
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- �subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

i

Augmenting the Performance of Image
Similarity Search through Crowdsourcing

This thesis is submitted in fulfilment of the requirements for the

degree of Master of Philosophy in Information Technology

School of Information Technologies

The University of Sydney

Bahareh Rahmanian

August 2014

ii

Acknowledgements

I couldn’t complete this dissertation without Professor Joseph Davis’s help, who not only

served as my supervisor but also encouraged and challenged me throughout my academic

program. Returning to university after many years and immigration to Australia was a

big challenge for me and if it wasn’t for his support and engagement I wouldn’t be able to

accomplish it.

I would like to extend sincere gratitude to all members of “Knowledge Discovery and

Management Research Group” for exchanging research ideas. Especially I have to thank

Dr. Simon Poon, my associate supervisor, for his helpful input and my dearest friend

Andrea Stern for her kindness, love and support during my study.

Most importantly, I would like to thank my parents for their constant support and love.

Every successful moment of my life is because of them. And finally my gracious thanks

to my beloved husband, Sepehr, for all his support, patience and encouragement.

iii

This thesis is dedicated to my loving parents and my husband.

For their love, endless support and encouragement.

iv

Publications

1. Rahmanian, B., & Davis, J. G. (2014). User Interface Design for

Crowdsourcing Systems. In Proceedings of the AVI 2014 conference.

Como, Italy: ACM.

2. Rahmanian, B., & Davis, J. G. (2013). Crowdsourcing, Cognitive

Load, and User Interface Design. In 24th Australasian Conference

on Information Systems. Melbourne, Australia.

v

Table of Contents

Acknowledgements ... ii

Publications .. iv

Table of Contents .. v

List of Figures ... x

List of Tables .. xii

List of Acronyms ... xiii

Abstract ... 1

1 Introduction, Background and Motivation .. 4

1.1 Introduction ... 4

1.2 Crowdsourcing .. 5

1.2.1 Microtasking and MTurk .. 6

1.3 Image Retrieval ... 8

1.4 Limitations of Computational Algorithms .. 8

1.5 Human–Machine Hybrid Systems .. 9

1.6 Research Questions ... 10

1.7 Outline of Research ... 11

vi

2 Review of Existing Literature on Crowdsourcing and CBIR 13

2.1 Crowdsourcing Definition ... 13

2.2 Classifying Crowdsourcing Systems .. 15

2.2.1 Microtasking Crowdsourcing Platforms ... 20

2.2.2 Crowdsourcing Examples ... 25

2.3 Challenges in Crowdsourcing ... 32

2.3.1 How to Recruit Crowdworkers ... 32

2.3.2 Incentives .. 33

2.3.3 Creativity ... 34

2.3.4 Quality Control ... 34

2.3.5 Latency in Crowdsourcing Systems .. 37

2.3.6 Can You Crowdsource Your Task? .. 38

2.4 Content Based Image Retrieval ... 39

2.5 Summary ... 40

3 User Interface Design in MTurk ... 42

3.1 Overview ... 42

3.2 Research Questions and Hypotheses ... 44

3.3 Research Methodology and Design .. 45

3.3.1 Datasets ... 47

vii

3.4 Experiment1: Image Ranking ... 47

3.4.1 Rank UI design.. 49

3.4.2 Sort UI design ... 50

3.4.3 Rate UI design ... 51

3.5 Aggregating Crowdsourced Responses... 52

3.5.1 Rank Aggregation ... 53

3.5.2 Rank Aggregation Methods .. 55

3.5.3 Rate Aggregation .. 57

3.6 Measuring the System Performance ... 58

3.6.1 Spearman � ... 58

3.7 Analysis and Results ... 59

3.8 Experiment2: Image Categorization ... 60

3.8.1 Type1 UI design .. 61

3.8.2 Type2 UI Design ... 62

3.8.3 Analysis and Results ... 63

3.9 Discussion ... 64

3.10 Conclusion .. 66

4 Content-Based Image Retrieval System ... 68

4.1 Overview ... 68

viii

4.2 CBIR Architecture and Implementation ... 69

4.2.1 Feature Extraction ... 69

4.2.2 Indexing Features .. 74

4.2.3 Search for an Image .. 77

4.2.4 Selecting Top 10 Images ... 78

4.2.5 Measuring the System Performance ... 79

4.2.6 Dataset ... 79

4.3 Analysis and Results ... 80

4.4 Summary ... 84

5 Hybrid Human–Machine CBIR System ... 85

5.1 Overview ... 85

5.2 Research Questions and Hypotheses ... 88

5.3 Research Design and Methodology .. 88

5.3.1 Selecting Crowdsourcing Platform ... 89

5.3.2 What is the Right Amount of Reward for the Task? 91

5.3.3 HIT Quality Control .. 92

5.3.4 How Many Crowdworkers for Each HIT? .. 93

5.3.5 User Interface Design .. 94

5.3.6 Aggregating Crowdsourced Responses... 96

ix

5.4 Experimental Results .. 96

5.5 Discussion ... 107

5.6 Conclusion .. 110

6 Conclusions ... 112

6.1 Review of Findings ... 112

6.1.1 Hybrid Human–Machine CBIR System.. 112

6.1.2 User Interface Design .. 114

6.2 Research Implications ... 116

6.3 Research Limitations... 117

6.4 Suggestions for Future Work .. 118

7 References ... 120

x

List of Figures

Figure 2-1. Characteristics of Crowdsourcing Process ... 17

Figure 3-1. Experiment1 ... 49

Figure 3-2. Rank UI design ... 50

Figure 3-3. Sort UI design .. 51

Figure 3-4. Rate UI design .. 52

Figure 3-5. Experiment2 ... 61

Figure 3-6. Type1 UI Design .. 61

Figure 3-7. Type2 UI Design .. 62

Figure 4-1. SIFT feature detector/descriptor ... 71

Figure 4-2. SIFT descriptor ... 72

Figure 4-3. tf-idf for clusters ... 77

Figure 4-4. Searching for similar images .. 78

Figure 4-5. Sample Query Image .. 81

Figure 4-6. Top 10 similar images to the query image using SIFT feature (ordered from

left to right) ... 81

Figure 4-7. Top 10 similar images to the query image using SURF feature (ordered from

left to right) ... 81

Figure 4-8. Gold-standard ... 81

Figure 4-9. Spearman Distance for different feature extractors .. 84

xi

Figure 5-1-Example of Google Query-by-Image search returning irrelevant results 86

Figure 5-2- Another sample of Google QBE returning irrelevant results 87

Figure 5-3. HIT screenshot ... 96

Figure 5-4. System overview .. 98

Figure 5-5. Spearman ρ for SIFT .. 100

Figure 5-6. Spearman ρ for SURF .. 100

Figure 5-7. Spearman ρ for SURF128 .. 101

Figure 5-8. Spearman ρ for ORB .. 101

Figure 5-9. SIFT Spearman Distance .. 103

Figure 5-10. SURF Spearman Distance .. 104

Figure 5-11. SURF128 Spearman Distance .. 105

Figure 5-12. ORB Spearman Distance .. 106

Figure 5-13. Average Spearman Distance .. 107

Figure 5-14. SIFT model2 dataset–Sample of decreased Spearman Distance in hybrid

system ... 108

Figure 5-15. SURF128 fruit3 dataset– Sample of decreased Spearman Distance in hybrid

system ... 109

Figure 5-16. SIFT air3 dataset-Hybrid system's performance is low but still higher than

CBIR performance .. 110

xii

List of Tables

Table 2-1. Emergent Themes Related to Crowdsourcing .. 18

Table 2-2. Preliminary Framework for Crowdsourcing Uses and Key Characteristics ... 19

Table 3-1. Spearman ρ for different UI designs .. 60

Table 3-2. Experiment2 First Run... 63

Table 3-3. Experiment2 Second Run .. 64

Table 4-1. Spearman � between ranks using SIFT, SURF, SURF128, ORB with the

Goldstandard ... 82

Table 4-2. Spearman Distance between ranks using SIFT, SURF, SURF128, ORG and

Goldstandard ... 83

Table 5-1. Research Design .. 89

Table 5-2. Spearman � between machine only and machine+crowds ranking for using

different feature types ... 99

xiii

List of Acronyms

API Application Program Interface

ASR Automatic Speech Recognition

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans

Apart

CBIR Content-Based Image Retrieval

CG Control Group

CHC Crowdsourced Human-based Computation

CLT Cognitive Load Theory

CS Crowdsourcing (system)

DB DataBase

DBMS Database Management System

DoG Difference of Gaussians

EMD Earth Mover’s Distance

ERR Expected Reciprocal Rank

HCI Human–Computer Interaction

HIT Human Intelligence Task

HTML HyperText Markup Language

xiv

IDF Inverse Document Frequency

MD Majority Decision

MTurk Amazon Mechanical Turk

OCR Optical Character Recognition

ORB Oriented FAST and Rotated BRIEF

QBE Query-By-Example

SIFT Scale-Invariant Feature Transform

SFO Scaled Footrule Aggregation (method)

SQL Structured Query Language

SURF Speeded-Up Robust Features

TET Total Execution Time

TF Term Frequency

tf-idf term frequency-inverted document frequency

UI User Interface

1

Abstract

The world has witnessed incredible advances in information and communication

technology during the past decade. The availability of internet access and the evolution of

the World Wide Web have provided an excellent platform for communication and have

given rise to a new, efficient, on-demand and affordable workforce made up of humans

which has contributed to the rise of crowdsourcing. Crowdsourcing is the concept of

“outsourcing a task that is traditionally performed by an employee to a large group of

people in the form of an open call” (Howe 2006). Many different platforms designed to

perform several types of crowdsourcing (e.g. Amazon Mechanical Turk, InnoCentive,

Threadless) and studies have shown that results produced by crowds in crowdsourcing

platforms are generally accurate and reliable.

For several years, researchers studied computational algorithms and developed

machine learning methods with the goal of increased automation and replaced humans

with computers to increase the accuracy and performance of diverse systems. But despite

the improvements in computational algorithms, computers still perform very poorly in

some fields of research and image similarity search is one of them. Rapid advances in

image capturing devices and the availability of online photo storage services have caused

the development of very large image databases and these image collections are of limited

2

value without efficient image retrieval systems. An efficient image browsing, searching

and retrieval system is required in various domains, including crime prevention, fashion

and medicine. Many image retrieval systems have been developed based on two different

approaches, text-based and content-based retrieval mechanisms. Using text-based search

methods, text-based image retrieval systems provide a high performance image search

system for fully annotated images. While collecting accurate annotations for large image

databases is an expensive and time-consuming task, researchers started designing a new

generation of image retrieval systems in the early 1980s. This new approach uses raw

image data, indexes images based on their visual content and is called content-based

image retrieval or CBIR. The fundamental difference between text-based image retrieval

and CBIR is that, in the former, human interaction is necessary to provide meta-data (e.g.

keyword, annotation) but, in the latter, the search is performed based on image content

rather than meta-data. The lack of human interaction and the absence of a direct link

between humans’ high-level concepts and the low-level features in CBIR systems have

resulted in very low performance image similarity search systems.

Crowdsourcing can provide a fast and efficient way to use the power of human

computation to solve problems that are difficult for machines to perform. From several

different microtasking crowdsourcing platforms available, we decided to perform our

study using Amazon Mechanical Turk. In the context of our research we studied the

effect of user interface design and its corresponding cognitive load on the performance of

crowd-produced results. Our results highlighted the importance of a well-designed user

interface on crowdsourcing performance.

3

Using crowdsourcing platforms such as Amazon Mechanical Turk, we can utilize

humans to solve problems that are difficult for computers, such as image similarity

search. However, in tasks like image similarity search, it is not possible to ask crowds to

search within a database of millions of images; therefore, it is more efficient to design a

hybrid human–machine system. Several researchers have studied the design of hybrid

human–machine systems to cover the semantic gap of computational algorithms and

human perceptions. In the context of our research, we studied the effect of involving the

crowd on the performance of an image similarity search system and proposed a hybrid

human–machine image similarity search system. Our proposed system uses machine

power to perform heavy computations and to search for similar images within the image

dataset and uses crowdsourcing to refine results. In another words our hybrid system is

system composed of a CBIR retrieval algorithm to achieve recall and shallow filtering

and a crowdsourced-based human input to achieve precision. We designed our CBIR

system using SIFT, SURF, SURF128 and ORB feature detector/descriptors and compared

the performance of the system using each feature detector/descriptor. Our experiment

confirmed that crowdsourcing can dramatically improve the CBIR system performance.

Chapter 1

1 Introduction, Background and

Motivation

1.1 Introduction

Humans are always searching for ways to automate and speedup their tasks. Invention

of electronic computers and the Internet was a big step forward and since then computers

are helping humans in solving complex mathematical problems, storing and retrieving

large amounts of data and automating tasks. Researchers around the world are working on

new algorithms and devices to replace humans with machines to increase speed and

accuracy.

