9,702 research outputs found

    A Resolution Prover for Coalition Logic

    Get PDF
    We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and present the results for a comparison with an existing tableau-based solver

    Clausal reasoning for branching-time logics

    Get PDF
    Computation Tree Logic (CTL) is a branching-time temporal logic whose underlying model of time is a choice of possibilities branching into the future. It has been used in a wide variety of areas in Computer Science and Artificial Intelligence, such as temporal databases, hardware verification, program reasoning, multi-agent systems, and concurrent and distributed systems. In this thesis, firstly we present a refined clausal resolution calculus R�,S CTL for CTL. The calculus requires a polynomial time computable transformation of an arbitrary CTL formula to an equisatisfiable clausal normal form formulated in an extension of CTL with indexed existential path quantifiers. The calculus itself consists of eight step resolution rules, two eventuality resolution rules and two rewrite rules, which can be used as the basis for an EXPTIME decision procedure for the satisfiability problem of CTL. We give a formal semantics for the clausal normal form, establish that the clausal normal form transformation preserves satisfiability, provide proofs for the soundness and completeness of the calculus R�,S CTL, and discuss the complexity of the decision procedure based on R�,S CTL. As R�,S CTL is based on the ideas underlying Bolotov’s clausal resolution calculus for CTL, we provide a comparison between our calculus R�,S CTL and Bolotov’s calculus for CTL in order to show that R�,S CTL improves Bolotov’s calculus in many areas. In particular, our calculus is designed to allow first-order resolution techniques to emulate resolution rules of R�,S CTL so that R�,S CTL can be implemented by reusing any first-order resolution theorem prover. Secondly, we introduce CTL-RP, our implementation of the calculus R�,S CTL. CTL-RP is the first implemented resolution-based theorem prover for CTL. The prover takes an arbitrary CTL formula as input and transforms it into a set of CTL formulae in clausal normal form. Furthermore, in order to use first-order techniques, formulae in clausal normal form are transformed into firstorder formulae, except for those formulae related to eventualities, i.e. formulae containing the eventuality operator 3. To implement step resolution and rewrite rules of the calculus R�,S CTL, we present an approach that uses first-order ordered resolution with selection to emulate the step resolution rules and related proofs. This approach enables us to make use of a first-order theorem prover, which implements the first-order ordered resolution with selection, in order to realise our calculus. Following this approach, CTL-RP utilises the first-order theorem prover SPASS to conduct resolution inferences for CTL and is implemented as a modification of SPASS. In particular, to implement the eventuality resolution rules, CTL-RP augments SPASS with an algorithm, called loop search algorithm for tackling eventualities in CTL. To study the performance of CTL-RP, we have compared CTL-RP with a tableau-based theorem prover for CTL. The experiments show good performance of CTL-RP. i ii ABSTRACT Thirdly, we apply the approach we used to develop R�,S CTL to the development of a clausal resolution calculus for a fragment of Alternating-time Temporal Logic (ATL). ATL is a generalisation and extension of branching-time temporal logic, in which the temporal operators are parameterised by sets of agents. Informally speaking, CTL formulae can be treated as ATL formulae with a single agent. Selective quantification over paths enables ATL to explicitly express coalition abilities, which naturally makes ATL a formalism for specification and verification of open systems and game-like multi-agent systems. In this thesis, we focus on the Next-time fragment of ATL (XATL), which is closely related to Coalition Logic. The satisfiability problem of XATL has lower complexity than ATL but there are still many applications in various strategic games and multi-agent systems that can be represented in and reasoned about in XATL. In this thesis, we present a resolution calculus RXATL for XATL to tackle its satisfiability problem. The calculus requires a polynomial time computable transformation of an arbitrary XATL formula to an equi-satisfiable clausal normal form. The calculus itself consists of a set of resolution rules and rewrite rules. We prove the soundness of the calculus and outline a completeness proof for the calculus RXATL. Also, we intend to extend our calculus RXATL to full ATL in the future

