
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� 
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/18495

https://doi.org/10.1016/j.patcog.2017.06.024

Atrevi, Dieudonné Fabrice and Vivet, Damien and Duculty, Florent and Emile, Bruno A very simple framework for 3D

human poses estimation using a single 2D image: Comparison of geometric moments descriptors. (2017) Pattern

Recognition, vol. 71. pp. 389-401. ISSN 0031-3203



A Very Simple Framework for 3D Human Poses
Estimation Using a Single 2D Image: Comparison of

Geometric Moments Descriptors

Dieudonne Fabrice ATREVIa,∗, Damien VIVETb,∗∗, Florent DUCULTYa,
Bruno EMILEa

aUniv of Orleans, INSA Centre Val de Loire, PRISME EA 4229, F45072, Orleans, France
bUniversity of Toulouse, ISAE-Supaero / DEOS, Toulouse, France

Abstract

In this paper, we propose a framework in order to automatically extract the 3D

pose of an individual from a single silhouette image obtained with a classical

low-cost camera without any depth information. By pose, we mean the con-

figuration of human bones in order to reconstruct a 3D skeleton representing

the 3D posture of the detected human. Our approach combines prior learned

correspondences between silhouettes and skeletons extracted from simulated 3D

human models publicly available on the internet. The main advantages of such

approach are that silhouettes can be very easily extracted from video, and 3D

human models can be animated using motion capture data in order to quickly

build any movement training data. In order to match detected silhouettes with

simulated silhouettes, we compared geometrics invariants moments. Accord-

ing to our results, we show that the proposed method provides very promising

results with a very low time processing.

Keywords: 3D Pose estimation, 3D modeling, Skeleton extraction, Shape

descriptor, Geometric moment, Krawtchouk moment, Zernike moment, Hu

moment, Hahn moment

∗Principal corresponding author
∗∗Corresponding author

Email addresses: fabrice.atrevi@univ-orleans.fr (Dieudonne Fabrice ATREVI),
damien.vivet@isae.fr (Damien VIVET), florent.duculty@univ-orleans.fr (Florent
DUCULTY), bruno.emile@univ-orleans.fr (Bruno EMILE)



1. Introduction

One of the main objectives of smart environments is to enhance the quality of

life of the inhabitants. For this purpose, monitoring systems have to understand

the needs and intention of a human in order to adapt the environment, for

example in term of heating or lighting. Moreover, by monitoring the movement

of a user, these systems could also be able to alert the user or ask for help in

case of danger or if the movement could lead to an injury like a fall for example.

Then, Human action recognition systems have a lot of possible applications in

surveillance, pedestrian tracking and Human Machine Interaction. Human pose

estimation is a key step to action recognition.

A human action is often represented as a succession of human poses [1]. As

these poses could be 2D or 3D, so estimating them have attracted a lot of at-

tention. A 2D pose is usually represented by a set of joint locations [2] whose

estimation remains challenging because of the human body shape variability,

viewpoint change, etc. Considering 3D pose, we usually represent it by a skele-

ton model parameterized by joint locations [3] or by rotation angles [4]. Such

representation has the advantage to be Viewpoint-invariant, however, estimat-

ing 3D poses from a single image still remains a difficult problem. The reasons

are multiple. First, multiple 3D poses may have the same 2D pose reprojection

even if tracking approaches can solve this ambiguty. Second, 3D pose is inferred

from detected 2D joint locations so 2D pose reliability is essential because it

greatly affects skeleton estimation performance. In camera network used in

a video-surveillance context, image quality is often poor making 2D joint de-

tection a difficult task, moreover camera parameters are unknown making the

correspondence 2D/3D difficult.

In this work, we propose a new framework for the extraction of 3D skeleton

pose assumptions from a single 2D image provided by a low cost webcam. Our

approach focuses uniquely on the silhouette shape recognition. A silhouette

database is constructed from 3D human pose and action simulator and is used



in order to match the nearest silhouette and as a result possible 3D human

pose. Section 2 presents the state of the art in the field of human pose estima-

tion. Section 3 explains the methodology we applied in order to estimate the

human pose from a single silhouette but also the 3D simulator used to build

our training database. Section 4 provides the mathematical description of the

geometrics moments (and their parameters) used and compared for this appli-

cation. Finally, section 5 presents the results obtained by the approach on both

our simulated and real database.

2. Related works

There are many methods in the state-of-the-art that deals with the human

pose estimation and action recognition. Nevertheless, these tasks are still chal-

lenging for computer vision community. Human activity analyses started with

O’Rourke and Badler [5] and Hogg [6] in the eighties. Since last decades, scien-

tists proposed many approaches. We can categorize these approaches into two

main categories.

