1,455 research outputs found

    Dual-wavelength thulium fluoride fiber laser based on SMF-TMSIF-SMF interferometer as potential source for microwave generationin 100-GHz region

    Get PDF
    A dual-wavelength thulium-doped fluoride fiber (TDFF) laser is presented. The generation of the TDFF laser is achieved with the incorporation of a single modemultimode- single mode (SMS) interferometer in the laser cavity. The simple SMS interferometer is fabricated using the combination of two-mode step index fiber and single-mode fiber. With this proposed design, as many as eight stable laser lines are experimentally demonstrated. Moreover, when a tunable bandpass filter is inserted in the laser cavity, a dual-wavelength TDFF laser can be achieved in a 1.5-μm region. By heterodyning the dual-wavelength laser, simulation results suggest that the generated microwave signals can be tuned from 105.678 to 106.524 GHz with a constant step of �0.14 GHz. The presented photonics-based microwave generation method could provide alternative solution for 5G signal sources in 100-GHz region

    Use of Image Processing Techniques to Automatically Diagnose Sickle-Cell Anemia Present in Red Blood Cells Smear

    Get PDF
    Sickle Cell Anemia is a blood disorder which results from the abnormalities of red blood cells and shortens the life expectancy to 42 and 48 years for males and females respectively. It also causes pain, jaundice, shortness of breath, etc. Sickle Cell Anemia is characterized by the presence of abnormal cells like sickle cell, ovalocyte, anisopoikilocyte. Sickle cell disease usually presenting in childhood, occurs more commonly in people from parts of tropical and subtropical regions where malaria is or was very common. A healthy RBC is usually round in shape. But sometimes it changes its shape to form a sickle cell structure; this is called as sickling of RBC. Majority of the sickle cells (whose shape is like crescent moon) found are due to low haemoglobin content. An image processing algorithm to automate the diagnosis of sickle-cells present in thin blood smears is developed. Images are acquired using a charge-coupled device camera connected to a light microscope. Clustering based segmentation techniques are used to identify erythrocytes (red blood cells) and Sickle-cells present on microscopic slides. Image features based on colour, texture and the geometry of the cells are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. The red blood cell smears were obtained from IG Hospital, Rourkela. The proposed image processing based identification of sickle-cells in anemic patient will be very helpful for automatic, sleek and effective diagnosis of the disease

    Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination

    Get PDF
    Microscopy examination has been the pillar of malaria diagnosis, being the recommended procedure when its quality can be maintained. However, the need for trained personnel and adequate equipment limits its availability and accessibility in malaria-endemic areas. Rapid, accurate, accessible diagnostic tools are increasingly required, as malaria control programs extend parasite-based diagnosis and the prevalence decreases. This paper presents an image processing and analysis methodology using supervised classification to assess the presence of malaria parasites and determine the species and life cycle stage in Giemsa-stained thin blood smears. The main differentiation factor is the usage of microscopic images exclusively acquired with low cost and accessible tools such as smartphones, a dataset of 566 images manually annotated by an experienced parasilogist being used. Eight different species-stage combinations were considered in this work, with an automatic detection performance ranging from 73.9% to 96.2% in terms of sensitivity and from 92.6% to 99.3% in terms of specificity. These promising results attest to the potential of using this approach as a valid alternative to conventional microscopy examination, with comparable detection performances and acceptable computational times.Financial support from North Portugal Regional Operational Programme (NORTE2020), Portugal 2020 and the European Regional Development Fund (ERDF) from the European Union through the project Deus ex Machina: Symbiotic Technology for Societal Efficiency Gains’, NORTE-01-0145-FEDER-000026.N/

    A Review on Classification of White Blood Cells Using Machine Learning Models

    Full text link
    The machine learning (ML) and deep learning (DL) models contribute to exceptional medical image analysis improvement. The models enhance the prediction and improve the accuracy by prediction and classification. It helps the hematologist to diagnose the blood cancer and brain tumor based on calculations and facts. This review focuses on an in-depth analysis of modern techniques applied in the domain of medical image analysis of white blood cell classification. For this review, the methodologies are discussed that have used blood smear images, magnetic resonance imaging (MRI), X-rays, and similar medical imaging domains. The main impact of this review is to present a detailed analysis of machine learning techniques applied for the classification of white blood cells (WBCs). This analysis provides valuable insight, such as the most widely used techniques and best-performing white blood cell classification methods. It was found that in recent decades researchers have been using ML and DL for white blood cell classification, but there are still some challenges. 1) Availability of the dataset is the main challenge, and it could be resolved using data augmentation techniques. 2) Medical training of researchers is recommended to help them understand the structure of white blood cells and select appropriate classification models. 3) Advanced DL networks such as Generative Adversarial Networks, R-CNN, Fast R-CNN, and faster R-CNN can also be used in future techniques.Comment: 23 page

    Three-Dimensional GPU-Accelerated Active Contours for Automated Localization of Cells in Large Images

    Full text link
    Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. This becomes particularly challenging for extremely large images, since manual intervention and processing time can make segmentation intractable. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional (3D) contour evolution that extends previous work on fast two-dimensional active contours. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell segmentation tasks when compared to existing methods on large 3D brain images
    corecore