5 research outputs found

    A Dynamic Messaging Architecture for Vehicular Social Networks

    Get PDF
    RÉSUMÉ La congestion routière et les longs trajets quotidiens sont deux grandes sources d'insatisfaction chez les voyageurs. Ces derniers partagent les mêmes besoins et intérêts au niveau de la route mais leur anonymité, leur manque de confiance en leur voisinage et la grande mobilité des véhicules les rendent incapables d'entamer et de maintenir une communication sure et stable entre eux, pendant les heures de pointe et les bouchons de circulation, afin de gérer ensemble l'état critique et imprévisible du trafic routier. Ceci déclenche chez eux des sentiments de frustration, augmente leur niveau de stress et les pousse à s'envoyer des messages de façon aveugle, ce qui empire la situation du trafic, congestionne le réseau, augmente les délais d'attente de réception d'information utiles et affecte négativement la qualité de leur voyage et leur état psychologique. Par ailleurs et en l'absence de congestion, certains voyageurs considèrent la longue durée de leur voyage comme du temps perdu à ne rien faire, d'autres utilisent les applications mobiles de géolocalisation et partagent leurs informations contextuelles avec leurs amis via les réseaux sociaux virtuels, ce qui est considéré comme un moyen de divertissement tout au long de leur voyage. En fait, l'anonymité des voyageurs au niveau de la route est alimentée par leur hésitation à partager leurs intérêts avec un public inconnu, ce qui pourrait les exposer aux problèmes de fuite de données personnelles et mettre en péril leur identité et information personnelles. Plusieurs travaux de recherche ont proposé des architectures véhiculaires qui favorisent et facilitent le développement de services et d'applications véhiculaires traditionnels orientés véhicule, qui visent principalement à améliorer la sécurité routière et à prévenir les accidents. D'autres travaux plus récents sont motivés par l'amélioration de la qualité du voyage et à offrir aux voyageurs des services de divertissement. Ces travaux proposent l'introduction du concept des réseaux sociaux dans les réseaux véhiculaires ad hoc afin de faciliter la formation de communautés véhiculaires sociales où les voyageurs sont regroupés en fonction de leur contexte et leurs intérêts sur la route. Pour ce faire, les auteurs de ces travaux ont procédé à la conception d'architectures véhiculaires sociales distribuées ou centralisées qui supportent le développement des applications véhiculaires orientées utilisateur. Cependant, ces architectures proposées ne sont pas hybrides. De plus, elles ne tiennent pas compte de la coopération entre les couches supérieures de l'architecture OSI (services et applications) et les couches inférieures responsables du routage de l'information contextuelle dynamique propagée à travers le réseau. En outre, ces dernières devraient aussi considérer la fragilité et l'instabilité des liens de communication entre les véhicules, ce qui empêche les voyageurs de maintenir une communication fiable et efficace sur la route et cause des collisions lors de la dissémination des messages dans des environnements véhiculaires denses. Par ailleurs, le coût d'accès à l'infrastructure induit une grande consommation de la bande passante dans le cas où la majorité des voyageurs se connectent à Internet simultanément dans un environnement véhiculaire hybride et dense. Cette thèse vient combler le vide d'architecture véhiculaire hybride dans les réseaux véhiculaires sociaux et propose un nouveau système de messagerie dynamique hybride, fiable, stable et efficace pour ce type de réseaux, appelé DYMES. Une telle architecture permet de favoriser les interactions entre les voyageurs en temps-réel, tout en respectant leur anonymité sur la route et en tenant compte de la dynamicité de leurs informations contextuelles partagées à travers le réseau, en utilisant un ensemble d'abstractions de communication fiable, efficace, distribué et centralisé, dans un environnement véhiculaire hybride et dense. Ce travail est subdivisé en trois volets importants qui ont fait l'objet d'articles scientifiques. Le premier volet consiste à identifier une méta-stratégie qui guide la conception des abstractions de communication hybrides sur lesquelles repose DYMES. Nous proposons l'utilisation du modèle de publication et de souscription aux services qui concorde avec la nature dynamique des réseaux véhiculaires et qui répond aux requis et aux besoins des voyageurs au niveau de la route en terme du respect de l'anonymité de leur identité. Dans ce modèle, les récipiendaires des