 While machine are very good at computations and dealing with large amount of data,

humans perform better in tasks that involves perceptual comparison and decision making.

Despite magnificent advances in computational algorithms, there are still some tasks that

computers have very low performance with high speed, but humans perform very well

but with low speed and low efficiency. In these tasks designing a hybrid system that uses

the computational power for increased speed and human power for increased accuracy is

5

a very good solution. Humans can be involved in computational algorithms by the help of

crowdsourcing. Crowdsourcing provides a very efficient and fast way to recruit humans

to provide answers to the problems that computers are unable to.

Search for similar images or Query-By-Example image search is one of the tasks that

computer systems don’t achieve a high level of performance. But because the concept of

similarity goes beyond the mare matching of visual feature, comparing images and

determining their similarity is a very easy task for humans. Through our research we

proposed a hybrid Human—Machine image similarity search and compared its

performance against pure computational image similarity search.

1.2 Crowdsourcing

In the past decade, the World Wide Web has evolved into a powerful medium for

active collaboration among people located around the world. The evolution of the World

Wide Web and its transition from Web 1.0 (read only web) to Web 2.0 (read-write web)

have made it easier to involve users in making its contents and sharing knowledge.

Nowadays, users are not only consumers of content on the Web but also providers of data

and the source of a new kind of computation. Many successful examples exist of people

coming together on the Web to combine their resources – whether it is knowledge,

creativity, opinions, skills, etc. – including the world’s largest knowledge base Wikipedia

and the problem-solving platform InnoCentive. These phenomena are commonly referred

to as “crowdsourcing”: this term has been coined by Jeff Howe and describes a new

distributed problem-solving and business model. Howe defined “crowdsourcing” as “an

idea of outsourcing a task that is traditionally performed by an employee to a large group

6

of people in the form of an open call” (Howe 2006). Crowdsourcing has evolved over the

years into a range of endeavours including open innovation, distributed human

computation, prediction markets, crowdfunding and crowdservicing, to name a few

(Davis 2011).

Crowdsourcing can provide good solutions to a wide range of applications. The power

of humans can replace computational algorithms in fields in which computers perform

poorly. Providing annotations for images (VonAhn & Dabbish 2004), an iPhone app

providing answers blind people questions (Bigham et al. 2010) are some examples of

crowdsourcing applications. Researchers have also used crowdsourcing to compute

ground truth data. Their experiments outcome showed that results generated using this

process are reliable and can be used as ground truth (Urbano et al. 2010).

1.2.1 Microtasking and MTurk

Microtasking is a type of crowdsourcing in which larger tasks are broken into smaller

short-duration tasks. These small microtasks are performed by more than one

crowdworker and the aggregated result is assumed to be the solution to the microtask.

There are several platforms for microtasking (Microtask.com, CrowdFlower, Amazon

Mechanical Turk) and we chose Amazon Mechanical Turk (MTurk) in our study (more

discussion on choosing the platform is provided in Chapter 5).

In MTurk, requesters can post their tasks. Workers sign onto the system, search for

their preferred tasks, accept and solve the tasks, and send the results back to MTurk.

7

Microtasks on MTurk are referred to as HITs (human intelligence tasks) and are grouped

into HITGroups. Each requester can assign the same HITs to more than one worker.

MTurk provides some tools for requesters to implement microtask-based

crowdsourcing. Requesters can chose between the web-based user interfaces (UIs) to

create simple HITs and collect results, or create more complex HITs using the specialized

UIs from Amazon’s API for MTurk. MTurk APIs support a variety of programming

languages.

 User Interface Design in MTurk

Regardless of the approach used to create HITs (web UI or API), all tasks are shown in

an iframe1 inside workers’ main web interface page. In order to view the HIT and

complete the task, workers need to scroll within this iframe. This limited HIT design

environment highlights the importance of a good UI design which has the potential to

affect the quality of results provided by workers. A poorly designed UI can result in low

quality results of the crowdsourcing task, or discourage the workers from accepting the

task and increases the time needed to finish it.

As a part of our research, we conducted an experiment to study the effect of different

UI designs with assumed different cognitive loads on the performance of the results

produced by workers and also the time that it took for the task to be completed. The

experiment and results are explained in Chapter 3.

1 An iframe is a frame used to display a web page within another web page.

8

1.3 Image Retrieval

During the past decade, the world has witnessed a rapid increase in the size of digital

image collections and making use of these collections is not possible unless they are

organized and allow efficient browsing and retrieval. There are two dominant trends in

the image retrieval field: the first one is text-based image retrieval and the second one is

content-based image retrieval. In text-based (typically annotations) image retrieval

techniques, the whole dataset of images is manually annotated by text and then image

retrieval is performed using a text-based database management system (DBMS) (Chang

& Fu 1979; Chang et al. 1997).

There are two challenges regarding text-based image retrieval systems. The first one is

that providing annotations for images requires a considerable level of human labour and

the second one is inaccuracy of the provided labels. To overcome these two challenges,

another image retrieval system was introduced in the early 1980s and attracted a large

community of researchers (Gupta & Jain 1997; Vailaya et al. 2001; Rahmani et al. 2008;

Loy & Eklundh 2006). This approach is called content-based image retrieval or CBIR in

which feature extraction, multidimensional indexing and retrieval system design are the

three fundamental bases (Rui et al. 1999).

1.4 Limitations of Computational Algorithms

Developments in computer science and Artificial Intelligence (AI) have made it

possible to replace humans with computers in fields where speed and efficiency is

important (factories, repetitive tasks, etc.) and it is predicted that humans will lose their

9

jobs in many more fields (Aquino n.d.; Burn-Callander 2013). But despite these advances

in computational algorithms and the design of powerful hardware/software to speed up

calculations, there are still applications where computers perform very poorly but humans

have a very high performance. One of these areas is image processing and specifically

CBIR systems.

In CBIR systems, low-level features (colour, texture, shape, etc.) are extracted

automatically using computer vision techniques. As previously noted, in text-based image

retrieval systems, human interaction is one of the main parts of the system. In these

systems, humans tend to interpret images and measure their similarity using high-level

features, such as keywords and text descriptors. This human interaction makes the

fundamental difference between text-based and content-based image retrieval systems.

Experiments have shown that low-level contents in CBIR systems fail to describe the

high-level semantic concepts in the user’s mind (Zhou & Huang 2000) and this gap has

caused very low performance of CBIR systems.

Crowdsourcing can provide a fast and efficient way to use the power of humans to

decrease the semantic gap in CBIR systems. The resulting system will be a human–

machine hybrid system.

1.5 Human–Machine Hybrid Systems

In the previous section, we pointed out the limitations of computational algorithms in

CBIR systems. There are also other areas of research where computers have very low

performance (e.g. handwriting and speech recognition). On the other hand, humans

10

perform very well in these areas and especially in image comparison, but asking the

crowds to search within a large image dataset is a very expensive and time-consuming

task. Researchers have tried to cover the limitations of computational algorithms by

designing a hybrid human–machine system in which machines are used to do the initial

heavy computation task, and people are used to verify the most likely results.

CrowdSearch (Yan et al. 2010) is an example of a machine and crowd combination and

is a real-time image search on mobile phones which uses machine computation to search

for similar images based on a given query image. Results of the computational algorithm

are given to crowds to be validated and the most accurate search result is selected and

returned to the user. This system not only puts heavy machine computations and human

power together, but also provides a trade-off model of energy, delay, accuracy and cost.

CrowdER (Wang et al. 2012) and CROWDSAFE (Shah et al. 2011) are two other

examples of such hybrid systems.

1.6 Research Questions

As previously noted, humans outperform computational algorithms in some areas such

as CBIR systems. Involving the crowd with the purpose of improving the system’s

performance has been tested in many research fields (e.g. image annotation (Russell et al.

2007), filling missing database data (Franklin et al. 2011)) but there is not enough study

on the hybrid human–machine CBIR system. We believe that the power of crowds in the

conceptual comparison of images can overcome the limitations of the computational

image similarity system and result in a higher performance of the CBIR system.

11

Can the power of the crowd overcome the limitations of a CBIR system and does

crowdsourcing improve the performance of a CBIR system using a hybrid human–

machine system?

To test our hypothesis, we designed a CBIR system using four different feature

detector/descriptors (SIFT, SURF, SURF128 and ORB) to search for similar images

based on a query image. We combined this system with crowdsourcing using MTurk. We

compared the performance of the system in each stage and also we compared the

performance of each feature detector/descriptor. Our system and experiment are

explained in Chapters 4 and 5.

As a part of our research, we studied different user interface (UI) designs and their

effect on workers’ performance and execution time of the crowdsourcing task. Our

research questions about UI design in crowdsourcing platforms are:

Do user interface design and its corresponding cognitive load affect the performance

of crowdworkers?

Does the user interface design affect the execution time of the crowdsourcing task?

We conducted experiments to test our hypotheses based on these suggestions. This

study and the results are explained in Chapter 3.

1.7 Outline of Research

This thesis is organized as follows:

12

Chapter 1 Introduction, Background and Motivation: This chapter introduces

crowdsourcing and our research problem. We summarised the motivation and the

approach taken to answer the research question.

Chapter 2 Review of Existing Literature on Crowdsourcing: This chapter provides the

relevant literature to build the theoretical foundation of this research.

Chapter 3 User Interface Design in MTurk: The methodology, experiment and results for

user interface (UI) design are explained in this chapter.

Chapter 4 Content-Based Image Retrieval System: The architectural design of the CBIR

system that we used for our experiment is explained in this chapter.

Chapter 5 Hybrid Human–Machine System: Chapter 5 describes the method and

procedures that we used to design a human–machine hybrid system.

Chapter 6 Conclusions: This chapter presents the discussion and conclusion of the

research.

Chapter 2

2 Review of Existing Literature on

Crowdsourcing and CBIR

In this chapter, crowdsourcing systems and their properties are studied in detail. There

are different types of crowdsourcing systems and platforms with different types of

motivators. We have provided a detailed review of existing crowdsourcing systems.

Another part of our research is using a Content Based Image Retrieval (CBIR) system. A

brief review of CBIR systems is also provided in this chapter.

2.1 Crowdsourcing Definition

Crowdsourcing by definition is using the intelligence of people to complete tasks in an

open call. The word “crowdsourcing” was first coined by Jeff Howe in Wired Magazine

in 2006 and is a portmanteau word combining “crowd” and “outsourcing”. Howe defined

“crowdsourcing” as “an idea of outsourcing a task that is traditionally performed by an

employee to a large group of people in the form of an open call”(Howe 2006). In other

words, crowdsourcing is the act of obtaining needed services from a large group of the

14

online community. Wisdom of the crowd or collective intelligence, crowd creation or

user-generated content, crowd voting and crowd funding are four categories of

crowdsourcing applications defined by Howe and discussed in detail by (Yuen et al.

2011) and (Erickson 2012).

The widespread Internet accessibility has led to the growth of crowdsourcing systems

and caused a surge of research activity in crowdsourcing. Many researchers have

contributed to a growing literature of crowdsourcing which can describe applications,

algorithms, performance and datasets (Yuen et al. 2011; Doan et al. 2011; Wightman

2010; Zhang et al. 2011).

While (Schneider et al. 2012) suggests that peer production, crowdsourcing, mass

collaboration, mass persuasion, human computation, collective intelligence and crowd–

computer interaction together bring droves of people to collaborate, (Quinn & Bederson

2011) tried to distinguish the differences and overlaps of human computation,

crowdsourcing, social computing, collective intelligence and data mining concepts and

drive a taxonomy of human computation. In their taxonomy, human computation overlaps

with crowdsourcing in situations where humans and computers already have roles which

can be replaced by each other (e.g. translation). Collective intelligence is a superset of

social computing and crowdsourcing but the distinction between human computation and

collective intelligence is where human computation jobs involve performing a task by an

individual isolated human. The goal in human computation is to select computational

tasks actively and assign them to the right workers to minimize cost and maximize quality

(Law & von Ahn 2011).

15

2.2 Classifying Crowdsourcing Systems

There are many studies on the classification of crowdsourcing systems. Researchers

have divided crowdsourcing systems into multiple classes based on the different

behaviours of crowdsourcing tasks. (Wightman 2010) classified crowdsourcing systems

on their competitiveness and their motivation behaviour into four categories. In “non-

competitive direct motivation” tasks like image labelling, Wikipedia or news aggregation

websites, computers can be used to coordinate humans, and humans are motivated by the

task itself. In designing these kinds of tasks, the difficulty of the task and its accessibility

for humans should be considered and methods might be needed to filter inaccurate

information.

CAPTCHA is a completely automated public test to verify if a user is a human or a

robot pretending to be human. Von Ahn designed reCAPTCHA as a web service so

people not only prove themselves to be human but also digitize texts which OCR (Optical

Character Recognition or image to speech) systems are unable to translate (VonAhn et al.