Most of the approaches use a 3D model or 3D detection for estimating the

pose of a subject and for action classification. Bourdev and Malik [7] estimated

the human pose from key points. They used an annotated dataset of human

with 3D joins informations inferred using anthropometric constraints for human

action classification. Wei and Chai [9] proposed an approach for solving the non-

rigid structure from motion problem specifically for bodies. They claimed that

with a minimum of five frames with 2D point correspondences, their approach

is able to estimate bone lengths, camera scale and articulated pose. In [8],

Valmadre and Lucey demonstrated that this assumption from Wei and Chai is

false and this approach is only valid for rigid substructures of the human body

(e.g. torso) rather than the entire bodys non-rigid structure. They introduced

a deterministic solution to the problem of estimating camera scale and bone

lengths for the bodys rigid torso. Recently, depth camera such as the Microsoft

Kinect camera has been intensively used in tracking 3D human posture [10],



[11]. Its advantage is that it can track 3D human posture without requiring the

user to wear any special equipment. The use of captured depth image allows

extracting depth-based edge and ridge data used to track human body parts

[12]. However, unsupervised approaches using depth sensor require a complex

algorithm to analyse the scene. Of course, run-time detection of a complex

model is not always accurate and activity recognition is degraded. In the same

way, the use of the skeleton extracted by Kinect for action recognition suffers

for eroneous joint recognition in case of occlusions resulting in noisy skeletons

[13]. In case the depth sensor data are considered reliable, motion analysis

algorithms do not work well with Kinect [14]. Very recently, Ho et al. [15]

propose new methods to take into account the sensor errors and to improve

action recognition in a smart environment using depth sensor. All of these

approaches need multiple sensors or specific devices such as time of flight or

active camera for acquiring 3D information. The anatomical models used also,

need a very good parametrization to be usefull. This category of methods is not

suitable for our purpose. We want to estimate the 3D postures from monocular

image without any prior depth informations about the person and in complete

uncontrolled environment using one camera.

The second category of approaches, to which our proposed method belongs,

used 2D models trained from various images. Indeed, identifying human pos-

ture with traditional 2D video cameras can be performed using computer vision

techniques [16]. Nevertheless, recovering a 3D human pose from a single 2D

image is an ill-posed problem because multple body configurations may have

a similar silhouette aspect. Moreover, in realistic situations, body silhouette

cannot be accurately detected because of occlusions or wrong background seg-

mentation. Wren et al. [17] tracked people and interpreted their behaviour by

using a multiclass statistical model of colour and shape to obtain a 2D repre-

sentation of head and hand. Gorelick et al. [18] used the solution of Poisson’s

equation to extract spatiotemporal features such as the saliancy, the orientation

of the shape for action recognition and then human pose estimation. Agarwal

and Triggs [19] used the shape context in their research on human pose estima-



tion. Gorce et al. [20] estimated and tracked the human hand from monocular

video through minimization of an objective function. This minimization is done

using a quasi-Newton method, for which they provide a rigorous derivation of

the objective function gradient. Yang and Ramanan [2] estimated the pose by

capturing the orientation of each part with a mixture of templates modeled by

linear SVMs. All of these methods focus on 2D image interpretation in order to

detect human pose or action. So, learning is required and such algorithms need

complex and expensive systems to get the training data set with the ground

truth. For this purpose, motion capture data have to be collected for different

motions and behaviors. Such technique has been widely used [21] and multiple

mocap files are publically available on the internet. Our method is based on

a very simple silhouette extraction and description. It could be compared to

Shape-from-silhouette approach [22] but in our case, we use a single image to

find the 3D pose. We also show that our method is robust in case of noised

extracted silhouette.

Another difference from state of the art approach is that for generating the

learning database, we proposed to use software applications from the open source

community associated to available motion capture files. Those softwares makes

realistic simulations of various human poses and action possible. Moreover,

movement can be easily adapted in order to generate new pose and actions.

This work is an extension of [23] and shows that (1) using only 3D simulations

for learning, (2) without complex machine learning algorithm and (3) with a

very simple real-time shape descriptor we can achieve 3D pose estimation on

real data with good accuracy from a unique 2D image.

3. Methodology

The proposed approach for 3D pose estimation is based on shape analysis of

human silhouette. The method can be decomposed into four parts: (1) simu-

lated silhouette and skeleton database, (2) Human detection and 2D silhouette

extraction, (3) silhouette shape matching, (4) skeleton scaling and validation.



3.1. General workflow

As mentionned above, the proposed 3D pose estimation approach is com-

posed of 4 parts, from the human detection and silhouette extraction to the

pose estimation and validation. The entire workflow is presented Fig. 1. In this

section, we summarized each of forth step.

Figure 1: Human pose estimation methodology.

(1) 2D silhouette and 3D skeleton database is built thanks to open source

3D software Blender (see section 3.2 for more details on the database construc-

tion). Such database is composed of human silhouettes and its corresponding

3D skeletons for different kind of postures, extracted from multiples actions

dataset, like walk, run, climb. So, for a requested silhouette, it’ll be possible to

find an approximate silhouette in the database and then the corresponding 3D

skeleton.

(2) 2D silhouette detection is a well-studied field in machine learning and

computer vision. For this purpose, we used classical real-time approach human

detector proposed by Dollar et al. [24] based on multiscale HOG to focus the

region of interest associated to a statistical background substraction. Once the

human silhouette is detected, we converted it to a 48 x 128 pixels image for



solving the translation and scale problem.

