67,062 research outputs found

    Product and process information interactions in assembly decision support systems

    Get PDF
    A characteristic of concurrent engineering is the intensive information interchange between areas that are involved through the product life cycle. Shared information structures to integrate different software applications have become necessary to support effectively the interchange of information. While . much work has been done into the concepts of Product and Manufacturing Models, there is a need to make them able to support Assembly related activities. The research reported in this thesis explores and defines the structures of a Product Model and. a Manufacturing Model to support assembly related information. These information models support the product development process, especially during the early stages of the product life cycle. The structures defined for the models allow information interactions between them and with application software; these interactions are essential to support an effective concurrent environment. The Product Model is a source and repository of the product information, whilst the Manufacturing Model holds information about the manufacturing processes and resources of an enterprise. A combination of methods was proposed in order to define the structure for the information models. An experimental software system was created and used to show that the structure defined for the Product Model and the Manufacturing Model can support· a range of assembly-related software applications through the concurrent development of the product, system and process, from conceptual design through to planning. The applications implemented in the experimental system were Design for Assembly and Assembly Process Planning. The real data used for the tests was obtained from an industrial collaborator who manufactures large electrical machines. This research contributes to the understanding of. the general structural requirements of the decision support systems based on information models, and to the integration of Design for Assembly and Assembly Process Planning

    The role of visual management in collaborative integrated planning and control for engineer-to-order building systems

    Get PDF
    Visual Management is a key approach in the implementation of Lean Production. It emphasizes the importance of developing easy-to-understand visual devices for sharing knowledge within an organization. Such visual devices can play an important role in mitigating the complexity of engineer-to-order production systems. A major difficulty in managing engineer-to-order prefabricated building systems is the need to integrate planning and control of different processes, such as design, fabrication and assembly on site, in a multiple project environment. This paper reports preliminary findings on the implementation of visual devices for collaborative and integrated planning and control in a Steel Fabricator, which designs, fabricates and assembles steel structures. The aim of this paper is to understand how visual management tools can contribute to improve the effectiveness of planning and control in this environment. A set of visual devices have been used in the planning and control system in this company, including a panel that makes available information about 200 simultaneous contracts in an easy-to-understand way. The implementation of those tools has enhanced the participation of different people in the planning process from operational levels or from the different production units

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    018113 - Sustainable Design Requirements

    Get PDF

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    074113 - Metal Roof Panels

    Get PDF
    • 

    corecore