2004); (von Ahn et al. 2008). This crowdsourcing system is an example of a “non-

competitive indirect motivation” task in which designers modify an existing task to

achieve a CHC (Crowdsourced Human-based Computation) goal by providing incentives

and might achieve an improved response rate if they use less advertising approaches.

The third category of crowdsourcing tasks is defined as those which are “competitive

with indirect motivation”. Amazon Mechanical Turk (MTurk) and InnoCentive are good

examples of such systems in which users are motivated to participate due to the ease of

16

performing tasks in distractive environments and the ability to earn some money in their

spare time.

The last category defined by Wightman is “competitive direct motivation” tasks. In

systems like Yahoo! Answers, users are directly motivated to be competitive; thus,

collusion control might be considered.

While Wightman categorized human-based computation tasks from the point of view

of motivation and competitiveness, (Doan et al. 2011) provided a global picture of the

crowdsourcing systems of the Web. They classified crowdsourcing (CS) systems by the

nature of the collaboration (implicit and explicit systems); architecture of the system

(stand-alone or piggyback); whether or not they recruited people; what users could do;

and the type of target problem. They demonstrated that explicit stand-alone systems that

recruit users can be used for evaluation (review, vote, tag, e.g. voting at Amazon); sharing

items, textual knowledge and structured knowledge (e.g. YouTube, Flicker, Yahoo!

Answers); networking (LinkedIn, Facebook); and building artifacts (Linux, Wikipedia,

InnoCentive). They also implied that implicit stand-alone CS systems that recruit users

can be built for tasks such as labelling images and rating movies (e.g. ESP, IMDB). Spell

correction and product suggestion are examples of implicit piggyback CS systems.

(Geiger et al. 2011) adopted a different approach to the classification of crowdsourcing

systems and suggested defining a taxonomy which can be applied to all forms of

crowdsourcing systems. As a taxonomy definition needs the users and purpose to be

defined, they assumed organizations to be the users who try to reach a certain goal by

crowdsourcing and it does not matter if the decision is made in-house or not: for the

17

purpose, they tried to clarify the process of crowdsourcing and derived meta-

characteristics which must apply to all kinds of crowdsourcing organizations. They

categorized characteristics in four different stages: firstly, preselection of contributors;

secondly, accessibility of peer contributions; thirdly, aggregation of contributions; and,

lastly, remuneration for contributions. Figure 2-1 shows these classifications and their

characteristics.

Figure 2-1. Characteristics of Crowdsourcing Process (Geiger et al. 2011, p19)

Clustering and 96 possible combinations of process characteristics in 46 examples

resulted in 19 distinct types which can be classified in five distinct clusters: interactive

sourcing without remuneration (Delicious, Wikipedia); selective sourcing without crowd

assessment (Netflix Prize, InnoCentive, 99Designs); selective sourcing with crowd

assessment (InnoCentive@Work, Atizo); interactive sourcing with success-based

remuneration (Android Market, iStockPhoto); and interactive sourcing with fixed

remuneration (MTurk).

18

By studying crowdsourcing systems, some patterns can be found. (Erickson et al. 2012;

Erickson 2012) undertook some research on finding the patterns associated with the use

of crowdsourcing as has been established by organizations. They found five reoccurring

themes related to crowdsourcing with their characteristics summarised in Table 2-1.

Table 2-1. Emergent Themes Related to Crowdsourcing (Erickson et al. 2012 p94)

Engagement Themes Characteristics

Common Tasks

• Routine time-consuming activities

• Data collection

• Knowledge sharing

• Marketing

• Ideation

• Design

• Development

• Filtration

• Evaluation

• Complex problem solving

Crowd Knowledge

• General

• Situational (e.g. time, place, event)

• Product/Service

• Specialized

• Domain expertise

Crowd Location
• Internal

• External

Organizational Challenges

• Accuracy

• Availability

• IP leakage/Loss of competitive advantage

• Clear articulation of the task

• Internal acceptance/buy-in

• Motivation of the crowd

• Loss of control

Value Capture

• Tangible

• Intangible

• Immediate

• Delayed

When Erickson et al.’s five themes are applied to four major basic categories of

crowdsourcing (productivity, innovation, knowledge capture and marketing/branding),

the result is their suggested framework as shown in Table 2-2.

19

Table 2-2. Preliminary Framework for Crowdsourcing Uses and Key Characteristics (Erickson et al. 2012, p94)

 Productivity Innovation
Knowledge
Capture

Marketing/Brandi
ng

Organizational
Motivation

• Reduction in
costs

• Replacing
current resources

• Retaining/Gaining
competitive
advantage,
increasing
innovative
potential

• Supplementing
current resources

• Advancing
understanding or
accuracy

• Creating new
knowledge
resources

• Increasing
profits and brand
affinity

• Supplementing
current resources

Common Tasks

• Routine time-
consuming
activities
difficult to
automate

• Ideation

• Evaluation

• Filtration

• Design

• Development

• Problem solving

• Data collection

• Knowledge
sharing

• Creative

• Market insights

Crowd
Knowledge

• General

• Specialized

• Product/Service

• Specialized

• Domain expertise

• Product/Service

• Situational

• Domain
expertise

• Product/Service

• Specialized

Crowd
Location

• External • Internal

• External

• Internal

• External

• External

Organizational
Challenges

• Accuracy/
Quality of work

• Availability

• IP leakage/Loss of
competitive
advantage

• Clear articulation
of the task

• Internal
acceptance/buy-in

• Motivating the
crowd to share

• Control of the
crowd

Value Capture
• Tangible

• Immediate

• Tangible

• Delayed

• Tangible

• Immediate and
delayed

• Tangible

• Immediate and
delayed

This framework shows that, for example, routine time-consuming tasks which are

difficult to automate can be crowdsourced to the external crowd; cost reduction and

replacing current resources will motivate the organization to do crowdsourcing; crowd

knowledge can be general or specialized; the organization faces the challenges of

accuracy and quality of the work, and the availability of the crowd; and the captured

value is tangible and immediate.

20

Erickson et al. grouped crowdsourcing tasks into categories of productivity,

innovation, knowledge capture and marketing/branding, while (Yuen et al. 2011)

classified CS applications into four different groups: voting systems, information sharing,

game systems and creative systems which overlap with the former categorization in the

two groups of information sharing and creative systems.

2.2.1 Microtasking Crowdsourcing Platforms

Microtasking is the act of breaking large and complex tasks into smaller tasks and

asking multiple crowdworkers to perform them. The aggregated result from

crowdworkers is the result of the microtask. Most microtasks just take minutes to

complete but there are also more complex tasks. Many platforms have been designed for

microtasking crowdsourcing and Amazon Mechanical Turk (MTurk) and CrowdFlower

are the two largest platforms.

 Amazon Mechanical Turk

Amazon Mechanical Turk2 (MTurk) is one of the best platforms designed to facilitate

the crowdsourcing of microtasks. MTurk is a marketplace in which requesters can put

their task and workers can sign into the system and do the tasks. HITs (Human

Intelligence Task) are grouped into HITGroups and each requester can assign each HIT to

more than one worker to perform the task. Most of the rewards on MTurk are typically

between USD0.01 to USD0.10 which can be paid if the worker completes the task

satisfactorily. Each task typically takes no longer than a minute but, in the extreme, some

2 http://www.mturk.com

21

tasks may require an hour to complete. Some of the HITs are just one single task but

some can be a collection of tasks, for example, comparison between 50 images. MTurk

provides two interfaces for its systems: one is the main interface of the website that

workers use to search for HITs and the other is the user interface provided for HITs.

MTurk also provides its own API by which requesters can automate their workflow if

publishing HITs and collecting results. Different types of crowdsourcing tasks can be

performed using MTurk and studies such as (Franklin et al. 2011; Bernstein et al. 2010;

Pai & Davis 2012; Williams et al. 2011; Yan et al. 2010) are some examples.

2.2.1.1.1 MTurk User Demographics

Many studies have been conducted on the demographics of workers on MTurk

(Silberman, Irani, Tomlinson, et al. 2010; Ross et al. 2010; Silberman, Irani & Ross

2010). Comparing (Gosling et al. 2000) study with that of (Buhrmester et al. 2011)

showed that MTurk participants came from over 50 different countries and gender splits

were similar in the standard Internet (57% female) and MTurk (55% female) samples. A

greater percentage of MTurk participants were non-white (36%) and almost equally non-

American (31%) compared with the Internet sample (23% and 30%, respectively). MTurk

participants were older than the Internet participants. In short, MTurk participants were

more demographically diverse than standard Internet samples and significantly more

diverse than typical American college samples.

Surveys by (Ross et al. 2010) and (Ipeirotis 2010) have shown that in the time period

from 2008 to 2010, workers became more international. In 2009, (Ross et al. 2010) found

that 57% were from the US and 32% were from India compared to Ipeirotis’s (2010)

22

findings of 46.8% from the US, 34% from India and 19.20% from miscellaneous

countries. They also found that a growing population of young educated male Indian

workers earn less than USD10,000/year and also that 31% of Indian workers and 13% of

US workers always or sometimes rely on MTurk as their primary source of income.

An experiment by Downs et al.’s (2010) showed that young men (under 25 years old)

tend to game the system more than older men and also more than women of all ages.

Professionals, students and non-workers seem to take the task more seriously.

2.2.1.1.2 Cognitive Load and User Interface Design in MTurk

Cognitive load refers to the amount of mental resources required to process a given

task; the higher amount of information needed to process a task, the more cognitive load

the task has. Humans’ mental resources are limited and when the amount of information

and instruction for a task exceeds this limit, learning will be inhibited and performance

will decrease. (Sweller 1988) described a model of cognitive load and distinguished three

distinct memory types: sensory memory, working memory and long-term memory.

Recent studies have focused on cognitive load and suggested that the limited working

memory is the critical bottleneck in human information processing. Through these

studies, three types of cognitive load are distinguished by Cognitive Load Theory (CLT):

intrinsic, extraneous and germane. Intrinsic cognitive load is related to the level of

expertise of a learner and is defined by the intrinsic complexity of information that is to

be learned (Sweller et al. 1998; Bannert 2002). Extraneous cognitive load is defined by

any cognitive load associated with the way the task can be carried out and caused by

activities that are irrelevant to the task (Ayres & Sweller 2005). As found by Paas and

23

Van Merrienboer (1994), the variations of worked example types support the construction

of schema but, at the same time, increase cognitive load. This type of cognitive load is

introduced as germane cognitive load.

CLT provides a basis by which to predict user performance when using different user

interface (UI) designs: it also gives guidelines to minimize cognitive load in the design of

user interfaces. In typical educational systems, monitoring and lowering cognitive load

lead to increased student learning ratios. CLT research has also addressed techniques for

decreasing extraneous cognitive load for these systems (Reis et al. 2012) and has tried to

design new interfaces that effectively minimize students’ cognitive load. Applying these

findings to an educational system’s UI will help students focus on the learning task and

learn efficiently. Studies have also found that using principles of user-centred design and

CLT leads to minimized extraneous cognitive load of the task (e.g. user input planning,

minimizing interruptions by eliminating unnecessary features, and applying split-attention

effect, redundancy effect and modality effect learning techniques) (Erry et al. 2006;

Feinberg & Murphy 2000; Oviatt 2006).

Educational systems are not the only systems in which UI design directly affects user

performance. While, in crowdsourcing systems, humans (workers) play the main role in

solving problems, their performance directly affects the overall quality of the

crowdsourcing tasks. One of the disadvantages of MTurk as a crowdsourcing platform is

its limitations in the HIT interface environment. As previously mentioned, MTurk

provides two separate web-based interfaces for requesters and workers. The third

interface, which is the subject of this study, is the HITs’ interface. This is the interface

24

that workers are facing to perform the crowdsourcing task, and is shown in an iframe

inside MTurk’s web page. This limited visual space of the HITs makes designing the HIT

UI an important consideration which can directly affect crowdsourcing task performance.

The importance of a well-designed UI might not be much highlighted in other

crowdsourcing platforms.

It is very common in crowdsourcing tasks to ask more than one worker to perform the

same task. The final solution is then created by aggregating responses. If the quality of

responses produced by each worker is low, requesters have to send more tasks and collect

more results to have to a proper solution to the crowdsourcing task. In this situation, the

crowdsourcing task will cost the requester more money. By increasing workers’

performance and avoiding low quality results, the overall cost of the crowdsourcing task

will be decreased.

 CrowdFlower

CrowdFlower, which is very similar to MTurk, is another platform through which to do

crowdsourcing. Like MTurk, CrowdFlower has a requester UI and its own API so

requesters can interact easily with it. In addition, CrowdFlower offers a higher degree of

quality control called “gold-standard data”. Gold-standard data are pre-completed tasks

provided by the requester to determine workers’ accuracy and trustworthiness.

CrowdFlower also claims to have multiple labour channel partners such as MTurk and

TrialPay.