(3) Silhouette description and similarity measurement is the key point

of our methodology. The main objective is to describe accurately the shape

of the silhouette. Since sihouettes can be consider as shape, different shapes

descriptors can be use to describe them. Numerous shape descriptors have been

proposed in the literature and can be categorized as contour-based and region-

based descriptors. The first category, describe the distribution of the boundary

information of the shape and by the way, ignoring the interior content which

can be important for some shapes. In opposite, the region-based descriptors

exploit both boundary and internal content for the shape description. In this

last category, one group of descriptor is the geometric moments which have

been very popular since their introduction in the 60s. For our application, we

use four moments in the silhouette description task (See section 4 for details).

Based on those descriptors, a feature vector is computed for each silhouette in

the database and the similarity between characteristic vector is measured with

the Euclidean distance given by :

d(zr, zt) =
T∑
i=1

(
zri − zti

)2
(1)

where zr et zt is respectively the characteristic vector of request silhouette and

the tth silhouette in the database. We choose to present this simple distance

as other metric distance tested (cosinus distance, correlation distance, Bhat-

tacharyya distance, L2... ) did not improve significantly the results. The search

of corresponding silhouette in the database is linear and then have O(n) time

complexity. Others search strategy can be investigate to improve the complexity.

(4) Skeleton scaling and validation. For each silhouette we retrieve the

n nearest 3D skeletons in the dabase obtained at the end of the last step. In

order to get the final posture, different technics can be use. One can take the

nearest silhouette in the database and then its corresponding skeleton. One can

also, consider n nearest silhouettes and compute a mean skeleton by using the

n corresponding skeleton. The final skeleton is scaled to the current silhouette

size by geometric transformation. For validation purpose, we use ground truth



simulated database to validate the approach. The confidence score is processed

by measuring the 3D/2D reprojection error of predicted joints on the silhouette

and an empirical fixed threshold is used to decide which result is good pose

estimation.

3.2. Construction of the 2D/3D matching database

One of the novelty of our approach is to generate easly big database of human

3D skeleton and its corresponding silhouette thanks the advance in computer

graphic and virtual modelisation. By the way, it’ll be possible to generate dif-

ferent silhouettes (different size, corpulence, camera view point) from real world

motion information. This approach contribut to reduce the time and financial

relate to the generation of such database. Indeed, for one motion information,

took from motion capture dataset, we can generate many silhouettes.

3.2.1. 3D human avatar and action simulation

In order to build our simulated humans, we choose to use a professional free

and open-source 3D computer graphics software called Blender1 associated with

a free software to create realistic 3d human makehuman2 (see Fig. 2). These

avatars can be animated thanks to motion capture data in order to simulate very

realistic actions. In these Softwares, we simulate different human avatars with

Figure 2: 3D simulated avatar and its associated skeleton

different morphologies and clothes and animate them with different realistic

1https://www.blender.org/
2http://www.makehuman.org/



motions taken from the CMU motion capture database3. These motion capture

files have been generated using numerous wearable markers and provide a very

good precision of the reconstructed 3D motion. For our work, we choose to

reduce the number of joints to be estimated to 19. Let’s note that illumination

conditions and point of view of the camera can be easily modified with this

software, in order to generate required database. For example, a configuration

using four virtual cameras positioned on a virtual sphere centered on the subject

is presented in Fig. 3. The position of the camera on the sphere, camera intrinsic

parameters, and sphere radius can be adjusted in order to match the type and

the pose of the camera used in the real application (video monitoring, smart

home, behaviour analysis, etc.). The number of camera can be more, it depend

on the intrinsic parameters of the camera and the scene configuration.

Figure 3: Blender software view for 4 cameras based database generation. Camera are posi-

tionned on a virtual 3D sphere centered on the subject.

3.2.2. Database construction

Once the avatars are generate with the software makehuman, we import them

into the 3D graphics software ”blender”. We positioned on a hemisphere some

virtual cameras looking at the subject. Thanks to the motion capture files, we

animated these avatars. Then, for each movement of the avatar, we can record

both: 2D image and silhouette (give by cameras), 3D camera poses and 3D

3http://mocap.cs.cmu.edu/



joints and bones poses (in world coordinate). As a result for each subject’s pose,

we can collect the detected silhouette related to its 3D skeleton (containing 19

bones). For the purpose of this paper, we recorded in four subjects with different

phenotypes and playing four different animations: walk cycle, basket action,

jump, and climb. Geometric transformation can be done on 3D skeleton in

order to convert them from 3D world coordinate to 2D image coordinate(3D/2D

projection). This transformation is used to compute the reprojection error for

quantitave evaluation purpose. For each silhouette in the database, we then

extract the feature vector with the shape descriptors presented in section 4.

4. Shape descriptors

In order to describe the silhouettes, we have processed and compared four

well-known shape descriptors based on invariant and orthogonal moments. Such

moments have been proved to be a good region-based descriptor in a multitude

of machine learning application and for content-based image retrieval [25][26].