messages publiés sont identifiés par leur contexte et non par leur identité. De ce fait, nous concevons et introduisons des abstractions dynamiques de publication et de souscription aux services qui visent à assurer une communication anonyme entre les voyageurs en leur permettant de publier leur information contextuelle dynamique et de souscrire en utilisant des filtres dynamiques sensibles au contexte des messages. Nous illustrons l'utilisation de DYMES et montrons son fonctionnement via deux applications véhiculaires sociales distribuées et centralisées. De plus, nous identifions et nous discutons nos choix d'implémentation des abstractions centralisées, distribuées et hybrides proposées qui guident la conception du système DYMES. Le deuxième volet propose un nouvel ensemble d'abstractions de publication et de souscription dynamiques, hybrides, efficientes et fiables qui représente un module de l'architecture DYMES. Notre première abstraction est une stratégie de publication et de souscription dynamique aux services de regroupement DPSCS (Dynamic Publish/Subscribe Clustering Strategy) qui aborde les problématiques de l'isolation des voyageurs au niveau de la route et de l'instabilité de leur liens de communication. DPSCS permet à chaque voyageur de former une communauté stable basée sur son propre contexte et intérêt, qui est capable de s'auto mettre à jour de façon efficiente et fiable tout en respectant l'anonymité des voyageurs sur la route. Pour ce faire, chaque voyageur qui désire communiquer avec son entourage en créant une communauté, publie une seule publication persistante, dans un espace déterminé, dont le contenu est dynamique. DPSCS repose sur un protocole de communication qui permet de propager cette publication de manière efficiente et fiable en sélectionnant les relais qui disposent d'un lien stable avec le nœud source (l'éditeur) de la publication et qui sont situés loin de ce nœud. Les voyageurs dont les souscriptions courantes concordent avec la publication dynamique du nœud source, joignent sa communauté. La persistance de la publication envoyée détermine la fin de la formation de la communauté. Notre deuxième abstraction proposée est une stratégie de découverte et de sélection de relais mobiles appelée MGDSS (Mobile Gateway Discovery/Selection Strategy). Cette dernière aborde les problématiques de découverte et de sélection de relais mobiles dans les environnements véhiculaires hybrides qui donnent naissance à d'autres problèmes comme la grande consommation de bande passante lors de l'accès d'un grand nombre de véhicules à l'infrastructure, et le nombre exponentiel de messages envoyés entre les voyageurs dans les environnements véhiculaires denses. MGDSS se base sur le résultat de DPSCS. Elle facilite aux voyageurs groupés dans des communautés la découverte de leur entourage en leur permettant de s'envoyer un seul message chacun, qui est propagé de façon fiable et efficiente en utilisant un nouveau protocole de diffusion nommé CoCo (Context-aware Coding). Ce dernier permet de réduire le nombre de retransmissions des messages à travers la communauté et d'en assurer la livraison par les voyageurs. Ces derniers procèdent à la sélection d'un nombre minimal de nœuds relais capables de les lier à l'infrastructure en se basant sur les informations qu'ils ont reçues à travers MGDS-CoCo. Notre stratégie de sélection nommée MGSS (Mobile Gateway Selection Strategy) permet aux voyageurs d'envoyer leurs publications et leurs souscriptions à l'infrastructure à travers les relais sélectionnés en utilisant les chemins les plus stables. Une nouvelle stratégie de correspondance entre publication et souscription est implémentée au niveau de l'infrastructure et permet de comparer et de mettre à jour les souscriptions des voyageurs et de les filtrer selon leur contenu dynamique avec les publications reçues. Le résultat est renvoyé aux souscripteurs concernés via le relais sélectionné en utilisant MGSS. L'évaluation de performance de cet ensemble d'abstractions dynamiques de publication et de souscription de l'architecture DYMES prouve que la stratégie DPSCS est, en moyenne, 28% meilleure que les autres stratégies existantes en termes d'efficience et qu'elle est capable de former des communautés dans l'ordre des millisecondes. De plus, MGDSS dépasse les stratégies existantes par un facteur de 71% à 100% en termes d'efficience pour toute densité de nœuds comparée aux autres stratégies. Finalement, le troisième volet de cette thèse aborde la problématique de la dissémination des messages dans les environnements véhiculaires distribués. Nous proposons une nouvelle