 & 1 & \ldots & 1 \\
0 & 1 & \ldots & 1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 1 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 1 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 & \ldots & 0
\end{array}\right]\right. \\
& =(n-k) / \mathrm{n}!.
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathrm{SA}\left(\sigma^{\mathrm{k}}\right) / \mathrm{V}\left(\sigma^{\mathrm{k}}\right) & =\mathrm{n}\left(\mathrm{n}-\mathrm{k}+(\mathrm{n}-\mathrm{k}+1)\left((\mathrm{n}-\mathrm{k}+1)^{2}-3(\mathrm{n}-\mathrm{k}+1)+3\right)^{\frac{1}{2}}\right. \\
& \left.+(\mathrm{k}-2)(\mathrm{n}-\mathrm{k}) \sqrt{2}+\left((\mathrm{n}-\mathrm{k}+1)^{2}-(\mathrm{n}-\mathrm{k}+1)+1\right)^{\frac{1}{2}}\right) /(\mathrm{n}-\mathrm{k}) .
\end{aligned}
$$

Let $\tau_{0}^{1}=\left[u^{1}, \ldots, u^{n}\right], \tau_{1}^{1}=\left[u, u^{2}, \ldots, u^{n}\right], \tau_{2}^{1}=\left[u, u^{1}, u^{3}, \ldots, u^{n}\right]$, $\ldots, \tau_{n}^{1}=\left[u, u^{1}, \ldots, u^{n-1}\right]$ be the facets of σ^{1}. Then

$$
\mathrm{SA}\left(\sigma^{1}\right)=\mathrm{nV}\left(\tau_{\mathrm{n}}^{1}\right)+\mathrm{V}\left(\tau_{0}^{1}\right) .
$$

$$
\text { Let } q_{1}=\ldots=q_{n-1}=\left(n^{2}-3 n+3\right)^{-\frac{1}{2}} \text { and } q_{n}=-(n-2)\left(n^{2}-3 n+3\right)^{-\frac{1}{2}}
$$

Then

$$
\begin{aligned}
& V\left(\tau_{n}^{1}\right)=(1 /(n-1)!) \left\lvert\, \operatorname{det}\left[\begin{array}{ccccc}
0 & 1 & \ldots & 1 & q_{1} \\
1 & 0 & \ldots & 1 & q_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \ldots & 0 & q_{n-1} \\
1 & 1 & \ldots & 1 & q_{n}
\end{array}\right]\right. \\
& =\left(n^{2}-3 n+3\right)^{\frac{1}{2}} /(n-1)!
\end{aligned}
$$

$V\left(\tau_{0}^{1}\right)=n^{\frac{1}{2}} /(n-1)!$, and $V\left(\sigma^{1}\right)=(n-1) / n!$. Moreover, $S A\left(\sigma^{1}\right)=\left(n\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+n^{\frac{1}{2}}\right) /(n-1)!$. Hence $S A\left(\sigma^{1}\right) / V\left(\sigma^{1}\right)=n\left(n\left(n^{2}-3 n+3\right)^{\frac{1}{2}}+n^{\frac{1}{2}}\right) /(n-1)$.

From the above results we obtain that the surface density of the D_{1} triangulation equals $S A\left(D_{1}\right)=\max \left\{S A\left(\sigma^{i}\right) / V\left(\sigma^{i}\right) \mid i=0,1, \ldots, n-1\right\}$

$$
=n(n+\sqrt{n}) .
$$

Let $\left.g_{n}=\Gamma(n / 2) /(n-1) \Gamma(1 / 2) \Gamma((n-1) / 2)\right)$. From Eaves and Yorke, their results, we get that the average directional density of the D_{1}-triangulation equals $\operatorname{ADD}\left(\mathrm{D}_{1}\right)=\mathrm{n}(\mathrm{n}+\sqrt{\mathrm{n}}) \mathrm{g}_{\mathrm{n}}$.

It is well known that both the surface density of the K_{1}-triangulation and the one of the J_{1}-triangulation are equal to $n(2+(n-1) \sqrt{2})$. It is obvious that we have that $\operatorname{SD}\left(\mathrm{D}_{1}\right)<\mathrm{SD}\left(\mathrm{K}_{1}\right)=\mathrm{SD}\left(\mathrm{J}_{1}\right)$, and that $\operatorname{SD}\left(\mathrm{D}_{1}\right) / \mathrm{SD}\left(\mathrm{K}_{1}\right)$ converges to $1 / \sqrt{2}$ as n goes to infinity.