As we assume that the 3D pose is directly linked to the 2D shape of the silouette,

the main objective is to reprensent the shape accurately. An ideal descriptor

for our pose recovery problem would be able to distinguish between different

body poses while being able to generalize over body dimensions, variations in

viewpoint and local boundary noise.

In case of low orders of geomentric moments, it is possible to interpret their

meaning. For instance:

• m00 represent the mass of image (for binary image, it’s an area of the

object);

• In case that the image is considered a probability density function (m00 =

1), m01 and m10 are the mean value;

• In case of zero means, m20 and m02 are variances of horizontal and vertical

projections and m11 is a covariance between them;

• m01/m00 and m10/m00 define the gravity or centroid of the image.



In this section, we’ll describe the four different shape descriptors that we

compared during our experiments : Hu, Zernike, Krawtchouk and Hahn geo-

metrics moments.

4.1. Hu geometric moments

The first geometric moments used in computer vision was introduced by

Hu[27]. The general formulation of two-dimensional (p+ q)th order moment for

an image is defined as:

Mpq =
∑
x

∑
y

xpyqf(x, y) (2)

where p and q are integers: p, q ∈ {0, 1, 2, ..., N} with N defining the maximal

order.

To normalize for translation into the image plane, Hu shown that the central

moment based on the image centroids of coordinate (x̄, ȳ) should be used and

can be express as:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (3)

where

x̄ =
m10

m00
, ȳ =

m01

m00
(4)

In shape recognition application field, Hu introduced seven (07) invariants mo-

ments based on the normalized central moments. The first 6 descriptors encode

a shape with invariance to translation, scale and rotation. The 7th descriptor

ensures skew invariance, which, we hope, will enable us to distinguish between

mirrored images.

φ1 = η20 + η02

φ2 = (η20 − η02)
2

+ 4η
2
11

φ3 = (η30 − 3η12)
2

+ (3η21 − η03)
2

φ4 = (η30 + η12)
2

+ (η21 + η03)
2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2
]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2
]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2
]

+ 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2
]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2
]



The computation of Hu invariants moments is very simple but present several

drawbacks even invariant to rotation, scaling and translation[28]:

• Information redundancy: the invariants moment have high degree of in-

formation redundancy due to the non orthogonality of the basis.

• Noise sensitvity: The higher order moments are too sensitive to noise.

• Large variation in the dynamic range of values: Large variation in the

dynamic range of values is observed for different orders, since the basis

involves power of p and q. The consequence of that is numerical instability

when the image size is large.

For our application, for each silhouette of the database, we computed the

feature vector composed of the 7 invariants moments:

FHu = [φ1 . . . φ7]
T

FHu will then be used as a descriptor in the classification step in order to get

the nearest matching silhouette and by the way, the nearest pose.

To overcome the limitations associated with invariant and geometric mo-

ments, Teague [29] suggested the use of continuous orthogonal moments. He

introduced two different continuous-orthogonal moments, Zernike and Legendre

moments, based on the orthogonal Zernike and Legendre polynomials, respec-

tively. Recent work introduced news orthogonal moements for shape analy-

sis and image reconstruction. After used Hu’s moments as reference, we will

show details about the set of 3 others orthogonal moments used in our work:

Krawtchouk, Hahn and Zernike moments.

4.2. Krawtchouk shape descriptor

4.2.1. Krawtchouk Polynomial and moments

Krawtchouk moments are firstly introduced in image analysis by P.T Yap et

al. [30]. These moments are computed using the discrete classical Krawtchouk



polynimials. The nth order of Krawtchouk polynomials are based on the hyper-

geometric function and is defined as:

Kn(x; p,N) =
N∑
k=0

(
ak,n,px

k
)

= 2F1

(
−n,−x;−N ;

1

p

)
(5)

where x, n = 0, 1, 2, ..., N etN > 0, p ∈ (0, 1) and the hypergeometric func-

tion defined as:

2F1(a, b; c; z) =
∞∑
k=0

(
(a)k(b)kz

k

(c)k

zk

k!

)
(6)

(a)k = a(a+ 1)...(a+ k − 1) =
Γ(a+ k)

Γ(a)
(7)

Equation (7) is the Pochhammer symbol.

The set of (N+1) Krawtchouk polynomial forms the complete set of discrete

basis functions with the weight functions:

w(x; p,N) =

 N

x

 px(1− p)N−x (8)

and satisfies the orthogonality condition:

N∑
x=0

w(x; p,N)Kn(x; p,N)Km(x; p,N) = ρ(n; p,N)δnm (9)

where ρ(n; p,N) = (−1)n
(

1−p
p

)n
n!