stratégie de publication et de souscription dynamique aux services appelée SocialDrive-BroadTrip qui constitue un module important dans l'architecture DYMES. Cette stratégie assure une communication fiable et efficiente entre les voyageurs regroupés en peloton. Elle leur permet de publier des mises à jour persistantes dont le contenu est dynamique et de souscrire en utilisant des filtres dynamiques sensibles au contexte des mises à jour publiées. La correspondance entre publication et souscription est effectuée par les souscripteurs qui sont intéressés à recevoir les dernières mises à jour publiées. La propagation de ces dernières est assurée par un nouveau protocole de diffusion nommé BroadTrip. Ce dernier est basé sur la localisation et sur le codage réseau afin de réduire le nombre de retransmissions des mises à jour envoyées à travers le peloton. L'évaluation de performance de BroadTrip montre qu'il est en moyenne 12% à 38% meilleur que les autres approches existantes. De plus, nos résultats de simulation montrent que SocialDrive-BroadTrip dépasse les autres stratégies de 26% à 58% en termes d'efficience et qu'elle est plus rapide que les autres stratégies en termes du nombre de correspondances de mises à jours effectuées. Globalement, les abstractions de communication proposées dans l'architecture DYMES peuvent être utilisées comme base de développement de n'importe quelle application véhiculaire sociale. De plus, les résultats prouvent que l'architecture DYMES améliore la qualité d'interaction entre les voyageurs tout au long de leur voyage, en leur offrant différents types de services qui leur permettent de contrer leur isolement sur la route et de communiquer en temps réel de façon anonyme, efficiente, stable et efficace. Ceci permet aussi d'assurer leur confort pendant leurs navettes quotidiennes.----------ABSTRACT Spending time in a lengthy commute is unavoidable and is considered as one of the most painful parts of the commuters' daily routine. As ubiquitous computing is increasingly revolutionizing the way people interact and socialize, there is a pressing need to showcase vehicular social applications and services that enable proximity-based social interactions among commuters during their daily commutes. These applications aim at improving the quality of the commuters' traveling experience since they share similar congestion issues and are connected through wireless links. However, the major challenging issues that constraint their social interactions during their highway travels are 1) their anonymity on the road that does not encourage them to share their common interest which may reveal their identities and disclose their private information to an unknown public, and 2) the heterogeneous nature of vehicular environments and the unreliable connectivity of their wireless links which may drastically impact the quality of their social interactions. The inclusion of social networks within vehicles has attracted many researchers to devise either distributed or centralized vehicular social frameworks that support the development of vehicular applications and promote social interactions among commuters on the road. However, and to the best of our knowledge, there is a lack of hybrid vehicular social architectures. Moreover, existing architectures do not ensure a cooperation between upper service layers and the physical vehicular communication layers and are only designed to satisfy a specific kind of commuters' requirements. In this thesis, we tackle the lack of specialized hybrid vehicular social frameworks in the literature and we propose a novel, efficient, reliable, stable, hybrid and Dynamic Messaging System (DYMES) for vehicular social networks. Our proposed messaging system enables real-time social interactions among commuters based on their common interests, without revealing their identities, while taking into account the dynamic nature of their shared information, using a set of efficient, reliable, distributed and centralized communication abstractions. More specifically, this work is subdivided into three main aspects, each of these aspects led to scientific publications. The first aspect consists in the identification of a meta-strategy to guide building DYMES. We propose the use of the publish/subscribe model to design novel dynamic communication abstractions that match the dynamic nature of vehicular networks, as well as the anonymous nature of commuters' on the road. Our proposed dynamic publish/subscribe abstractions aim at breaking the commuters' social isolation by allowing them to publish dynamic contextual information and to