1,560 research outputs found

    The density-matrix renormalization group

    Full text link
    The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly acquired the status of method of choice for numerical studies of one-dimensional quantum systems. Its applications to the calculation of static, dynamic and thermodynamic quantities in such systems are reviewed. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and non-equilibrium statistical physics, and time-dependent phenomena is discussed. This review also considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the January 2005 issu

    A numerical method to compute derivatives of functions of large complex matrices and its application to the overlap Dirac operator at finite chemical potential

    Full text link
    We present a method for the numerical calculation of derivatives of functions of general complex matrices. The method can be used in combination with any algorithm that evaluates or approximates the desired matrix function, in particular with implicit Krylov-Ritz-type approximations. An important use case for the method is the evaluation of the overlap Dirac operator in lattice Quantum Chromodynamics (QCD) at finite chemical potential, which requires the application of the sign function of a non-Hermitian matrix to some source vector. While the sign function of non-Hermitian matrices in practice cannot be efficiently approximated with source-independent polynomials or rational functions, sufficiently good approximating polynomials can still be constructed for each particular source vector. Our method allows for an efficient calculation of the derivatives of such implicit approximations with respect to the gauge field or other external parameters, which is necessary for the calculation of conserved lattice currents or the fermionic force in Hybrid Monte-Carlo or Langevin simulations. We also give an explicit deflation prescription for the case when one knows several eigenvalues and eigenvectors of the matrix being the argument of the differentiated function. We test the method for the two-sided Lanczos approximation of the finite-density overlap Dirac operator on realistic SU(3)SU(3) gauge field configurations on lattices with sizes as large as 14×14314\times14^3 and 6×1836\times18^3.Comment: 26 pages elsarticle style, 5 figures minor text changes, journal versio

    An introduction to numerical methods in low-dimensional quantum systems

    Full text link
    This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms(DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models. The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly discussed. The important role played by the model symmetries is also examined. Special emphasis is given to the DMRG.Comment: 36 pages, 4 figures, standard LaTex, Brazilian School on Statistical Mechanics (2002), PDF and PS files available at http://www.sbf.if.usp.br/bj

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    Modeling of Spatial Uncertainties in the Magnetic Reluctivity

    Full text link
    In this paper a computationally efficient approach is suggested for the stochastic modeling of an inhomogeneous reluctivity of magnetic materials. These materials can be part of electrical machines, such as a single phase transformer (a benchmark example that is considered in this paper). The approach is based on the Karhunen-Lo\`{e}ve expansion. The stochastic model is further used to study the statistics of the self inductance of the primary coil as a quantity of interest.Comment: submitted to COMPE

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems
    • …
    corecore