(−N)n and δnm is the Kronecher function

with:

δnm =

 1 n = m

0 otherwise

In order to eliminate the large variability in the dynamic range, a normaliza-

tion process is applied. Then, the set of normalized (weighted) Krawtchouk

polynomials is defined by Yap et al.[30] as:

K̄n(x; p,N) = Kn(x; p,N)

√
w(x; p,N)

ρ(n; p,N)
(10)

Based on the weighted Krawtchouk polynomials, the (n + m) order of

Krawtchouk moment for an N x M image with intensity function f(x, y) is



defined as:

Qnm =
N−1∑
x=0

M−1∑
y=0

K̄n (x; p1, N − 1) K̄m (y; p2,M − 1) f (x, y) (11)

According to Yap et al. [30], ”the lower order weighted Krawtchouk polynomials

have relatively high spatial frequency components. This, together with the fact

that Krawtchouk polynomials are polynomials of discrete variable, contributed

to the ability of the Krawtchouk moments to represent edges (sharp changes

of the image intensity values) more effectively”. In case of silhoutte (binary

image), this can capture the information of ahape represented by the edges.

Combining that information with the parameters p1 and p2, which can be viewed

as a translation factor, it’s possible to extract local information of edges of the

silhouette. Indeed, if p = 0.5 + ∆p, the weighted Krawtchouk polynomials

are shifted by about N∆p. The direction of shifting relies on the sign of ∆p,

with the polynomials shifting along the positive x direction when ∆p is positive

and vice versa. we’ll descibe in next subsection, how shape informations are

extracted via Krawtchouk moments.

4.2.2. Feature extraction

For a given image of a human, the silhouette is projected in Krawtchouk

polynomial basis and the moment are extracted to describe the shape of the

human. A feature vector of the image is then formed by different orders of

moments. Thanks to the ability of Krawtchouk moment to extract feature of

specific regions of the image, we divided each silhouette into two parts (up

and bottom) (Fig. 4) with the parameter p1 = 0.5, p2 = 0.1 (for the up) and

p1 = 0.5, p2 = 0.95 (for the bottom). Then, we calculated two characteristic

vectors and combined them to get one vector descriptor:

FKr =
[
Qbottomnm , Qtopnm

]T
with m ∈ [0 : M ] and n ∈ [0 : N ]

Each human silhouette extracted is converted to a common space 48 x 128 to



Figure 4: Krawtchouk polynomial for up and bottom

get the invariance to translation and scale. For rotation invariance, we supposed

that the verticality of the silhouette is preserved.

According to some related works, we choose to compute Krawtchouk mo-

ments with parameter (m = n). In order to find the suitable value of N, we used

a database with simulated silhouettes and done cross validation over all. From

order (N = M = 24), we got a stable and best accuracy for pose recognition,

so, the final feature vector has 48 dimensions.

FKr =
[
Qbottom0,0 . . . Qbottom23,23 , Qtop0,0 . . . Q

top
23,23

]T

P.T Yap et al. [30], further, argued that the lower order of Krawtchouk

moments store information of a specific region-of-interest of an image and the

higher order moments store information of the rest of the image. The better way

to evaluate the powerful of geometric moment is in its capacity to reconstruct an

image with less square error. In the same paper, P.T showed that Krawtchouk

moments present advantage on some well known orthogonal geometric moment.

4.3. Hahn shape descriptor

4.3.1. Hahn Polynomial and moments

As shown in [31], Hahn moments are a generalization of Krawtchouk and

Chebyshev moments. This implies that Hahn moments encompass all their



Figure 5: Accuracy of Krawtchouk descriptor with different orders

properties. The aims of using hahn moment in our work is to comapare its

result in our framework to the result of Krawtchouck. We expected similar or

better result from this moment in spirit to confirm the theorical analysis that

Hahn encompass most properties of the Krawtchouk one. The nth order of Hahn

polynomial is also based on the hypergeometric function and is defined as:

hn(x;α, β,N) = 3F2 (−n, n+ α+ β + 1,−x;α+ 1,−N ; 1) (12)

where α > −1 & β > −1

The set of (N+1) Hahn polynomial forms the complete set of discrete basis

functions with the weight function:

w(x;α, β,N) =

 α+ x

x

 β +N − x

N − x

 (13)

and satisfies the orthogonality condition:

N∑
x=0

w(x;α, β,N)hn(x;α, β,N)hm(x;α, β,N) = ρ(n; p,N)δnm (14)

where ρ(n;α, β,N) = (−1)n(n+α+β+1)N+1(β+1)nn!
(2n+α+β+1)(α+1)n(−N)nN ! and δnm is the Kronecher

function.



In the same context as krawtchouk discret moment, a normalization process

is applied. The computation of Hahn moment is the same as define for the

Krawtchouk moment. Then, based of the Hahn polynomials, the Hahn moment

can be defined as:

Mnm =
N−1∑
x=0

M−1∑
y=0

h̄n(x;α1, β1, N − 1)h̄m(y;α2, β2,M − 1)f (x, y) (15)

the couple of parameters (α, β) is to control the selection of a specific region

in the image and then allow the using of Hahn moment as a local region-based

descriptor. In the specific case of (0,0), we have a global descriptor.