subscribe using online context-aware message filters, without revealing their identities. We show the DYMES usage via two typical centralized and distributed vehicular social applications. Furthermore, we identify and discuss implementation issues of our proposed hybrid, distributed and centralized publish/subscribe abstractions which guide the building of our DYMES architecture. The second aspect introduces a set of novel, hybrid, efficient, reliable, stable and dynamic publish/subscribe abstractions that constitute an important building block of our hybrid DYMES architecture. Our first proposed abstraction is a Dynamic Publish/Subscribe Clustering Strategy (DPSCS) that tackles the problems of the commuters' anonymity and the intermittent nature of their wireless links which limit their social communication during their road trips. DPSCS provides the opportunity for each commuter to build a stable, self-updated, efficient and reliable community based on its own interests, without disclosing its personal information and without flooding the network. Using DPSCS, each commuter publishes a single persistent and dynamic publication in a predetermined geographical range, leaving the dynamic matching process to subscribers. DPSCS relies on the two Shot Stable Routing Service (2S-SRS) that disseminates the commuter's publication using stable and farther nodes. Our second proposed abstraction is a Mobile Gateway Discovery/Selection Strategy (MGDSS) that tackles the problems pertaining to mobile gateway discovery and selection in hybrid dense vehicular environments and that lead to other related challenges such as extensive bandwidth consumption and high message overhead. MGDSS is based on the outcome of DPSCS and allows commuters clustered in interest-based communities to efficiently and reliably discover their neighborhood, using an efficient and reliable broadcasting protocol called CoCo (Context-aware Coding). This protocol uses location and network coding in order to reduce the number of message retransmissions throughout the network, during the discovery process. A minimum number of mobile gateways is then selected by each commuter, upon the end of the discovery process, in order to simultaneously send the commuters' dynamic publications and subscriptions to the infrastructure using stable links. An online matching strategy is executed at the infrastructure and aims at updating the commuters' subscriptions and at sending positive matches to the corresponding subscribers. More specifically, DPSCS outperforms the next best comparable approach by 28% and succeeds to build social communities in the order of milliseconds. Furthermore, MGDSS shows an improvement of 71% to 100% over existing discovery strategies for any node density. Finally, the third aspect introduces a new dynamic publish/subscribe broadcasting abstraction called SocialDrive-BroadTrip that also constitutes an important building block of our hybrid DYMES architecture. SocialDrive-BroadTrip tackles the problem of updates dissemination in distributed vehicular environments. It aims at enabling real-time social interactions among commuters clustered in platoons. It allows them to publish dynamic and persistent updates and to subscribe using online context-aware update filters. Matching is executed by subscribers who are interested to receive the newest updates. The dissemination of persistent publications (updates) throughout the network is performed using a novel, efficient and reliable broadcasting protocol called BroadTrip. It leverages on location information and network coding in order to reduce the number of retransmissions needed to propagate the published persistent updates in platoons. The proposed abstraction is evaluated analytically and through simulations. We first evaluate the performance of BroadTrip protocol. The results show that it outperforms the next best comparable approach by 12% to 38% depending on settings. We then use BroadTrip as an underlying protocol in the DYMES architecture and evaluate the performance of SocialDrive-BroadTrip in a vehicular dense environment. The results show that our proposed strategy outperforms other existing approaches by 26% to 58% depending on settings. Globally, the results prove that DYMES is the best suitable messaging system to improve the quality of real-time social interactions among commuters in hybrid and dense vehicular environments, that it is able to ensure efficiency and comfort during their daily commutes and that its dynamic, efficient and reliable communication abstractions can be used to build any kind of vehicular social applications

    Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges

    Get PDF
    The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encour-aging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility‐as‐a‐service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope

    Dynamic services in mobile ad hoc networks

    Get PDF
    The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach

    Infrastructure-less D2D Communications through Opportunistic Networks

    Get PDF
    Mención Internacional en el título de doctorIn recent years, we have experienced several social media blackouts, which have shown how much our daily experiences depend on high-quality communication services. Blackouts have occurred because of technical problems, natural disasters, hacker attacks or even due to deliberate censorship actions undertaken by governments. In all cases, the spontaneous reaction of people consisted in finding alternative channels and media so as to reach out to their contacts and partake their experiences. Thus, it has clearly emerged that infrastructured networks—and cellular networks in particular—are well engineered and have been extremely successful so far, although other paradigms should be explored to connect people. The most promising of today’s alternative paradigms is Device-to-Device (D2D) because it allows for building networks almost freely, and because 5G standards are (for the first time) seriously addressing the possibility of using D2D communications. In this dissertation I look at opportunistic D2D networking, possibly operating in an infrastructure-less environment, and I investigate several schemes through modeling and simulation, deriving metrics that characterize their performance. In particular, I consider variations of the Floating Content (FC) paradigm, that was previously proposed in the technical literature. Using FC, it is possible to probabilistically store information over a given restricted local area of interest, by opportunistically spreading it to mobile users while in the area. In more detail, a piece of information which is injected in the area by delivering it to one or more of the mobile users, is opportunistically exchanged among mobile users whenever they come in proximity of one another, progressively reaching most (ideally all) users in the area and thus making the information dwell in the area of interest, like in a sort of distributed storage. While previous works on FC almost exclusively concentrated on the communication component, in this dissertation I look at the storage and computing components of FC, as well as its capability of transferring information from one area of interest to another. I first present background work, including a brief review of my Master Thesis activity, devoted to the design, implementation and validation of a smartphone opportunistic information sharing application. The goal of the app was to collect experimental data that permitted a detailed analysis of the occurring events, and a careful assessment of the performance of opportunistic information sharing services. Through experiments, I showed that many key assumptions commonly adopted in analytical and simulation works do not hold with current technologies. I also showed that the high density of devices and the enforcement of long transmission ranges for links at the edge might counter-intuitively impair performance. The insight obtained during my Master Thesis work was extremely useful to devise smart operating procedures for the opportunistic D2D communications considered in this dissertation. In the core of this dissertation, initially I propose and study a set of schemes to explore and combine different information dissemination paradigms along with real users mobility and predictions focused on the smart diffusion of content over disjoint areas of interest. To analyze the viability of such schemes, I have implemented a Python simulator to evaluate the average availability and lifetime of a piece of information, as well as storage usage and network utilization metrics. Comparing the performance of these predictive schemes with state-of-the-art approaches, results demonstrate the need for smart usage of communication opportunities and storage. The proposed algorithms allow for an important reduction in network activity by decreasing the number of data exchanges by up to 92%, requiring the use of up to 50% less of on-device storage, while guaranteeing the dissemination of information with performance similar to legacy epidemic dissemination protocols. In a second step, I have worked on the analysis of the storage capacity of probabilistic distributed storage systems, developing a simple yet powerful information theoretical analysis based on a mean field model of opportunistic information exchange. I have also extended the previous simulator to compare the numerical results generated by the analytical model to the predictions of realistic simulations under different setups, showing in this way the accuracy of the analytical approach, and characterizing the properties of the system storage capacity. I conclude from analysis and simulated results that when the density of contents seeded in a floating system is larger than the maximum amount which can be sustained by the system in steady state, the mean content availability decreases, and the stored information saturates due to the effects of resource contention. With the presence of static nodes, in a system with infinite host memory and at the mean field limit, there is no upper bound to the amount of injected contents which a floating system can sustain. However, as with no static nodes, by increasing the injected information, the amount of stored information eventually reaches a saturation value which corresponds to the injected information at which the mean amount of time spent exchanging content during a contact is equal to the mean duration of a contact. As a final step of my dissertation, I have also explored by simulation the computing and learning capabilities of an infrastructure-less opportunistic communication, storage and computing system, considering an environment that hosts a distributed Machine Learning (ML) paradigm that uses observations collected in the area over which the FC system operates to infer properties of the area. Results show that the ML system can operate in two regimes, depending on the load of the FC scheme. At low FC load, the ML system in each node operates on observations collected by all users and opportunistically shared among nodes. At high FC load, especially when the data to be opportunistically exchanged becomes too large to be transmitted during the average contact time between nodes, the ML system can only exploit the observations endogenous to each user, which are much less numerous. As a result, I conclude that such setups are adequate to support general instances of distributed ML algorithms with continuous learning, only under the condition of low to medium loads of the FC system. While the load of the FC system induces a sort of phase transition on the ML system performance, the effect of computing load is more progressive. When the computing capacity is not sufficient to train all observations, some will be skipped, and performance progressively declines. In summary, with respect to traditional studies of the FC opportunistic information diffusion paradigm, which only look at the communication component over one area of interest, I have considered three types of extensions by looking at the performance of FC: over several disjoint areas of interest; in terms of information storage capacity; in terms of computing capacity that supports distributed learning. The three topics are treated respectively in Chapters 3 to 5.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Claudio Ettori Casetti.- Secretario: Antonio de la Oliva Delgado.- Vocal: Christoph Somme

    Trust management techniques for the internet of things: A survey

    Get PDF
    A vision of the future Internet is introduced in such a fashion that various computing devices are connected together to form a network called Internet of Things (IoT). This network will generate massive data that may be leveraged for entertainment, security, and most importantly user trust. Yet, trust is an imperative obstruction that may hinder the IoT growth and even delay the substantial squeeze of a number of applications. In this survey, an extensive analysis of trust management techniques along with their pros and cons is presented in a different context. In comparison with other surveys, the goal is to provide a systematic description of the most relevant trust management techniques to help researchers understand that how various systems fit together to bring preferred functionalities without examining different standards. Besides, the lessons learned are presented, and the views are argued regarding the primary goal trust which is likely to play in the future Internet. 2018 IEEE.This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-01411, A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device).Scopus2-s2.0-8506427487
    corecore