561 research outputs found

    Passport: Enabling Accurate Country-Level Router Geolocation using Inaccurate Sources

    Full text link
    When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance

    Passport: enabling accurate country-level router geolocation using inaccurate sources

    Full text link
    When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance.First author draf

    Augmenting the performance of image similarity search through crowdsourcing

    Get PDF
    Crowdsourcing is defined as “outsourcing a task that is traditionally performed by an employee to a large group of people in the form of an open call” (Howe 2006). Many platforms designed to perform several types of crowdsourcing and studies have shown that results produced by crowds in crowdsourcing platforms are generally accurate and reliable. Crowdsourcing can provide a fast and efficient way to use the power of human computation to solve problems that are difficult for machines to perform. From several different microtasking crowdsourcing platforms available, we decided to perform our study using Amazon Mechanical Turk. In the context of our research we studied the effect of user interface design and its corresponding cognitive load on the performance of crowd-produced results. Our results highlighted the importance of a well-designed user interface on crowdsourcing performance. Using crowdsourcing platforms such as Amazon Mechanical Turk, we can utilize humans to solve problems that are difficult for computers, such as image similarity search. However, in tasks like image similarity search, it is more efficient to design a hybrid human–machine system. In the context of our research, we studied the effect of involving the crowd on the performance of an image similarity search system and proposed a hybrid human–machine image similarity search system. Our proposed system uses machine power to perform heavy computations and to search for similar images within the image dataset and uses crowdsourcing to refine results. We designed our content-based image retrieval (CBIR) system using SIFT, SURF, SURF128 and ORB feature detector/descriptors and compared the performance of the system using each feature detector/descriptor. Our experiment confirmed that crowdsourcing can dramatically improve the CBIR system performance
    corecore