4.3.2. Feature extraction

The feature extraction process for Hahn moment is the same for Krawtchouk

moment. Then, for a given image, we compute the moment in the specific case

for m = n. The local feature is also extracted from the image. We found the

suitable values of couple (α, β) to cover the differents emphasis region of the

silhouette (up and bottom) of the silhouette. We divided the silhouette into

two regions because of when Hahn moments are set to be a global descriptor, a

larger number of moments are needed [31]. The couple (α, β) can be compute

as follow:

α1 =
xc
N
t1 and β1 = (1− xc

N
)t1 along x axis (16)

α2 =
yc
M
t2 and β2 = (1− yc

M
)t2 along y axis (17)

where (xc, yc) are the central points of the emphasis regions and the factor

t1 and t2 define if the moment is local or global. t = 0 set the moment to become

global and more t increase, the moment is set to be local. According to [31], t

can be set to 20 N to obtain sufficiently close approximation. In our application,

we used images of size 48 x 128 and extracted the half up and bottom separately.

We set t1 = 0 for global extraction along x axis and t2 = 1000 for local along y



axis. During experiment, we have found the different suitable values of couple.

Then, for the top region we have (α1, β1) = (0, 0) and (α2, β2) = (100, 900)

and for the low region, we have (α1, β1) = (0, 0) and (α2, β2) = (900, 100) (see

Fig.6).

Figure 6: Hahn polynomial for up and bottom

Based on the suitable couple value to extract information of emphasis region,

we have tested differents value of the order. We note that Hahn and Krawtchouk

moment vary in the same direction. Then, in order to have the same length of

the feature vector, we set the order to 23.

As a result the descriptor extracted from Hans moments is given by:

FHa =
[
M bottom

0,0 . . .M bottom
23,23 ,M top

0,0 . . .M
top
23,23

]T
4.4. Zernike shape descriptor

4.4.1. Zernike Polynomial and moments

Broadly used in shape recognition through the geometric moment of Zernike,

since introduced by Teague[29], the Zernike polynomial formed a complete or-

thogonal set over the interior of the unit circle. Let’s Zmn be the Zernike poly-

nomial of order n and repetition m. Zmn is defined by:

Zmn (ρ, θ) = Rnm(ρ) exp(jmθ) (18)

where n: positive integer or zero;

m: positive or negative integer subject to constraints n ≥ |m| and n − |m| is



even;

ρ: Radial normalized distance of pixel (x,y) relative to the center of mass of the

object;

θ: Azimut angle of pixel (x,y) relative to the center of mass of the object.

The radial polynomial is defined by:

Rmn(ρ) =

n−|m|
2∑
s=0

(−1)sF (n,m, s, r),

F (n,m, s, r) =
(n− s)!

s!
(
n+|m|

2 − s
)

!
(
n−|m|

2 − s
)

!
ρn−2s

(19)

Rn,−m(ρ) = Rn,m(ρ) and all polynomial are subject to the orthogonality

condition:∫ ∫
x2+y2≤1[Vnm(x, y)]∗Vpq(x, y)dxdy = π

n+1 .δnpδmq

with δab is the Kronecher function

Figure 7: Zernike polynomial of unit circle for different order and repetition [32]

The 2D moment of Zernike are constructed by using the set of polynominal

combined with the function intensity of the images. Let’s Anm be the Zernike

moment of order n and repetition m. Anm is defined by:

Anm =
n+ 1

π

∫ ∫
x2+y2≤1

f(x, y)V ∗nm(ρ, θ)dxdy (20)



In digital domain, Anm is computed as:

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)[V ∗nm(ρ, θ)] (21)

where x2 + y2 ≤ 1 and V ∗nm is the complex conjugate of the polynomial.

Zenike moments have the advantage of robustness to noise and minor varia-

tions in shape, invariant to rotation and have minimum information redundancy.

However, its computation present some probleme such as coordinate space nor-

malization, numerical approximation of continuous integrals and computational

complexity [33].

4.4.2. Feature Extraction

For feature extraction of an image, we followed the same process for Krawtchouk

descriptor. For a given order, we computed all possible moments with order less

than the given order. That mean, for an order equal to n, we computed all

possible moment for order from 0 to n. This way for extracting the feature vec-

tor allow us to get much information that can make the difference between two

similar images. Many prior works try to find the best of order which is suitable

to effectively characterize the shape. In their works, [34] showed that the suit-

able order for Zernike moment is in the range from 7 to 12. They determined

this range by computing the reconstruction error of image for differents values

of order. In our study, we tried to find the suitable order for our specific case.

We did the same process as in Krawtchouk moment case and got an excellent

accuracy from the order 8 to 16 and can confirm this study.

5. Experimental studies

In section 3.2 we have shown that for each 2D image of a silhouette in the

database, we store both the feature vector and the associated 3D skeleton com-

posed of 19 joints. Then, for each test image with its extracted silhouette, the

similarity is computed between the processed feature vector and the stored fea-

tures vectors in the database. For similarity computation, we compared different



Figure 8: Accuracy of Zernike descriptor with different orders

metrics (MSE, MAE, Cosine) and finally choose the Euclidian distance which

had the best performance. Note that the approach does not only give the more

suitable silhouette but gives in a classified way the nth most probable silhouettes

assumptions (H1 to Hn). The final pose can be either the first result returned

by the system (winner-takes-all) or the mean pose among the n most probable

result. One of the well-known problem in pose estimation is the ambiguity when

many silhouettes matched, due to symetry. To resolve this ambiguity in human

motion analysis system (not the purpose of this paper), one can keep the n

ambiguous assumptions and by using multi-hypothesis approaches, can find the

correct matching poses in window time (∆t).

