67 research outputs found

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1

    Eye Detection Using Wavelets and ANN

    Get PDF
    A Biometric system provides perfect identification of individual based on a unique biological feature or characteristic possessed by a person such as finger print, hand writing, heart beat, face recognition and eye detection. Among them eye detection is a better approach since Human Eye does not change throughout the life of an individual. It is regarded as the most reliable and accurate biometric identification system available. In our project we are going to develop a system for ‘eye detection using wavelets and ANN’ with software simulation package such as matlab 7.0 tool box in order to verify the uniqueness of the human eyes and its performance as a biometric. Eye detection involves first extracting the eye from a digital face image, and then encoding the unique patterns of the eye in such a way that they can be compared with preregistered eye patterns. The eye detection system consists of an automatic segmentation system that is based on the wavelet transform, and then the Wavelet analysis is used as a pre-processor for a back propagation neural network with conjugate gradient learning. The inputs to the neural network are the wavelet maxima neighborhood coefficients of face images at a particular scale. The output of the neural network is the classification of the input into an eye or non-eye region. An accuracy of 81% is observed for test images under different environment conditions not included during training

    Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction

    Get PDF
    The World Health Organization (WHO) in 2016 considered m-health as: “the use of mobile wireless technologies including smart devices such as smartphones and smartwatches for public health”. WHO emphasizes the potential of this technology to increase its use in accessing health information and services as well as promoting positive changes in health behaviours and overall management of diseases. In this regard, the capability of smartphones and smartwatches for m-health monitoring through the collection of patient data remotely, has become an important component in m-health system. It is important that the integrity of the data collected is verified continuously through data authentication before storage. In this research work, we extracted heart rate variability (HRV) and decomposed the signals into sub-bands of detail and approximation coefficients. A comparison analysis is done after the classification of the extracted features to select the best sub-bands. An architectural framework and a used case for m-health data authentication is carried out using two sub-bands with the best performance from the HRV decomposition using 30 subjects’ data. The best sub-band achieved an equal error rate (EER) of 12.42%

    Performances of proposed normalization algorithm for iris recognition

    Get PDF
    Iris recognition has very high recognition accuracy in comparison with many other biometric features. The iris pattern is not the same even right and left eye of the same person. It is different and unique. This paper proposes an algorithm to recognize people based on iris images. The algorithm consists of three stages. In the first stage, the segmentation process is using circular Hough transforms to find the region of interest (ROI) of given eye images. After that, a proposed normalization algorithm is to generate the polar images than to enhance the polar images using a modified Daugman’s Rubber sheet model. The last step of the proposed algorithm is to divide the enhance the polar image to be 16 divisions of the iris region. The normalized image is 16 small constant dimensions. The Gray-Level Co-occurrence Matrices (GLCM) technique calculates and extracts the normalized image’s texture feature. Here, the features extracted are contrast, correlation, energy, and homogeneity of the iris. In the last stage, a classification technique, discriminant analysis (DA), is employed for analysis of the proposed normalization algorithm. We have compared the proposed normalization algorithm to the other nine normalization algorithms. The DA technique produces an excellent classification performance with 100% accuracy. We also compare our results with previous results and find out that the proposed iris recognition algorithm is an effective system to detect and recognize person digitally, thus it can be used for security in the building, airports, and other automation in many applications

    Effective segmentation of sclera, iris and pupil in noisy eye images

    Get PDF
    In today’s sensitive environment, for personal authentication, iris recognition is the most attentive technique among the various biometric technologies. One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil and sclera of a captured eye-image. In our proposed method, initially input image is preprocessed by using bilateral filtering. After the preprocessing of images contour based features such as, brightness, color and texture features are extracted. Then entropy is measured based on the extracted contour based features to effectively distinguishing the data in the images. Finally, the convolution neural network (CNN) is used for the effective sclera, iris and pupil parts segmentations based on the entropy measure. The proposed results are analyzed to demonstrate the better performance of the proposed segmentation method than the existing methods.

    FACE CLASSIFICATION FOR AUTHENTICATION APPROACH BY USING WAVELET TRANSFORM AND STATISTICAL FEATURES SELECTION

    Get PDF
    This thesis consists of three parts: face localization, features selection and classification process. Three methods were proposed to locate the face region in the input image. Two of them based on pattern (template) Matching Approach, and the other based on clustering approach. Five datasets of faces namely: YALE database, MIT-CBCL database, Indian database, BioID database and Caltech database were used to evaluate the proposed methods. For the first method, the template image is prepared previously by using a set of faces. Later, the input image is enhanced by applying n-means kernel to decrease the image noise. Then Normalized Correlation (NC) is used to measure the correlation coefficients between the template image and the input image regions. For the second method, instead of using n-means kernel, an optimized metrics are used to measure the difference between the template image and the input image regions. In the last method, the Modified K-Means Algorithm was used to remove the non-face regions in the input image. The above-mentioned three methods showed accuracy of localization between 98% and 100% comparing with the existed methods. In the second part of the thesis, Discrete Wavelet Transform (DWT) utilized to transform the input image into number of wavelet coefficients. Then, the coefficients of weak statistical energy less than certain threshold were removed, and resulted in decreasing the primary wavelet coefficients number up to 98% out of the total coefficients. Later, only 40% statistical features were extracted from the hight energy features by using the variance modified metric. During the experimental (ORL) Dataset was used to test the proposed statistical method. Finally, Cluster-K-Nearest Neighbor (C-K-NN) was proposed to classify the input face based on the training faces images. The results showed a significant improvement of 99.39% in the ORL dataset and 100% in the Face94 dataset classification accuracy. Moreover, a new metrics were introduced to quantify the exactness of classification and some errors of the classification can be corrected. All the above experiments were implemented in MATLAB environment

    ant-CBIR: a new method for radial furrow extraction in iris biometric

    Get PDF
    Iris recognition has evolved from first to second generation of biometric systems which capable of recognizing unique iris features such as crypts, collarette and pigment blotches. However, there are still ongoing researches on finding the best way to search unique iris features since iris image contains high noise. The high noise iris images (noisy iris); usually give the biometric systems to deliver erroneous results, leading to categorizations where the actual user is labeled as an impostor. Therefore, this study focuses on a novel method, targeted at overcoming the aforementioned challenge. We present the use of ant colony based image retrieval (ant–CBIR) technique as a successful method in recognizing the radial furrow in noisy iris. This method simulates the behavior of artificial ants, searching for pixel values of radial furrow based on an optimum pixel range. The evaluation of accuracy performance with and without the ant-CBIR application is measured using GAR parameter on UBIRIS.v1. Results show that the GAR is 79.9% with ant-CBIR implementation. The implication of this study contributes to a new feature extraction that has the ability of human-aided computing. Moreover, ant-CBIR helps to provide cost effective, easy maintenance and exploration of a long term data collection
    corecore