References

[1] E.L. Allgower and K. Georg, "Simplicial and continuation methods for approximating fixed points and solutions to systems of equations", SIAM Review, Vol. 22, 1980, pp. $28-85$.
[2] B.C. Eaves and J.A. Yorke, "Equivalence of surface density and average directional density", Mathematics of Operations Research, Vol. 9, No. 3, (1984), pp. 363-375
[3] M. Kojima and Y. Yamamoto, "A unified approach to the implementation of several restart fixed point algorithms and a new variable dimension algorithm", Mathematical Programming 28, (1984), pp. 288 - 328.
[4] G. van der Laan and A.J.J. Talman, "A restart algorithm for computing fixed points without an extra dimension", Mathematical Programming, Vol. 17, (1979), pp. 74-84.
[5] R. Saigal, D. Solow and L.A. Wolsey, "A comparative study of two algorithms that compute fixed points in unbounded regions", presented at VIIth International Symposium on Mathematical Programming, Stanford University, Stanford, CA, 1975.
[6] M.J. Todd, "On triangulations for computing fixed points", Mathematical Programming, Vol. 10, (1976), pp. 322-346.
[7] M.J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1976).
[8] A.H. Wright, "The octahedral algorithm, a new simplicial fixed point algorithm", Mathematical Programming 21, (1981), pp. 47 - 69 .

No.	Author(s)	Title
8801	Th. van de Klundert and F. van der Ploeg	Fiscal Policy and Finite Lives in Interdependent Economies with Real and Nominal Wage Rigidity
8802	J.R. Magnus and B. Pesaran	The Bias of Forecasts from a First-order Autoregression
8803	A.A. Weber	The Credibility of Monetary Policies, Policymakers' Reputation and the EMS-Hypothesis: Empirical Evidence from 13 Countries
8804	F. van der Ploeg and A.J. de Zeeuw	Perfect Equilibrium in a Model of Competitive Arms Accumulation
8805	M.F.J. Steel	Seemingly Unrelated Regression Equation Systems under Diffuse Stochastic Prior Information: A Recursive Analytical Approach
8806	Th. Ten Raa and E.N. Wolff	Secondary Products and the Measurement of Productivity Growth
8807	F. van der Ploeg	Monetary and Fiscal Policy in Interdependent Economies with Capital Accumulation, Death and Population Growth
8901	Th. Ten Raa and P. Kop Jansen	The Choice of Model in the Construction of Input-Output Coefficients Matrices
8902	Th. Nijman and F. Palm	Generalized Least Squares Estimation of Linear Models Containing Rational Future Expectations
8903	A. van Soest, I. Woittiez, A. Kapteyn	Labour Supply, Income Taxes and Hours Restrictions in The Netherlands
8904	F. van der Ploeg	Capital Accumulation, Inflation and LongRun Conflict in International Objectives
8905	Th. van de Klundert and A. van Schaik	Unemployment Persistence and Loss of Productive Capacity: A Keynesian Approach
8906	A.J. Markink and F. van der Ploeg	Dynamic Policy Simulation of Linear Models with Rational Expectations of Future Events: A Computer Package
8907	J. Osiewalski	Posterior Densities for Nonlinear Regression with Equicorrelated Errors
8908	M.F.J. Steel	A Bayesian Analysis of Simultaneous Equation Models by Combining Recursive Analytical and Numerical Approaches

No.	Author(s)	Title
8909	F. van der Ploeg	Two Essays on Political Economy (i) The Political Economy of Overvaluation (ii) Election Outcomes and the Stockmarket
8910	R. Gradus and A. de Zeeuw	Corporate Tax Rate Policy and Public and Private Employment
8911	A.P. Barten	Allais Characterisation of Preference Structures and the Structure of Demand
8912	K. Kamiya and A.J.J. Talman	Simplicial Algorithm to Find Zero Points of a Function with Special Structure on a Simplotope
8913	G. van der Laan and A.J.J. Talman	Price Rigidities and Rationing
8914	J. Osiewalski and M.F.J. Steel	A Bayesian Analysis of Exogeneity in Models Pooling Time-Series and Cross-Section Data
8915	R.P. Gilles, P.H. Ruys and J. Shou	On the Existence of Networks in Relational Models
8916	A. Kapteyn, P. Kooreman, and A. van Soest	Quantity Rationing and Concavity in a Flexible Household Labor Supply Model
8917	F. Canova	Seasonalities in Foreign Exchange Markets
8918	F. van der Ploeg	Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World
8919	W. Bossert and F. Stehling	On the Uniqueness of Cardinally Interpreted Utility Functions
8920	F. van der Ploeg	Monetary Interdependence under Alternative Exchange-Rate Regimes
8921	D. Canning	Bottlenecks and Persistent Unemployment: Why Do Booms End?
8922	C. Fershtman and A. Fishman	Price Cycles and Booms: Dynamic Search Equilibrium
8923	M.B. Canzoneri and C.A. Rogers	Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies
8924	F. Groot, C. Withagen and A. de Zeeuw	Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered
8925	O.P. Attanasio and G. Weber	Consumption, Productivity Growth and the Interest Rate

No. Author(s)	Title	
8926	N. Rankin	Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition
8927	Th. van de Klundert	Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution
8928	C. Dang	The $D_{1}-$ Triangulation of R^{n} for Simplicial Algorithms for Computing Solutions of Nonlinear Equations

P.O. BOX 90153,5000 LE TILBURG. THE NETHERLAND Bibliotheek K. U. Brabant

17000011173938