In order to quantitatively evaluate the results, we used the simulation. By

knowing the real skeleton of the test image, we can process the reprojection

error of the estimated 3D joints. This criteria of reprojection error has been

chosen over the 3D Euclidian distance between joints in order to be able to use

in the futur manually labeled images as, for some database, the 3D ground truth

is not available. According to the experimental result, when the mean error is

less than 6 pixels, the pose of the result is considered similar to the pose of the

requested silhouette. Under this empiric threshold, the difference between two

silhouettes is hardly visible for a human.



  

Similarity
Metric

Ranked answers

H1

Hn

Figure 9: Overview of the experimental process for silhouette recognition

5.1. Pose Estimation

In this subsection, we’ll show some results of pose estimation with the differ-

ent shape descriptors presented in section 4. In order to make some comparison,

we used both simulated images taken from our database and a not-simulated

images taken from humanEva database 4 and some that we recorded. In order

to first, make visual comparison, we’ll show below some visual result for pose

estimation.

In Fig. 10, we show a bad pose estimation result with Hu descriptor. For

this silhouette, the descriptor can’t find a good matching result in the database.

Note that here, we used the first image return by the program. We can also

note that the mean reprojection error is 24.84 px which is over the empiric

threshold.

In opposite, Fig. 11 shows skeletons estimation from a single monocular im-

age with Krawtchouk descriptor. We obtain approximatively (without a visual

difference) the same result with Zernike and Hahn descriptor. For this result,

the reprojection error of the first image is 0.92 px, of the second is 2.69 px

4http://humaneva.is.tue.mpg.de/



Figure 10: 3D pose estimation results with Hu descriptors: Left, the resquest silhouette and

from left to right, the 3D estimated skeleton from various viewpoints

and of the last image is 3.04 px. These means errors show that the retrieval

pose is near to the original pose. Note that the reprojection error can be due to

the scale difference between images as we normalize the bounding box and not

the real human size.

Figure 11: 3D pose estimation results with Krawtchouk descriptors: Left, the resquested

silhouette followed from left to right, by the 3D estimated skeleton from differents viewpoints

The test on simulated images dataset shows very accurate results. In case

of a realistic image, we used images that we recorded and also from the publicy

dataset ”humaneva”. Others publicy dataset in human pose estimation, can’t

be exploit in our framework, due either to the lack of motion capture file that

can be import in the graphic software or to the lack of 3D ground truth. This



make a quantitave evaluation and comparision on publicy dataset difficult. At

this step, we choose to present such experiment in a qualitative way to have a

visual validation.

Figure 12: Realistic image tested (back, left and right view of the skeleton) by respectively

Hahn, Krawtchouk and Zernike descriptors

In figure 12, we submitted an image extracted from a walking action video

with a complex pose. Let’s note that, as the approach is based on silhouette

only, the video doesn’t require to have a very good quality. In this experiment,

the tested poses aren’t in the dataset, the system will try to find the nearest

existing pose. So, we don’t expect to get an exact 3D pose as a result, but an

approximative pose. Visually, we can note that the result of Hahn is closest to

the original pose than Krawtchouk and Zernike results. The most difference is

the spreading of foot and arm. However, as the approach is based on silhouette

only, the descriptors is not able to totaly make difference between the right side

from the left side for foot and arm. This kind of confusion due to the point of

view can be solved for action recognition system by using a multi-hypothetical

tracking. This is not treat in this paper and will be investigate in future work.

To obtain quantitative result, it’s necessary to have dataset with 3D pose

as ground truth. Some publicy dataset doesn’t provide those ground truth. In

case of HumanEva, ground truth are avaible but due to the format, an interface

is necessary to convert in CMU format, on which our system is train. Another

way, which is more general, is to train the system with data from the CMU

dataset used for simulated image and made a visual test on other dataset without

quantitative evaluation. Previous results on simulated data and on our won

recorded video is confirmed on ”Humaneva” dataset. In 13, we present the



Figure 13: Real world data tested from Humaneva dataset tested by Hahn descriptors

result from Hahn descriptor by testing with the image at the position frame

number 21 recorded from the camera ”C1”. The result present here is also an

approximation of the 3D pose. We can observe the result for differents viewpoint

captured by cameras C2 and C3. By this way we also tested the generalization of

our approach in spirit to be free from the dataset that we used for training. The

main difficult is when some pose don’t have equivalent in the training data. In

this case, the system failed trying to find the closet pose. To solve that, motion

capture that cover almost configuration is need for training. It’s impossible in

pratice and still a challenge task for machine learning scientist.

Another way to evaluate the consistency, statiblity and therobustness of our

approach, one can estimate the 3D pose of person for differents motions in

time domain by considering the successive detections during a complete movie

of movement. Figure 15 (a) shows the tracking results of four human’s joints

during the execution of the climbing motion. The red curve show the real

position over time and the green curve show the estimate position over time. It

seems that the red and green curves have the same appearance, which means

that the successive detections are stable in time and that the method is reliable.