25

 microWorkers.com

Another platform for microtasking or micro jobs is microWorkers.com and is an

international platform for connecting workers and employers from all around the world.

Unlike MTurk, there isn’t any restriction on the country of residence and any one can

sign into the systems and use it for free. Tasks on microWorkers.com are simple and easy

tasks such as sign-ups, social bookmarking tasks, forum participation, website visits,

rating videos or articles, voting up contest entries, adding comments, suggesting leads,

creating backlinks, writing reviews or articles, downloading applications.

2.2.2 Crowdsourcing Examples

Crowdsourcing has a wide range of applications and can be a problem-solving method

in a wide variety of domains. Crowdsourcing applications vary from simple microtask

annotation tasks (von Ahn & Dabbish 2004; Rashtchian et al. 2010) and multimedia

retrieval (Snoek et al. 2010) to complex text editing jobs (Bernstein et al. 2010) or even

collaborative coding (Goldman et al. 2011).

There are some applications that computers are unable to perform well and, in these

cases, crowdsourcing can provide a very high performance solution. An example of such

cases is providing text annotations for images to help improve an image search system.

Von Ahn and Dabbish (VonAhn & Dabbish 2004) designed a system called ESP Game to

ask for image labels through a computer game. Using crowdsourcing to evaluate colours

(Xue et al. 2012) and providing cheap speech data for speech recognizers through mobile

phones (Ledlie et al. 2010) are other examples of crowdsourcing systems that are used to

26

collect information for computational processing. Studies have shown that results

generated using this process are reliable and can even be used as ground truth (Urbano et

al. 2010).

An Amazon Mechanical Turk (MTurk) study on using crowdsourcing to assess

visualization (Heer & Bostock 2010) shows that by using qualification tests before

assigning actual tasks to workers, the quality of results provided by crowdworkers

significantly increases.

Other than just performing operations, humans can handle the control flow of the

algorithm. CrowdForge (Kittur et al. 2011); Turkomatic (Kulkarni et al. 2011; Kulkarni et

al. 2012); CDAS (Liu et al. 2012); and TurKit (Little et al. 2010b; Little et al. 2009) are

examples of frameworks in which the crowd takes control of the workflow and decides to

solve a problem by decomposing it into smaller parts and then combines results to make

the final result.

In the following section, we study some major examples of crowdsourcing systems.

 Games with a Purpose

The ESP Game presented by von Ahn and Dabbish (VonAhn & Dabbish 2004) is a

computer game to provide image labels for images to improve image search performance.

It uses the concept of games with a purpose (VonAhn 2006) and organizes the power of

the crowd implicitly in a funny way to label images by non-expert users.

reCAPTCHA (VonAhn et al. 2008) is another example of implicit piggyback systems

which is widely being used to verify humans from robots. reCAPTCHA’s main

27

application is to digitize texts which are not translatable by OCR systems. By using this

tool, not only do humans verify themselves as humans but they also help to solve

problems which are difficult for computers to solve. The mechanism is very simple: it

shows two words to users for verification, one of them is already known for the system

and the other one is unknown. By comparing data provided by the user for the known

word, the user is verified and the data that the user provided for the unknown word are

collected and by performing the aggregation method, the correct digitized translation for

the unknown text will be provided. By major websites running this tool across the world,

they have tried to digitize the whole New York Times newspaper archive.

Asirra (Elson et al. 2007) is another CAPTCHA that can be used as a service to

identify humans from robots. With Asirra, users have to pick cats out of 12 pictures of

cats and dogs and Elson et al.’s study shows that in 99.6% of the time, the task can be

done in less than 30 seconds. The image dataset is provided by Petfinder.com and Asirra

shows a link for “adopt me” under each photograph to help Petfinder.com find homes for

homeless animals.

 Design of Gold Standards or AI Training Sets

To see if crowdsourcing can create a repeatable and reliable search system evaluation

campaign (Blanco et al. 2011; Nowak & Rüger 2010), experiments have shown that it is

possible to make a crowdsourced “gold-standard” which is repeatable and will not change

from time to time. With regard to their experiments, crowdsourced judgments are

different from those of experts due to the object retrieval task and the time pressure on

workers but the rank ordering of systems does not change. They found that three

28

judgments seem to be sufficient and increasing the number of judges in a crowdsourcing

system has little effect.

(McDuff et al. 2011) tried to create a large bough dataset for studying natural and

spontaneous facial responses using crowdsourced data. They designed a framework and

collected over 3000 trackable videos on 54 days from locations across the world. Their

method used popular media to motivate participants rather than payment or recruitment,

and the dataset they provided has a more dynamic range of position, scale, pose,

movement and illumination of participants in comparison with traditional MMI, CK+ and

Forbes datasets.

To compare the quality of non-expert annotators with the existing gold standard for

annotation, (Snow et al. 2008) proposed experiments in five tasks: affect recognition,

word similarity, recognizing textual entailment, temporal event recognition and word

sense disambiguation. They found that for many tasks only a small number of non-expert

annotations per item are equal to the performance of an expert annotator. In greater detail,

they declared that for the face recognition task, an average of four non-expert labels per

item is enough to emulate expert-level label quality.

 Mobile Crowdsourcing

Widespread daily access to Smartphones with Internet connectivity offers a great

platform for crowdsourcing applications. In addition, audio-visual sensors, geo-location

and other sensors on Smartphones provide an efficient way of collecting data in

crowdsourcing systems. Crowdsourcing applications on Smartphones can be in the form

29

of web-based applications or platform-dependent mobile applications. CrowdTranslator

(Ledlie et al. 2010), ParkJam (Kopecký & Domingue 2012) and Waze3 are three

examples of crowdsourcing mobile applications: the first one is a web-based application

and the others are mobile applications.

In developing regions with limited access to mobile Internet, crowdsourcing mobile

applications can be designed using SMS or GSM data. mClerk (Gupta et al. 2012) is an

example of a successful mobile crowdsourcing system which is designed in developing

regions in India. In these regions, low-income workers do not have access to technology

or accessing the Internet is very expensive, and also their lack of English language

prevents them from contributing in web-based systems. mClerk uses an SMS system not

only for text-based tasks but also for sending small bitmap images. By the means of

mClerk, (Gupta et al. 2012) provided a system for digitizing local-language documents.

They automatically segment the scanned forms, send it as an image to workers and collect

the text in English form. Correctness is checked by duplicating the task to multiple

workers, and then the corrected English text is converted to the local language. Their

experiments discovered that the ideal users for this kind of crowdsourcing are the ones

who have occupations that allow them to have free time as well as social interactions.

Another example of crowdsourcing mobile applications that does not use the Internet

for communication is txteagle (Eagle 2009). txteagle is being launched and operated in

Kenya and Rwanda as a successful system and is capable of crowdsourced translation,

transcription and survey tasks through GSM services in cooperation with mobile phone

3 Waze.com

30

providers in those countries. Through experiments, it has been shown that groups of

people, who were mostly taxi drivers, security guards and students, successfully

completed translation tasks with 75% accuracy, and students completed twice as many

tasks as taxi drivers and security guards.

 Hybrid Human–Machine Systems

Computers perform very well in repetitive tasks or heavy mathematical computations

but in tasks such as image similarity checks or text editing, computers have very low

performance. One solution to improve the performance in these tasks is to take advantage

of humans or crowdsourcing. We call these systems “hybrid human–machine systems” in

which computers do the heavy computational tasks and crowds validate the results.

Some examples of hybrid human–machine systems are called crowd query processing

systems (Franklin et al. 2011; Marcus, Wu, Karger, et al. 2011; Parameswaran &

Polyzotis 2011; Marcus, Wu, Madden, et al. 2011). CrowdDB (Franklin et al. 2011) is a

new prototype to design new database systems. Franklin et al. designed this new

prototype to overcome some limitations of traditional database systems. They used the

power of the crowd to fill incomplete data and also to provide new data. In this system,

queries are very similar to the traditional SQL (Structured Query Language), but crowd

features added to this system make it more efficient in comparison with the traditional

database (DB). In their proposed prototype, if any piece of information is missing from

the database or if there is a need for conceptual comparison (e.g. image comparison),

CrowdDB will produce proper HITs and the required user interface (UI) and publish them

on MTurk.

31

CrowdSearcher (Bozzon et al. 2012) is an example of crowdsourcing query processing

which was inspired by CrowdDB. Bozzon et al. aimed to fill the gap between

computerized search systems which operate on worldwide information and social systems

which are capable of interaction with real people and can capture their opinions. They

proposed their new prototype to not only use the crowd to fill data as in the former

prototypes, but also to add human suggestions and insights in order to improve the

answers for more complex queries. CrowdSearcher uses social platforms such as

Facebook, Twitter and LinkedIn to provide search-related tasks.

Another prototype developed with the help of MTurk is Soylent (Bernstein et al. 2010),

a word-processing interface of which the main purpose is to integrate human expertise

with writing tools. Shorten, Crowdproof and The Human Macro are Soylent’s three main

components which use the power of paid workers through MTurk to help with

proofreading, document shortening, editing and commenting tasks. Bernstein et al. have

shown that the combination of Soylent and Microsoft Word’s grammar check can correct

82% of grammar errors, and also that Soylent shortened text to 85% of its original length.

In order to help blind people solve their visual problems, many expensive talking

devices have been designed which use OCR to convert images to speech. However,

unfortunately OCR systems are unable to identify the text in many real-world situations,

such as handwritten texts or even the street name on a street sign. VizWiz (Bigham et al.

2010) is an iPhone application designed to help blind people address their visual

problems. VizWiz uses its own abstraction layer on top of MTurk, which is called

“quikTurk”, to provide a pool of ready workers to answer visual questions and reducing

32

the response time on average to 30 seconds. By using VizWiz, blind people can take a

photo of what they want to visualize, record a question and send to people to answer in a

very short time and at a low cost compared with other commercial systems.

CrowdSearch (Yan et al. 2010) is another example of the combination of machines and

crowds and is a real-time image search on mobile phones which uses machine

computation to search for similar images based on a given query image. Results of the

computational algorithm are given to crowds to be validated and the most accurate search

result is selected and returned to the user. This system not only puts heavy machine

computations and human power together, but also provides a trade-off model of energy,

delay, accuracy and cost. CrowdER (Wang et al. 2012) and CROWDSAFE (Shah et al.

2011) are two other examples of such hybrid systems.

2.3 Challenges in Crowdsourcing

2.3.1 How to Recruit Crowdworkers

The designer of a crowdsourcing system may face several challenges regarding

humans. (Doan et al. 2011) implies that one of the challenges of CS systems is recruiting

users. The first way that he suggests is to require users to make a contribution. This

means that in a company, the manager can require employees to help build a company-

wide system. Stewart et al.’s (2009) additional research on crowdsourcing for enterprises

suggested that incentives in company-wide CS systems are different from public domain

CS. This research showed that optimizing the portal for participants makes enterprise

crowdsourcing successful. In another study on crowdsourcing inside the enterprise,

33

Stewart et al. (Stewart et al. 2010) proposed a SCOUT ((S)uper Contributor,

(C)ontributor and (OUT)lier) model for describing user participation and showed that that

it is possible to achieve a more equitable distribution of 33-66-1 instead of the general 90-

9-1 rule. The cheapest solution for recruiting users in CS systems is to ask for volunteers.

Wikipedia, YouTube and Geo-Wiki (Fritz et al. 2009) are three examples of knowledge-

sharing CS systems in which users contribute voluntarily.

2.3.2 Incentives

Another challenge in crowdsourcing systems is how to motivate users to contribute in

the system. Several research studies have been conducted to find out the true incentives of

crowds in crowdsourcing systems to improve the performance of systems. Cuel and

Zamarian (Tokarchuk et al. 2012) surveyed past research and categorized motivations

into eight classes: reciprocity and expectancy; reputation; competition; altruism; self-

esteem and learning; fun and personal enjoyment; implicit promise of future monetary

rewards; and money. They designed a framework for studying motivations on the

crowdsourcing platform which is based on goals, the task, the social structure and the

nature of good variables.

In order to design an efficient crowdsourcing mechanism, (Archak 2010) studied

incentives and strategic choices of participants on TopCoder.com and found that project

quality is affected by specific traits of individuals along with project payment and the

number of project requirements. His results also showed that high rated contestants sign

up earlier to the contest to deter the entry of opponents and by this strategy, they can gain

a surplus amount.

34

In microtasking crowdsourcing platforms (MTurk and CrowdFlower), earning money

is the main incentive and research has shown that there are a number of crowdworkers

who rely on MTurk (Ipeirotis 2010) for their income. To find out how workers search for

HITs, Chilton et al.’s (2011) studies have shown that workers tend to sort HITs by newest

HITs and most HITs’ available options provided by MTurk, and focus mostly on the first

two pages of results ignoring the position of HITs.

