761 research outputs found

    Zernike velocity moments for sequence-based description of moving features

    No full text
    The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape's description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    A very simple framework for 3D human poses estimation using a single 2D image: Comparison of geometric moments descriptors.

    Get PDF
    In this paper, we propose a framework in order to automatically extract the 3D pose of an individual from a single silhouette image obtained with a classical low-cost camera without any depth information. By pose, we mean the configuration of human bones in order to reconstruct a 3D skeleton representing the 3D posture of the detected human. Our approach combines prior learned correspondences between silhouettes and skeletons extracted from simulated 3D human models publicly available on the internet. The main advantages of such approach are that silhouettes can be very easily extracted from video, and 3D human models can be animated using motion capture data in order to quickly build any movement training data. In order to match detected silhouettes with simulated silhouettes, we compared geometrics invariants moments. According to our results, we show that the proposed method provides very promising results with a very low time processing

    A Survey of 2D and 3D Shape Descriptors

    Get PDF
    • …
    corecore