    Reducing Validity in Epistemic ATL to Validity in Epistemic CTL

    Full text link
    We propose a validity preserving translation from a subset of epistemic Alternating-time Temporal Logic (ATL) to epistemic Computation Tree Logic (CTL). The considered subset of epistemic ATL is known to have the finite model property and decidable model-checking. This entails the decidability of validity but the implied algorithm is unfeasible. Reducing the validity problem to that in a corresponding system of CTL makes the techniques for automated deduction for that logic available for the handling of the apparently more complex system of ATL.Comment: In Proceedings SR 2013, arXiv:1303.007

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    The Alternating-Time ?-Calculus with Disjunctive Explicit Strategies

    Get PDF

    The Alternating-Time \mu-Calculus With Disjunctive Explicit Strategies

    Full text link
    Alternating-time temporal logic (ATL) and its extensions, including the alternating-time μ\mu-calculus (AMC), serve the specification of the strategic abilities of coalitions of agents in concurrent game structures. The key ingredient of the logic are path quantifiers specifying that some coalition of agents has a joint strategy to enforce a given goal. This basic setup has been extended to let some of the agents (revocably) commit to using certain named strategies, as in ATL with explicit strategies (ATLES). In the present work, we extend ATLES with fixpoint operators and strategy disjunction, arriving at the alternating-time μ\mu-calculus with disjunctive explicit strategies (AMCDES), which allows for a more flexible formulation of temporal properties (e.g. fairness) and, through strategy disjunction, a form of controlled nondeterminism in commitments. Our main result is an ExpTime upper bound for satisfiability checking (which is thus ExpTime-complete). We also prove upper bounds QP (quasipolynomial time) and NP ∩\cap coNP for model checking under fixed interpretations of explicit strategies, and NP under open interpretation. Our key technical tool is a treatment of the AMCDES within the generic framework of coalgebraic logic, which in particular reduces the analysis of most reasoning tasks to the treatment of a very simple one-step logic featuring only propositional operators and next-step operators without nesting; we give a new model construction principle for this one-step logic that relies on a set-valued variant of first-order resolution.Comment: Full version with appendix as well as corrected set-valued resolution metho

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Security policy refinement using data integration: a position paper.

    No full text
    In spite of the wide adoption of policy-based approaches for security management, and many existing treatments of policy verification and analysis, relatively little attention has been paid to policy refinement: the problem of deriving lower-level, runnable policies from higher-level policies, policy goals, and specifications. In this paper we present our initial ideas on this task, using and adapting concepts from data integration. We take a view of policies as governing the performance of an action on a target by a subject, possibly with certain conditions. Transformation rules are applied to these components of a policy in a structured way, in order to translate the policy into more refined terms; the transformation rules we use are similar to those of global-as-view database schema mappings, or to extensions thereof. We illustrate our ideas with an example. Copyright 2009 ACM

    The Sino-Indian border dispute and Asian security

    Get PDF
    Executive summaryThe border dispute between India and China is long and unique with disputes over length, control and third parties such as Tibet. From 1999 until 2008 India and China made fresh efforts to resolve the dispute, however these have faltered and stalled. The relationship between India and the US is affecting the relationship, both speeding up and slowing down resolution depending who India is focused on, Washington or Beijing. A middle power coalition, free of the US and China is the only way for countries such as India, Australia, Indonesia, Vietnam and Japan to ensure their security.Policy recommendationsAsian nations must recognize that distancing themselves from the United States will not necessarily win political rewards in Beijing. Deepening ties with the United States must remain a high priority for all of China’s neighbours.Asia’s regional powers, including Australia, India, Indonesia, Japan and Vietnam need to find ways to strengthen security cooperation amongst themselves in a variety of ways and through flexible political arrangements.Although each has a different set of compulsions in relation to China, they share an overriding objective in constructing a middle power coalition that can shape the Asian security order.The coalition must neither be seen as an extension of the American alliance system, nor a counter to it. It is the first step towards constructing an in-situ balance of power in Asia
    • …
    corecore