2.3.3 Creativity

To increase the creativity in innovative crowdsourcing tasks, (Dontcheva et al. 2011)

have shown that the visual design of the task has a direct impact on creativity: positive

background images lead to more significantly original ideas than having no image or a

negative image. Based on studies on work environments, they have four

recommendations. They suggest that building a community to increase collaboration

between workers will tend to increase creativity. Also as Franklin et al. (2011) and Kittur

et al. (2008) have shown, providing a good and proper interface for users has a direct

effect on the results. (Kittur et al. 2008) suggest that, to have expert-level results from

crowdsourcing systems, it is essential to have explicitly verifiable questions, which

require more effort than random or malicious completion, along with multiple ways of

detecting suspicious responses.

2.3.4 Quality Control

In crowdsourcing systems in which the main incentive is monetary reward (e.g.

MTurk), it is possible that workers try to finish as many tasks as possible without

35

focusing on the quality of the results they provide and do not fully engage in tasks. In

these situations, one solution is to collect responses from multiple workers and aggregate

results. Another solution is to design a strategy or method to screen participants and to

remove those who are gaming the system. (Downs et al. 2010) explored a screening task

in which, to continue the tasks, participants were asked to answer some demographic

questions (age, gender, current occupation) for demographic analysis, and two

qualification questions about the task. They also explored the use of a time stamp to

identify participants who were just clicking rather than answering conscientiously.

Historically, transcription has been an expensive and slow process done by experts

which can be replaced by inexpensive and fast crowdsourcing methods. (Williams et al.

2011) proposed three techniques to improve the quality of the crowdsourced transcription

method. First, they suggested collecting transcriptions one at a time until k matches are

obtained, then treating automatic speech recognition (ASR) output as the first

crowdworker and, finally, using regression to estimate the probability of the correctness

of the crowdsourced transcription.

(Hirth et al. 2011) proposed majority decision (MD) and control group (CG) as two

mechanisms for cheat detection in crowdsourcing platforms. Their studies on different

types of crowdsourcing tasks suggest that, for routine and low-paid crowdsourcing tasks,

the MD approach should be preferred and, for complex and more creative, the CG

approach will provide better results.

In order to increase the quality of crowdsourcing tasks, one approach is to reduce the

number of malicious workers by discouraging them from accepting the task. Experiments

36

by (Eickhoff & De Vries 2008) have shown that, despite the classical design of a practice

which suggests reduced context change to keep users focused for efficient work, in

crowdsourced tasks greater variability and context changes discourage malicious workers.

They have also shown that the previous acceptance rate of workers is not a predictor of

their reliability. In another study, majority voting was compared with the method in

which votes are weighted by worker quality. Their results showed that removing

spammers who are workers with poor precision increased the accuracy of relevant

judgments (Vuurens et al. 2011).

As previously mentioned, earning money seems to be the primary incentive in MTurk;

therefore, some may consider increasing the reward to get higher quality results (Kazai

2011). It has been shown that increasing the monetary reward will decrease the response

time to HITs (Franklin et al. 2011) or increase the demand for the task (Faridani et al.

2011), but may not necessarily increase the quality of results in some applications

(Franklin et al. 2011; Buhrmester et al. 2011; Mason & Watts 2009) and, in some others,

it may decrease the demand for the task as high reward means more complex and more

involved tasks (Faridani et al. 2011).

In crowdsourcing algorithms in which humans are asked to select the best item among

others that match specific criteria or, in other words, to select the item that is believed to

be the maximum, it is important that the algorithm can perform a desired balance between

quality, cost and execution time and can handle user mistakes or variability. (Venetis et

al. 2012) studied different strategies for tuning parameters of two parameterized max

algorithms: Bubble Max and Tournament Max, with their goal being to find parameters

37

that optimize the performance of a given family of algorithms. Results showed that

increasing the budget tended to lead to higher quality in all strategies but Tournament

Max algorithms performed better than Bubble Max for the same budget. A study on two

popular aggregation rules (plurality and majority) has shown that the plurality rule

performs better in all cases (Venetis et al. 2012).

2.3.5 Latency in Crowdsourcing Systems

One major challenge in crowdsourcing systems is latency. The time interval between

sending jobs to crowdsourcing platforms (e.g. MTurk) and receiving responses from

workers can be broken down into two components. The first component, T1, is the time

between sending the HITs to the MTurk crowdsourcing platform until some workers find

your HITs, feel motivated to solve them and start solving the problems. When workers

start completing the HIT, it takes T2 time (the second component) for them to complete

the job and send the results. The sum of T1 and T2 time is referred to as the total

execution time (TET) of the crowdsourcing job. The whole process of sending HITs and

receiving responses from workers may take minutes to days depending on the HITs’

design and the specified rewards. To make crowdsourcing applications near real time,

(Bigham et al. 2010) designed a mechanism called “quikTurkit” which recruits workers

and keeps them busy with other available HITs until the required HIT arrives. The

workers accept the actual HIT as it arrives and send back the responses. quikTurkit also

uses search engine optimization techniques. As an example, quikTurkit posts more HITs

than what is actually required and sends the alternate HITs by different titles or rewards.

Using these mechanisms, quikTurkit tries to keep the posted HITs on the first page of the

38

search results. By applying quikTurkit, they were able to receive their responses almost in

real time and at a low cost (Bigham et al. 2010).

In related research which sought to reduce the latency of crowdsourcing systems,

(Bernstein et al. 2012; Bernstein 2011) proposed two techniques to get responses in just

two seconds. First, they defined a retainer model in which crowds are paid to wait until

the actual task arrives. Unlike quikTurkit which keeps workers busy, users are free to do

other HITs while waiting. When the actual task arrives, they are alerted and notified by

sound. Rapid refinement is their second technique which seeks early agreement on

multiple responses to decrease the overall amount of time needed to produce the desired

result.

Even though previous research has attempted to design mechanisms to speed up

recruitment and the HIT selection process of crowdsourcing tasks, the impact of the HIT

UI design on the TET of crowdsourcing tasks has not received adequate research

attention.

2.3.6 Can You Crowdsource Your Task?

In crowdsourcing a task, we are facing two challenging questions, “What” to

crowdsource and “How” to crowdsource. We have to find out whether or not the task is

really crowdsourceable which means can we get higher quality results by crowdsourcing

a specific task or not? Some tasks can be completely done by crowdsourcing (e.g. image

annotation) with a high quality result and low cost, and some tasks can tend to better

results if we let the computer do the heavy lifting tasks and use the power of the crowd

39

where computers have less power (e.g. CrowdDB). If crowdsourcing is a good solution to

our problem, the next step is to select a good category and design in order to have high

performance. (Little et al. 2010a) studied two types of crowdsourcing tasks: parallel and

iterative. In parallel tasks, all workers are working alone and are not aware of others but

in iterative tasks each worker sees responses from previous workers. They discovered that

in writing and brainstorming tasks, the iterative process increases quality but in

brainstorming and transcription tasks, parallel crowdsourcing produces the best results.

This shows that, depending on the type of task you want to crowdsource, you need to use

the best type of process to achieve higher quality results.

2.4 Content Based Image Retrieval

In past decade there has been an enormous advance in digital imaging devices. In 2014

it is expected that around 63% of the world population will be using smartphones

(EMarketer 2014). All smartphones have built-in cameras and billions of digital

photographs are produced every second by these smartphone, satellite devices,

surveillance cameras and personal digital cameras. This mass production of digital

photographs resulted in creation of very large image datasets. This image datasets can’t

be efficiently used unless there is a good system to search within images and retrieve

requested images.

Two major trends in image search are Text-Based Image Retrieval systems and

Content-Based Image Retrieval systems. Text-Base Image Retrieval systems act in very

similar way to text search systems; they search on image annotations and other text

properties of images. In these systems, the whole image database needs to be annotated

40

prior to image retrieval. There are many techniques to provide annotations for images.

LableMe (Russell et al. 2007) is one of the proposed systems that uses crowdsourcing to

provide label for images. A major challenge in Text-Based Image Retrieval is that human

provided annotations are subject to their perceptions of the image, there is a sematic gap

between the provided annotations and actual image content.

Another method for image retrieval is Content-based Image Retrieval (CBIR) systems.

CBIR systems which are also known as Query-By-Image-Content (QBIC) use computer

vision algorithms to describe image contents. In CBIR systems, images are represented

by features. These features are specific visual properties of images that describe the

image. There are different types of features being studied and used by researchers in

CBIR context (colour, shape, texture as global features and SIFT, SURF, ORB as local

features). Many techniques are proposed to extract, classify and search within image

features for object detection or image similarity search (Rubner et al. 2000; Jing & Baluja

2008; Tran n.d.; Grauman 2010). In our research we decided to use SIFT, SURF and

ORB features and using a techniques similar to text search on image features to search for

similar images. More details are provided in Chapter 4.

2.5 Summary

Crowdsourcing provides a new way of problem solving in which humans can assist

computers. Humans can play a huge role in providing missing information, voting and

comparisons. As examples, the combination of humans and computers can provide a

more complete database system, help digitize texts or provide a more efficient image

search system.

41

The main challenges that should be considered in designing a crowdsourcing (CS)

system are: providing a good incentive to motivate people to participate in a CS system,

controlling the quality of provided information, decreasing the cost if the CS system has a

monetary reward as incentive, and decreasing the response time of the system.

Chapter 3

3 User Interface Design in MTurk

This chapter describes our experiments on different user interface (UI) designs of an

image similarity ranking on Amazon Mechanical Turk (MTurk) as a crowdsourcing

platform. In all crowdsourcing tasks, increasing the performance of workers and

decreasing the execution time of a task is a goal. We investigated the effect of a well-

designed user interface (UI) on the task performance and execution time. The goal of this

research was to evaluate different UI designs for our crowdsourcing tasks and select the

one which leads to high performance results in shortest time. We used the findings of this

experiment in our main experiment which explained in Chapter 5.

3.1 Overview

As discussed earlier, Amazon Mechanical Turk (AMT or MTurk) is one of the

platforms that implement microtask-based crowdsourcing. Using MTurk, requesters can

contract and interact with an on-demand, global workforce through a web-based user

interface. Monetary reward is the main incentive and workers try to earn as much money

as they can in short periods of time. Job requesters have the option to accept and pay

43

workers for results or to reject workers’ results without paying them. In the case of tasks

which solicit people’s opinions, it is not possible to check all responses from workers and

reject all low performance results. This highlights the importance of having high quality

responses from workers.

Another important factor for requesters in crowdsourcing tasks is time. To make

crowdsourcing tasks closer to real time, there need to be mechanisms to help workers find

the tasks easily, complete them and return the results as quickly as possible. If workers do

not feel motivated to do the task due to the amount of reward, the task design, task

completion time or crowdsourcing system, latency will be increased.

While much of the previous research on MTurk has tended to focus on factors that

affect the motivation and creativity of workers and on cheating detection methods, there

have not been many studies that deal with the impact of the visual design of the tasks’

interface on workers’ performance and the crowdsourcing system’s latency. The usability

of the software and the user interface (UI) that are part of the MTurk platform can

potentially affect worker satisfaction levels and the costs incurred by the requesters.

While many researchers have studied the usability of systems in software design (Juristo

et al. 2007; Seuken et al. 2010; Liu & Ma 2010), and the effects of cognitive load and its

integration with human–computer interaction (HCI) concepts on user interface (UI)

design (Huang et al. 2009; Antle & Wise 2013), there are very few studies that have

addressed the effects of user interface (UI) design on crowdsourcing using the MTurk

platform. (Khanna et al. 2010) studied and designed a simplified UI with simplified

instructions and localized language to reduce barriers on task execution. Their studied UI

44

design helped low-income workers in India to participated in crowdsourcing with MTurk

and earn money.

It is our contention that the design of the interfaces through which the workers perform

the human computation and related tasks has a significant effect on the performance and

the time taken to complete the tasks. Drawing on cognitive load theory and usability

design principles, we report on the design and preliminary results of two experiments that

tested the effects of different user interface (UI) designs on performance and system

latency in the context of crowdsourcing.

3.2 Research Questions and Hypotheses

As noted before, increasing performance and decreasing latency are two main goals in

all crowdsourcing tasks. Requesters want their crowdsourcing tasks to be completed in

minimum time with maximum quality results. The HITs’ UI design is an important aspect

of crowdsourcing tasks. We address the following research questions:

Do cognitive load theory (CLT) design principles help in designing improved interfaces

for crowdsourcing tasks?

Does the design of UIs impact on workforce performance and productivity?

One of the CLT design suggestions is eliminating unnecessary distracting features in a

UI. If there are too many unnecessary features in a UI, more of the working memory will

be wasted dealing with these features. It has been studied by (Oviatt 2006) that if

unnecessary features are eliminated, the user’s cognitive load will be minimized and will

result in a higher learning ratio in educational software. For the context of this research,

45

we will examine the same design principle and its effect on the performance of results

produced by workers in our crowdsourcing task.

Another part of our study is to investigate the effect of HIT UI design on total

execution time of the crowdsourcing task. We will try to answer whether the UI design

has any effect on crowdsourcing system latency.