An offset due to shape scaling, however, exist. Note that there is no use of the

time line and each frame is processed independently.

(a) Climb motion (b) Jump motion

Figure 14: Tracking result with Hahn descriptor

5.2. Representativity and descriptor robustness to noise

Silhouette extraction is still an active research field. It is well known that

extraction is subjected to noise. The first point was to check the descriptors

robustness to noise. For this, we conducted some experiments with the dataset

introduced in previous subsection. This dataset contains 2404 unlearned data.

By unlearned data, we mean image of a human avatar that wasn’t used for the

training database construction. We added gaussian noise on the image in the

database in order to perturb the originally extracted silhouette. The aims of

these experiences are to evaluate the capacity of shape descriptors to encode

various shapes with different values of the standard deviation of the Gaussian

noise. Considering x0 = [0, 0] the center of the silhouette, let xi = [ρi, θi] the

polar coordinates of a contour point. The noise ∆σ is applied on ρi. ∆σ ↪→

N (0, std) with std = {0, 1, 2, 3}.

For the experiment, the training dataset was composed of 11700 silhouettes

and the testing dataset was composed of 2404 silhouettes. Since we extracted

the silhouettes from motions recorded in videos, the difference between image at



Figure 15: Example of noised silhouettes

frame t and image at frame t+ 1 is hardly perceptible. When std = 0, we have

the original silhouette and when std > 0, the Gaussian white noise is added

on the silhouette. The histograms in Fig. 16, on page 29 show that more the

std increases, more the recognition accuracy decreases. For a single neighbour

(N = 1), with std = {0, 1, 2, 3}, the recognition rate is respectively RR =

{35.44, 35.44, 24.95, 18.96} for Hu descriptor, RR = {98.67, 97, 80.53, 58.56} for

Krawtchouk descriptor, RR = {98.67, 97.67, 82.86, 66.38} for Zernike descriptor

and RR = {99.67, 96, 81.85, 61.4} for Hahn descriptor. This accuracy grows up

quickly when we augment the number of N assumption returned by the program.

Aside the result of Hu descriptor, we can note that the others descriptors has

good and interesting accuracy. A ranking of different descriptors can be made

based on these results by calculating for the descriptor, the mean accuracy over

the entire dataset of noised silhouettes. Mean accuracy over the three datasets

is presented in table 1.

Based on the mean accuracy (Table 1), we note that the Hahn descriptor

outperformed the other descriptors when we consider more than one neighbour.

Zernike outperformed when we consider the first result return by the program.

Of course, the difference between the mean accuracy of the three last descriptors

is very small (less than 1%), so we can’t conclude which one is the best

descriptor. Another interesting analysis is the run time of each descriptor. The



Table 1: Mean accuracy in percent for each descriptor

Descriptors N = 1 N = 3 N = 5 N = 7

Hu 28.69 41.38 47.83 51.78

Krawtchouk 83.69 89.93 91.89 93.34

Zernike 86.39 90.63 92.71 93.88

Hahn 84.73 90.84 92.71 94

table 2 show the mean run time of each descriptor in the feature extraction step

in second.

Table 2: Run time of each descriptor in (s)

Descriptors Hu Kraw Zernike Hahn

Run time 0.047 0.031 0.149 0.036

According to the run time of each descriptor to extract a feature vector for

images, Krawtchouk descriptor, and Hahn are faster than Zernike descriptor.

By combining the accuracy and runtime factors, we can choose Hahn descriptor

as the best one for our approach.

6. Conclusions

In this paper, we presented a very simple framework for 3D human pose

estimation from a single image. In particular, we referred to a scenario where

the environment is equipped with a simple low-cost passive camera without

the need of any depth information or field of view intersection. The mains

novelty of the approach are the use of open source Softwares as Blender and

Makehuman in order to easily generate the learning database and the proof that

orthogonal moments are able to encode the shape of silhouette pose estimation

purpose. We proved that using a very simple framework based on silhouettes

comparisons, a full accurate 3D pose estimation was possible in real-time using

a single image. In order to match learned and test silhouettes, we compared



Hu descriptor Krawtchouk descriptor

Zernike descriptor Hahn descriptor

Figure 16: Histogram of accuracy for unlearned data : colors represent the noise ampli-

tude resp. {0, 1, 2, 3} pixels. The abscisses represent the number N of neighboors considered

{1, 3, 5, 7}.

Hu geometric moment and three orthogonal moments for shape description:

Zernike, Krawtchouk and Hann moments. Moreover, we tested different moment

orders and selected the best suitable for our approach. The proposed posture

recognition method gives very promising results in real-time allowing to detect

the pose with an accuracy between 84% and 94% depending the number of

assumption chosen. As expected, the main limitation of our system is the non-

detection of the symmetry of the human body as the left and the right part

cannot be differentiated in a single silhouette view. In this regard, future work

can concern the use of multiple hypotheses tracking for a video sequence in order

to deal with this ambiguity.
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