486 research outputs found

    Cloud-Edge Orchestration for the Internet-of-Things: Architecture and AI-Powered Data Processing

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been deeply penetrated into a wide range of important and critical sectors, including smart city, water, transportation, manufacturing and smart factory. Massive data are being acquired from a fast growing number of IoT devices. Efficient data processing is a necessity to meet diversified and stringent requirements of many emerging IoT applications. Due to the constrained computation and storage resources, IoT devices have resorted to the powerful cloud computing to process their data. However, centralised and remote cloud computing may introduce unacceptable communication delay since its physical location is far away from IoT devices. Edge cloud has been introduced to overcome this issue by moving the cloud in closer proximity to IoT devices. The orchestration and cooperation between the cloud and the edge provides a crucial computing architecture for IoT applications. Artificial intelligence (AI) is a powerful tool to enable the intelligent orchestration in this architecture. This paper first introduces such a kind of computing architecture from the perspective of IoT applications. It then investigates the state-of-the-art proposals on AI-powered cloud-edge orchestration for the IoT. Finally, a list of potential research challenges and open issues is provided and discussed, which can provide useful resources for carrying out future research in this area.Engineering and Physical Sciences Research Council (EPSRC

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Cooperative-hierarchical based edge-computing approach for resources allocation of distributed mobile and IoT applications

    Get PDF
    Using mobile and Internet of Things (IoT) applications is becoming very popular and obtained researchers’ interest and commercial investment, in order to fulfill future vision and the requirements for smart cities. These applications have common demands such as fast response, distributed nature, and awareness of service location. However, these requirements’ nature cannot be satisfied by central systems services that reside in the clouds. Therefore, edge computing paradigm has emerged to satisfy such demands, by providing an extension for cloud resources at the network edge, and consequently, they become closer to end-user devices. In this paper, exploiting edge resources is studied; therefore, a cooperative-hierarchical approach for executing the pre-partitioned applications’ modules between edges resources is proposed, in order to reduce traffic between the network core and the cloud, where this proposed approach has a polynomial-time complexity. Furthermore, edge computing increases the efficiency of providing services, and improves end-user experience. To validate our proposed cooperative-hierarchical approach for modules placement between edge nodes’ resources, iFogSim toolkit is used. The obtained simulation results show that the proposed approach reduces network’s load and the total delay compared to a baseline approach for modules’ placement, moreover, it increases the network’s overall throughput

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications
    • …
    corecore