The specific hypotheses are stated below:

H1: Lowering extraneous cognitive load by eliminating unnecessary features from HIT

UI design will result in higher quality responses from workers.

H2: In the same task with similar reward, the complexity of the HIT’s UI has a negative

effect on the total execution time (TET).

3.3 Research Methodology and Design

We describe two experiments that were performed to test the hypotheses. In

Experiment1, we tested H1 and studied the impact of different UI designs on workers’

performance which directly affects the cost of the crowdsourcing task. The task we chose

is an image ranking task. It involves ranking 10 images based on their similarity to a

given query image. The task involves visual information processing for which the quality

of the user interface (UI) is particularly critical. For this experiment, we designed three

different UIs based on ranking, direct sorting (drag and drop) and rating.

The first UI design is called Rank UI design. In this type of design, workers are asked

to compare 10 images with the query image and rank them based on their similarity to the

46

query image. Workers are asked to assign a number between 1 and 10 to each image

indicating the position of the image in a ranked list.

The second UI design is called Sort UI. In this type of UI, users have to click and move

each image to visually create a ranked list of images. In this UI design, moving each

image causes the whole list to be moved.

In the third UI design, which is called Rate UI, workers are asked to give a score

between 1 and 5 based on the similarity of each image to the given query image. If the

image is very similar to the query image, they can assign the image score 5, and if it is not

similar, they can assign it score 1.

We ran Experiment1 for six image categories from the Corel-Princeton Image

Similarity Benchmark (section 3.3.1) (airplane, car, flower, fruit, horse and model) and

for each category we created 50 HITs for each of the three methods (Rank, Sort and

Rate). All three sets of HITs sent to MTurk in a 5minutes period of time with Rank-Rate-

Sort order. In total, 350 HITs were created for each UI design for $17.50. The total

number of HITs created for this experiment was 1050 HITs at a cost of $52.50.

To test the second hypothesis, we designed our second experiment (Experiment2). In

this, the crowdsourcing task is to define a category for a number of images. We designed

two UI designs for HITs, Type1 and Type2. In this experiment, we study the effect of

HIT UI design on the TET of the crowdsourcing task and system latency.

47

3.3.1 Datasets

Experiment1 involves assessing the performance of the workers in the ranking tasks

for which a gold-standard is needed. In this research we studied image similarity search

and for this purpose we decided to use the Corel-Princeton Image Similarity Benchmark

Dataset 4 for this reason. In this dataset, for each query image, similar images and their

(gold standard) similarity score are provided. For our experiment, we selected six query

images and randomly selected 10 similar images based on each query image. Aggregated

rankings provided by workers were compared against the gold-standard ranking.

The task for the second experiment deals with image categorization for which we used

a categorized image dataset. Caltech-2565 data set was selected for this experiment. This

dataset consists of more than 30,000 images categorized into 256 folders. Each folder has

a category name. We ran Experiment2 twice for each UI design. On the first run, 12

images were selected from five different categories. We created 20 HITs for each UI. For

the second run, we selected with 21 images from eight different categories and 20 HITs

were created for each UI.

3.4 Experiment1: Image Ranking

For Experiment1, we created and posted several HITs using the three UIs (Rank, Sort

and Rate) that we designed. The HIT structure for this experiment was:

• $0.05 reward for all three types of HITs

4 http://www.cs.princeton.edu/cass/benchmark/
5 http://authors.library.caltech.edu/7694/

48

• instructions for users to do the task

• added time stamps to the design of the HIT to detect workers who just clicked

and did not do the task carefully

• added text box to collect user comments.

Figure 3–1 describes the system that was designed to create the HITs, collect and store

the results obtained from the workers. MTurk makes it possible for workers to view the

HIT in preview mode before accepting it. However, in our experiment, we only showed a

simple preview description and not the full HIT. When workers accepted a HIT, the

corresponding page was created on a remote host and shown to workers.

Users sent their results back to MTurk using the “Submit” button that we provided on

each page and then we collected results using our program and prepared them for analysis

as shown in Figure 3-1.

49

Figure 3-1. Experiment1

3.4.1 Rank UI design

For the Rank user interface design, we provided workers with 10 images and asked

them to assign a number between 1 and 10 to each image according to their similarity to

the given query image. Value 10 means that the given image is the most similar image to

the query and value 1 means that the image is the least similar image to the query image.

Workers had to select a number for each image and they could not use each value more

than once. In this task design, users had to compare 10 images with the query image and

rank each image not only based on its similarity to the query image but also based on the

degree of similarity to other images of the query image.

50

Figure 3-2. Rank UI design

3.4.2 Sort UI design

In the Sort user interface design for ranking images, we used JQuery UI functions to

create a draggable list of images and asked workers to sort images by their similarity to

the given query image using the drag-n-drop functionality of the HTML page.

51

Figure 3-3. Sort UI design

3.4.3 Rate UI design

In the Rate user interface design, once again we provided 10 randomly selected images

from the Corel-Princeton dataset. In this task, we asked workers to rate the similarity of

each image to the given query image. They were asked to assign a number between 1 and

5 according to the similarity of each image to the given query image, 5 for high similarity

and 1 for low similarity. In this task, workers had to provide a rate for all images and they

were allowed to use each number more than once.

52

Unlike the Rank method in which workers had to compare all images to provide a rank

for them, in this task, they were able to focus on each image and rate its similarity to the

query image.

Figure 3-4. Rate UI design

3.5 Aggregating Crowdsourced Responses

The power of crowdsourcing systems is based on the collective intelligence of the

involved crowd. The main concept of microtasking crowdsourcing is collecting several

crowdworkers’ opinions about a specific task and then, by aggregating the responses, we

can achieve a result with a high level of accuracy (Urbano et al. 2010; Wang et al. 2012;

53

Yan et al. 2010; Rashtchian et al. 2010). This highlights the importance of aggregating

the crowdsourced responses. The aggregation method used in each crowdsourcing task

varies depending on the type of crowdsourced responses.

In our experiment, we collected two types of responses from workers. For Rank and

Sort UI designs, crowdworkers’ responses were ranked lists and for the Rate UI design,

crowdworkers provided ratings. We used different techniques to aggregate each type of

response.

3.5.1 Rank Aggregation

The problem of combining ranking results from various sources arises in many areas.

One of the best examples is building meta-search engines for the Web and aggregating

viewers’ ranking for a specific product (e.g. movies, books). This problem is defined as

finding a ranking for a group of input rankings that best represents that group of inputs:

this problem has also been a point of interest in the computer science community (Liu et

al. 2007; Dwork et al. 2001).

 Type of Ranked Lists

We can define ranking or ordered lists as:

With respect to universe �, � is an ordering subset 	� ⊆ � i.e � � 	
� �

 � ⋯ �
��
and each
� ∈ � and � is an ordering relation. Based on this definition, there are three

types of ranked lists:

54

full lists: � contains all elements in �. Our case is an example of full lists, in

which crowdworkers are required to provide a ranking for all the given images.

partial lists: In some situations, it is not possible to provide full lists. For

instance, results of different search engines on a specific query might not contain

similar elements. In other words |�| � |�| which means the list � ranks only some

of the elements of �.

top k lists: Top k lists are a special type of partial list in which � ranks only a

subset of �. For instance, if � is a set of all the pages indexed by a search engine

and	� represents only the top 100 results, the pages that are not present in � can be

assumed to be ranked below 100. In this condition, we call � a top k list and k is the

size of the list.

 Distance Measure

There are several distance metrics used in the information retrieval literature ranging

from the classic Kendall tau and Spearman’s footrule to new ones such as generalized

distance (Kumar & Vassilvitskii 2010), Expected Reciprocal Rank (ERR) (Chapelle et al.

2009) and (Carterette 2009). The most popular distance measures for computing the

distance between two full lists are Spearman’s footrule distance and Kendall tau distance

(Diaconis 1988) which are explained below.

Kendall tau distance: This distance measure, introduced by Maurice Kendall (Kendall

1938), is a metric that counts the numbers of pairwise disagreements between two lists:

the larger the distance, the more dissimilar are the two lists. Kendall tau distance is also

55

called “Bubble Sort” distance as it is equivalent to the number of swaps that the bubble

sort algorithm makes to place one list in the same order as the other list. Kendall tau

distance for two full lists �and � is:

���, �� � 	 |���, ��|� � �	, ���� � ����, ���	���� > ����!|

Dividing ���, �� by "�" − 1�/2 (n is the size of the list) results in a normalized

version of Kendall tau distance.

Spearman’s footrule distance: For all � ∈ �, Spearman’s footrule distance is the sum

of absolute difference between the rank of � in each list:

'��, �� � 	(|���� − ����|
|)|

�*�

'��, �� can be normalized if divided by |�|
/2. The footrule distance between two lists

can be computed in linear time.

(Diaconis & Graham 1977) showed that the relation between Spearman’s footrule and

the Kendall tau is:

���, �� ≤ '��, �� ≤ 2���, ��

3.5.2 Rank Aggregation Methods

With the distance metrics, finding an aggregated ranked list for a group of ranked lists

is the problem of finding the ranked list that has the shortest distance with all of the group

members. Rank aggregation methods have been studied in the context of several research

studies (Schalekamp & van Zuylen 1998; Dwork et al. 2001; Fagin et al. 2003; Fagin et

56

al. 2004). The methods can be positional algorithms (i.e. Borda rule, footrule),

comparison sort algorithms (QuickSort, MergeSort) or a combination of positional and

comparison algorithms (Copeland (Copeland 1951), MC4 (Dwork et al. 2001)). In our

study, we used Dwork et al.’s (2001) scaled footrule aggregation (SFO) method.

 Footrule and Scaled Footrule

Spearman’s footrule distance between two ranked lists �, � is defined as:

'��, �� � 	(|���� − ����|
|)|

�*�

(Dwork et al. 2001) proposed that: “For full lists ��, �
, … , �- if the median positions

of candidates in the lists form a permutation, then this permutation is a footrule optimal

aggregation and for full lists can be computed in polynomial time”.

For �, the union of ranked lists with " elements, the weighted complete bipartite graph

�., /,0� can be defined as:

. � �1,… , "! is the set of elements to be ranked (in our research, the images showed to

crowdworkers)

/ � �1,… , "! is " available positions.

The weight 0��, 1�	is the total footrule distance (from	��) that places element � at

position	1.

	0��, 1� �(|����� − 1|
-

�*�

57

0��, 1� is the scaled footrule distance if:

0��, 1� �(|�����/�� − 1/"|
-

�*�

Scaled footrule aggregation (SFO) is obtained by solving the minimum cost maximum

matching problem on	�., /,0�.

In our research, we developed our MATLAB® code based on the proposed method to

aggregate rankings for responses collected from crowdworkers. We also used Markus

Buehren’s6 algorithm for optimal assignment to solve the minimum cost maximum

matching problem.

3.5.3 Rate Aggregation

The problem of aggregating ratings has been studied in measuring the quality of a

product based on ratings from several authors and review websites. In this field,

researchers try to address issues with regard to different rating scales (1-5 stars, 0-10

stars, etc.) and propose efficient rating methods (McGlohon et al. 2010).

Calculating the average rating for each product is one of the methods for aggregating

reviews. Despite Hu et al.’s (2006) study that showed that the average rating is not always

the best way of measuring the quality of a product, it is used widely for products on the

Web. In our study, we used the average rating to aggregate ratings provided by

crowdworkers through our Rate UI design. Once the average rating was calculated, we

6 http://www.mathworks.com.au/matlabcentral/fileexchange/authors/26973

58

sorted the rating and created a new ranked list for image similarities. We called this new

rating “crowd-provided rank” and compared it with gold-standard ranking.

3.6 Measuring the System Performance

Our system’s performance was calculated by comparing the ranking provided by

aggregating crowdworkers’ ranking/rating with the gold-standard ranking of the Corel-

Princeton dataset. Rank correlation is a statistic that can measure the relationship between

rankings: the rank correlation coefficient measures the degree of similarity between two

rankings and can be used to define the significance of the relation between them. The

Spearman 2 and Kendall � are two popular rank correlation coefficients.

Our preliminary studies on using Spearman 2 or Kendall � for performance

measurement showed that they provide the same results but using Spearman 2 produced

were more highlighted results. In our research, we used the Spearman 2 for the rank

correlation coefficient between the aggregated ranking by crowdworkers for each UI

design and the gold-standard data. While 2 is a nonparametric value, we also calculated

Spearman’s footrule distance to compare rankings.

3.6.1 Spearman �

The Spearman rank-order correlation is a nonparametric version of the Pearson

product–moment correlation, and the Spearman correlation coefficient 2 measures the

level of dependence between two variables. The Spearman 2 can only be calculated for

ranked lists and if the data are not ranked, we have to first rank the data and then calculate

59

the Spearman 2. In some cases, there are two identical values in the list (ties). In such

situations, we have to take the average of the ranks that they would have if they were not

identical.

The Spearman 2 for ranks without ties is calculated:

2 � 1 −	 6∑5�

"�"
 − 1�

In this formula, 5� is the difference in paired ranked lists and " is the size of the list.

For lists with ties, the Spearman 2 is:

2 � ∑ �
� −
̅��7� − 78��
9∑ �
� −
̅�
� ∑ �7� − 78�
�

3.7 Analysis and Results

Since workers’ responses for Rank and Sort methods were ranked lists, we aggregated

them using the scaled footrule aggregation (SFO) method (Dwork et al. 2001). For the

Rate method, we aggregated rates for each image by computing the weighted average on

rates given by workers, and then sorted the list according to this new calculated rate and

created a ranked list. To see how close the aggregated ranked lists provided by these three

methods were to the gold-standard rank, we calculated the distance between aggregated

results and the gold-standard ranking using the Spearman ρ correlation metric.

The ranking UI design with the higher rank correlation coefficient with the gold-

standard ranking had better performance. Results showed that the Spearman rank

60

correlation coefficient (rho) of the results produced using the Rate UI design was higher

than the other two methods. This implies that the ranked list produced by users from the

Rate user interface was more similar to the gold-standard ranked list created by

professionals and therefore that using the Rank UI design leads to relatively higher

performance results (Table 3-1).

Table 3-1. Spearman ρρρρ for different UI designs

Distance between gold-standard ranking and Experiment1 results

Airplane
Dataset

Car
Dataset

Flower
Dataset

Fruit
Dataset

Horse
Dataset

Model
Dataset

Rank UI
Spearman ρ

rank
correlation

0.54 0.51 0.66 0.58 0.8 0.12

Sort UI
Spearman ρ

rank
correlation

0.79 0.84 0.86 0.59 0.77 0.23

Rate UI
Spearman ρ

rank
correlation

0.80 0.88 0.91 0.73 0.91 0.32

3.8 Experiment2: Image Categorization

The second experiment’s goal is to study the impact of UI design on the TET with

MTurk. We designed two different UIs for defining categories of images. Similar to

Experiment1, HITs were sent to MTurk with $0.05 rewards. Caltech-256 dataset was

used for selecting categories and corresponding images. The system we used to create

HITs and collect and store results is described in Figure 3-5.

61

Figure 3-5. Experiment2

3.8.1 Type1 UI design

In the Type1 UI design, we put radio buttons for categories under each image and

asked workers to select one category for each image. (Figure 3-6)

Figure 3-6. Type1 UI Design

62

3.8.2 Type2 UI Design

Studying a more complex user interface (UI) is the goal of the Type2 UI. For this

purpose, we first put all images at the top of the HIT web page and at the bottom of the

page, we asked users to select image IDs which belonged to a specific category. Due to

limited space on MTurk’s main HIT page, users had to scroll up and down to select image

IDs for each category. (Figure 3-7)

Figure 3-7. Type2 UI Design

63

3.8.3 Analysis and Results

For the first run we selected 12 images from 5 different categories and 20 HITs. For

the Type1 UI design, it took around seven hours to have 20 completed HITs and only

three workers rejected the HIT, but for the Type2 UI design, it took more than 16 hours to

have 20 completed HITs and 12 workers rejected the task (Table 3-2).

Table 3-2. Experiment2 First Run

Experiment2 First Run Results; 12 Images From 5
Categories

Type1 UI Type2 UI

Total HITS 20 20

Total Cost $1 $1

Average Task Time (s) 76 139

TET
7 Hours,
20 Mins

16 Hours,
40 Mins

Number of Rejected
HITs

3 12

Users provided nearly 100% correct answers in both UI types. However, the average

completion time for Type1 is less than the time for Type2. In Type 2, more workers

rejected HITs, meaning that workers were not motivated in doing the HIT on Type2. This

increased the TET of the task and higher TET results in increased latency of the

crowdsourcing task.

For the second run, we selected 21 images from eight different categories and 20 HITs

were created for each UI. This time, it took around 24 hours to have 20 completed HITs

for Type1, but for Type2 after 38 hours we received only 11 completed HITs. Hence, had

to terminate the task. Checking the number of workers who did not complete the HIT

64

showed that in Type1, seven workers accepted the task but did not complete it and

returned the HIT; and for Type2, 62 workers rejected the task (Table 3-3).

Table 3-3. Experiment2 Second Run

Experiment2 Second Run Results; 21 Images From 8
Categories

Type1 UI Type2 UI

Total Completed HITS 20 11

Total Cost $1 $1

Average Task Time (s) 137 244

TET
23 Hours,
50 Mins

38 Hours

Number of Rejected HITs 7 62

These results show the importance of designing a task UI which creates more interest

among the workers. If workers are not interested in the HIT UI design, they will reject the

HIT. As a result, the latency of crowdsourcing will increase.

3.9 Discussion

Results of our Experiment1 highlighted the importance of lowering the extraneous

cognitive load of UI design and its effect on the performance of results produced by

workers. While all three parts of the experiment cost the same, using the interface which

results in higher performance responses from workers will make the crowdsourcing task

more affordable.

Taking a closer look at these three UI designs, we can say that in the Rank UI design,

users have to compare the whole 10 images with each other and the query image to find a

rank for each image. While the number of images to compare is more than Miller’s magic

65

number 7±2 (Miller 1956), we believe it imposes a higher cognitive load on the task

resulting in lower performance and poorer results.

In the Sort UI design, users have to move images to produce a ranked list and moving

one single image makes the whole list move. These movements of the images on the page

distract the user from the original task and place more cognitive load on the task. The

number of user clicks is also higher in this UI design which is not recommended by CLT.

Unnecessary distracting features and a high number of clicks place more cognitive load

on the task and tend to lead to poor results from users.

We agree that the reason that workers perform better with the Rate UI design is that

they can focus on each image by itself and assign a more accurate similarity score. This

reduces the number of comparisons from 10 to two resulting in a lower cognitive load.

These results suggest that if the task has a higher intrinsic cognitive load, poorly designed

UI design with a high extraneous cognitive load can have a negative effect on workers’

performance.

In Experiment2, we studied the impact of UI design on the TET of a crowdsourcing

task. In this experiment, increased cognitive load and higher complexity of the UI design

did not affect workers’ performance but it contributed to reduced levels of willingness to

accept and finish the task. If workers do not want to accept and finish the task, requesters

will not receive their desired number of responses. This means higher system latency and

also contributes to the increased probability of incomplete crowdsourcing tasks.

Results of our experiments highlight the demand for more research on UI design of

MTurk HITs from the aspects of cognitive load and usability. We examined the impact of

66

UI design on two visual crowdsourcing tasks. The cognitive load aspect of HIT design in

textual tasks can also be studied. In our future work, we will use the findings of this study

to design crowdsourcing tasks.

3.10 Conclusion

In light of the limitations of the generic user interface (UI) in MTurk, it is important to

design HIT UIs that reduce poor quality results and increase worker productivity. This

has the potential to reduce the execution time of the crowdsourcing task. In this thesis, we

studied the impacts of user interface (UI) design of HITs in the MTurk crowdsourcing

platform on workers’ performance and total execution time (TET). Our experiments show

that designing a HIT UI with the goal of reducing the cognitive load will help workers

focus on the task and achieve better performance. In some crowdsourcing tasks (like our

image ranking task), it is not possible to differentiate false results and reject workers’

responses, so requesters have to pay all workers. We showed that, in such tasks, it is

possible to have higher quality results by eliminating the factors that lead to workers’

poor performance, with the same cost. This means that we have a more cost-effective

crowdsourcing task.

We also investigated the effect of UI design on the demand for the task. Our results

showed that MTurk workers prefer to accept tasks with less complex UI designs. If the

user interface (UI) is perceived to be complex from the workers’ point of view, they are

less likely to accept the crowdsourcing tasks. As a result, it takes more time to complete

the task and the crowdsourcing system’s latency will increase. To have a crowdsourcing

67

system closer to real time, we suggest spending more time on designing the HIT UI to

create a UI with less complexity.

Results of our experiments showed that by spending more time on HIT UI design,

requesters can achieve high quality results in a shorter time. The results can help to

develop guidelines for making crowdsourcing tasks more efficient with less latency. We

used the findings of this research in our next experiment in Chapter 5.

Chapter 4

4 Content-Based Image Retrieval System

In this chapter, we provide the architectural designs for content-based image retrieval

(CBIR) system using SIFT, SURF, SURF 128 and ORB features. We used this system to

search for similar images based on a given query image. The search results will be

crowdsourced. The crowdsourcing part of our system which used to study the effect on

the performance of the hybrid Human--MachineCBIR system is explained in Chapter 5.

4.1 Overview

Advances in image acquisition techniques have resulted in the creation of large image

databases. In this scenario, it is necessary to develop a system to manage these databases,

and the need to provide a high performance image search system is highlighted. Content-

based image retrieval (CBIR) is the use of computer vision applications to search for

images in these large databases and, through using these systems, the contents of the

images are analysed and indexed. This content can be global such as colour, shape or

texture or it can be information about specified local areas of the image.

69

SIFT, SURF and ORB are three types of local feature detector/descriptors that are

widely used in CBIR systems. SIFT claims to have a very high performance but while

SIFT features are 128-dimension vectors, it has a very high computation cost. SURF and

ORB features are 64-dimension vectors and have a lower level of computation cost and

they claim to have the same performance as SIFT.

As a part of our research, we designed four CBIR systems using each of the SIFT,

SURF, SURF 128 (128-dimension version of SURF) and ORB feature extractors. We

compared the performance of the system using these feature extractors and sent the

results of this system to the second part of our research, which is a crowdsourcing system.

In this chapter, the CBIR system design, experiments and results are explained.

4.2 CBIR Architecture and Implementation

Our computer image similarity search system has two subsystems. The first subsystem

is a MATLAB (FeatureExtractor) code that we used to extract image features and create a

feature database. This part was done once only for each feature type (SIFT, SURF,

SURF 128 and ORB) and the created database was used in the C# application (CBIR) to

take the query image and search for similarities. In the next sections, these subsystems are

explained in detail.

4.2.1 Feature Extraction

Feature extraction is the first step in CBIR systems. In this step, the visual contents of

all images in the database are detected, extracted and described by multidimensional

70

feature vectors and can be global or local. A global descriptor uses visual features of the

whole image, whereas a local descriptor divides the image into parts or regions and

describes the visual features of the regions of the image.

Colour, texture and shape are the three most widely used features. Colour descriptors

are three-dimensional (3-D) values and are proven to be a very discriminating feature for

object recognition. Texture features are not as well-defined as colour features and

describe the direction and granularity of the structuring elements of a region. Texture

features can describe the content of many real-world images such as fruit skin, clouds,

trees and fabrics. While colour and shape features can be used in image retrieval of any

type of image, shape features are mainly used for domain-specific images such as human-

made objects (Rui et al. 1999; Long et al. 2003).

 SIFT

In 1999, Lowe proposed a new local image feature detector/descriptor method called

Scale-Invariant Image Transform (SIFT) (Lowe 1999). SIFT transforms the image to a

large collection of 128-dimension feature vectors which are invariant to image

translation, scaling and rotation, and partially invariant to illumination changes and affine

or 3-D projection. SIFT computes a histogram of local oriented gradients around the

interest point and stores the bins in a 128-dimension vector (eight orientation bins for

each of the 4*4 location bins) Figure 4-1 .

71

Figure 4-1. SIFT feature detector/descriptor

In our research we used Vedaldi7 technical implementation of SIFT. They define

“SIFT descriptor as a 3-D spatial histogram of the image gradients that characterize the

appearance of a keypoint. The gradient at each pixel is regarded as a sample of a 3-D

elementary feature vector, formed by the pixel location and the gradient orientation.

Samples are weighted by the gradient norm and accumulated in a 3-D histogram h which

(until normalization and clamping) forms the SIFT descriptor of the region. An additional

Gaussian weighting function is applied to give less importance to gradients further away

from the keypoint centre. Orientations are quantized into eight bins and the spatial

coordinates into four each.”

The 3-D histogram (consisting of 8×4×4=128 bins) is stacked as a single 128-

dimensional vector, where the fastest varying dimension is the orientation and the slowest

is the y spatial coordinate (Figure 4-2).

7 http://www.vlfeat.org/api/sift.html

72

Figure 4-2. SIFT descriptor

 SURF

Due to the large vector size of SIFT features, (Ke & Sukthankar 2004) tried to apply

PCA on the gradient image and reduce the vector size to 36. The proposed PCA-SIFT is

fast for matching but less distinctive. Another variant of SIFT is called GLOH

(Mikolajczyk & Schmid 2005) which is proven to be more distinctive, but as it has the

same number of dimensions as SIFT, it is also computationally very expensive.

Another feature detector/descriptor is SURF (Speeded-Up Robust Features) (Bay et al.

2006) and SURF features are 64-dimension or 128-dimension vectors. Similar to SIFT,

SURF is also invariant to scale and rotation and is claimed to be distinctive and robust

and can be computed much faster than other methods.

 ORB

Building on top of the FAST keypoint detector (Rosten & Drummond 2006) and

BRIEF descriptor, (Rublee et al. 2011) proposed new feature detector/descriptor called

ORB (Oriented FAST and Rotated BRIEF). Based on the characteristics of FAST and

73

BRIEF, the ORB descriptor has good performance and low cost and it outperforms SIFT

and SURF in speed.

In our research, we used SIFT, SURF and ORB features and we compared the

performance of our image similarity search system using each feature detector/descriptor

method.

 Feature Extractor Application Implementation

Based on the properties of the feature detector/descriptor algorithm, each feature

extractor function has some parameters which make it possible to extract a variable

number of features from images. These functions are able to extract as low as five and as

many as 7000 features from each image. An increased number of extracted features from

each image will result in a larger size dataset and may improve the performance of the

image search system. However, at the same time, it will increase the computation cost of

the system and make the whole process very slow. We designed an object detection

system to study the effect of an increased number of features on the system performance

and to decide on an optimal number of extracted features. We called this program

“FeatureCount” and conducted experiments on the number of features to extract from

images using this program. Based on the results of our experiments, we decided to use

default parameter settings of all functions.

To create an indexed database of features, we developed a MATLAB program called

“FeatureExtractor”. This program has four main functions to extract SIFT, SURF,

SURF128 and ORB features. SIFT features are extracted using the VLFeat library

74

(Vedaldi & Fulkerson 2010): SURF and ORB features are extracted using MATLAB’s

built-in functions. In all four functions, extracted features are stored in the memory for

further computations.

4.2.2 Indexing Features

After feature extraction, the next step in CBIR systems is measuring the similarity of

images using the database of extracted features. Several methods have been proposed

(Rubner et al. 2000; Grauman & Darrell 2005; Grauman 2007; Grauman 2010) but (Sivic

& Zisserman 2003) is one of the simplest and most efficient methods. They proposed a

text retrieval approach in which a vocabulary tree of features is constructed using k-

means clustering. Visual features are then indexed after calculating tf-idf (term

frequency-inverted document frequency) and, at the retrieval stage, images are ranked

based on their tf-idf score. According to definitions8 the “tf-idf is a weight often used in

information retrieval and text mining. Tf-idf weight can be used as a statistical measure

for evaluating the importance of a word to a document in a collection or corpus. The

weight increases by increased number of times a word repeats in the document but is

offset by the frequency of the word in the corpus.”

The tf-idf weight is a product of term frequency (TF) and inverse document frequency

(IDF). TF computes the normalized term frequency (the number of times a word appears

in a document) divided by the total number of words in that document and IDF computed

as the logarithm of the number of the documents in the corpus divided by the number of

documents where the specific term appears.

8 www.tf.idf.com

75

TF: Term frequency, measures the frequency of a term in a document. Due to

different size of document, it is possible that a term appears many more times in

long documents than in shorter ones. For normalization purpose, the term

frequency is often divided by the document length (the total number of terms in the

document) as a way of normalization:

�:��� � �;�<�=>	?:	��<=@	�=><	�	A11=A>@	�"	A	5?��<="�B?�AC	"�<�=>	?:	�=><@	�"	�ℎ=	5?��<="� �

IDF: Calculates the importance of a term. It is known that certain terms with

little importance, such as "is", "of" and "that", may appear many. In order to weight

down the frequent terms while scaling up the rare ones, we compute the following:

�5:��� � 	 logH�
B?�AC	"�<�=>	?:	5?��<="�@

;�<�=>	?:	5?��<="�@	I��ℎ	�ℎ=	�=><	�	�"	���

The tf-idf weight is the product of TF and IDF:

�: − �5: � �: × �5:

We use the same concept to create our feature dataset. In image similarity, terms are

cluster centres, documents are images and word corpus is the whole image set. Using

such assumptions, the tf for each cluster centre is computed as:

�:��� � � ;�<�=>	?:	��<=@	�C�@�=>	�	A11=A>@	�"	�<AK=	�
B?�AC	"�<�=>	?:	�C�@�=>@	�<AK=	�	ℎA@	:=A��>=@	�"�

The idf can be computed as:

76

�5:��� � 	 logH�
B?�AC	;�<�=>	?:	�<AK=@

;�<�=>	?:	�<AK=@	I��ℎ	:=A��>=@	�"	�C�@�=>	��

Similar to text td-idf, if a cluster is repeated in all images, it has the lowest importance.

This is explained in Figure 4-3.

77

Figure 4-3. tf-idf for clusters

To make the whole search process faster, we developed another MATLAB application,

calculated tf-idf for all cluster images and saved them in a MS SQL Server database. In

our search application, we simply pulled the data from the memory and used them. We

created four separate databases for SIFT, SURF, SURF128 and ORB features.

4.2.3 Search for an Image

Once features are extracted from an image, they can be used in a manner similar to

keywords in text retrieval (Baeza-Yates & Ribeiro-Neto 1999). Each feature extracted

from the query image is compared with all cluster centres to find the cluster to which they

78

belong. The search engine will then compute the tf-idf score for relevant cluster images.

The list of candidate images is returned ranked in order of their tf-idf score.

Figure 4-4. Searching for similar images

4.2.4 Selecting Top 10 Images

Studies have shown that around 80% of Web searchers view no more than 10 to

20 results (Jansen & Spink 2003; Spink et al. 2002; Jansen et al. 2000; Jensen 2011). In

79

our crowdsourcing subsystem, we put the results of the CBIR system in a web page and

asked crowdworkers to rate them: based on our previous studies, putting a higher number

of images in the crowdsourcing task increases the cognitive load associated with the task

and, as a result, the system execution time increases and performance decreases. Based on

these studies, we selected the top 10 images from the top 50 similar images returned by

the CBIR system and prepared them as input for the crowdsourcing subsystem.

4.2.5 Measuring the System Performance

The CBIR system output is a list of images similar to the query image. These images

are ordered based on their level of similarity to the given query image. To measure the

performance of the CBIR system, we had to compare this ranked list with the gold

standard provided in the Corel-Princeton image dataset. We used the same method as the

one we used in Chapter 3 which is calculating the Spearman 2 and Spearman Distance to

evaluate the system performance.

4.2.6 Dataset

In order to assess the performance of our image similarity search system, we needed an

image dataset which contains gold-standard data. Corel-Princeton9 is an image similarity

benchmark dataset which has been created at Princeton University using Corel image

sets. Our study’s dataset contains eight query images (airplane, beach, car, flower, horse,

fruit, model, columns) and for each query image there is a set of 48-59 images grouped in

a folder named by the category of query image (airplane, car …). All images in each

9 http://www.cs.princeton.edu/cass/benchmark/

80

folder are similar to the query image related to that folder. These images are ranked based

on a similarity measure. Ground truth is created based on a human subject study of

121 people. In our studies, we used six query images and their corresponding similar

images to construct our feature dataset and to search for similarities.

4.3 Analysis and Results

We developed our proposed CBIR system using C# programming language and we

used Microsoft SQL Server 2012 as the database to save image features. We evaluated

this CBIR system using the Corel-Princeton dataset. We used six out of eight sets of the

Corel-Princeton dataset (airplane, car, flower, horse, fruit and model). In each round of

the experiment, the query image from each set was selected and fed into the CBIR system

to search for similar images. The top 10 similar images were then selected and removed

from the image set to create a new set. For the newly created image set, we again repeated

the feature database creation, as explained in Section 4.2.2.1. We repeated this process

until the remaining images from each set were less than 10. This process was repeated for

each set of six image sets and, as a result, we increased the number of “query-list of

similar images” from six to 20.

This experiment was repeated extracting SIFT, SURF, SURF128 and ORB features

and the resulting ranked list of images were saved for analysis. Figure 4-5 to Figure 4-8 are

some samples of the query image and the ranked list of images returned using SIFT and

SURF and the gold-standard rank.

81

Figure 4-6. Top 10 similar images to the query image using SIFT feature (ordered from left to right)

Figure 4-7. Top 10 similar images to the query image using SURF feature (ordered from left to right)

We calculated the Spearman 2 and Spearman Distance for each set of “query-ranked

list of similar images” with the gold standard (Table 4-1,Table 4-2 and Figure 4-9).

Figure 4-8. Gold-standard

Figure 4-5. Sample Query Image

82

Table 4-1. Spearman � between ranks using SIFT, SURF, SURF128, ORB with the Goldstandard

Spearman 2

ImageSet SIFT SURF SURF128 ORB

airplane1 -0.1273 -0.41818 -0.2848 0.3697

airplane2 0.09091 -0.33333 -0.1636 0.06667

airplane3 -0.3576 0.10303 0.4303 -0.6364

car1 -0.1879 -0.29697 0.01818 -0.1152

car2 0.11515 0.06667 0.68485 0.09091

car3 -0.5394 -0.47879 0.24848 -0.0545

car4 -0.3939 0.24848 0.04911 0.01818

flower1 0.55152 0.27273 -0.1273 -0.4061

flower2 0.53939 -0.10303 0.06667 0.01818

flower3 -0.1636 -0.11515 -0.4303 0.30909

fruit1 -0.3576 -0.21212 0.2 -0.103

fruit2 -0.3455 0.22424 0.66061 0.58788

fruit3 0.50303 -0.18788 -0.1273 -0.0909

horse1 0.40606 0.52727 0.45455 -0.3212

horse2 0.00606 0.68485 -0.15151 -0.2485

horse3 -0.0909 0.6 0.45455 0.10303

model1 0.27273 -0.23636 -0.1515 0.47879

model2 0.52727 0.24848 0.17576 -0.1273

model3 -0.297 -0.0667 0.72121 0.28485

model4 -0.1273 -0.30909 0.06667 0.04242

Average 0.001206 0.0109075 0.133065 0.01333

83

Table 4-2. Spearman Distance between ranks using SIFT, SURF, SURF128, ORG and Goldstandard

Spearman Distance

ImageSet SIFT SURF 64 SURF128 ORB

airplane1 38 42 34 24

airplane2 32 42 36 30

airplane3 42 34 24 46

car1 32 38 36 40

car2 30 34 16 32

car3 46 40 28 32

car4 40 24 31 32

flower1 22 24 38 46

flower2 20 32 34 30

flower3 55 36 44 26

fruit1 42 38 28 40

fruit2 40 26 26 20

fruit3 20 38 36 32

horse1 24 22 22 42

horse2 28 20 20 38

horse3 36 20 22 28

model1 30 36 36 20

model2 22 28 28 36

model3 40 55 14 28

model4 40 42 34 32

Average 33.95 33.55 29.35 32.7

84

Figure 4-9. Spearman Distance for different feature extractors

4.4 Summary

In this chapter, the architectural design of our CBIR system was explained. We used

this system to create a ranked list of similar images to the query images from the Corel-

Princeton dataset. We examined different feature detector/descriptors to create these

ranked lists. The ranked list of images from this part of our experiment was used in the

second part of our experiment to be re-ranked by crowdworkers. In the next chapter, the

crowdsourcing system and changes in the performance of the system are explained in

detail.

0

10

20

30

40

50

60

Image Sets

Spearman Distance
SIFT

SURF 64

SURF128

ORB

Chapter 5

5 Hybrid Human–Machine CBIR System

In the previous chapter, the architecture of the computational CBIR system was

explained. The results from the CBIR system were used as input to the crowdsourcing

subsystem of the hybrid CBIR system. This chapter presents our experiment and the

hybrid human–machine CBIR system design and the results of our study on the effect of

using the power of the crowd on an image similarity search.

5.1 Overview

During the past decades, the evolution of information technology has resulted in the

design of very powerful computers and algorithms that can do repetitive and complex

tasks in a fraction of a second. Nowadays, computers are involved in every aspect of

human life to help us to perform tasks more rapidly and more accurately. Despite these

advances, there are still tasks which computers perform very poorly, but which humans

perform with a high accuracy level. One of these tasks is image similarity check. Most

image similarity algorithms have a very low performance level in relation to the high

complexity level of the task. By taking a quick look at some image search engines (i.e.

86

Google, Bing), we can see that they have poor query-by-example (QBE) image search

results (Figure 5-1 and Figure 5-2). On the other hand, humans perform very well in

comparing images and measuring the similarity between two images. In such cases,

crowdsourcing can be a good solution to improve the accuracy of a system. However, the

problem with using only crowdsourcing in image similarity is that with large image

databases, it is not possible to ask humans to search for similar images based on a given

query image. It will be a time-consuming and expensive task.

Figure 5-1-Example of Google Query-by-Image search returning irrelevant results

87

Figure 5-2- Another sample of Google QBE returning irrelevant results

Several studies have tried to combine the power of the human computation with the

computational power of the machine and design a hybrid human–machine system to

improve the performance (Wang et al. 2012; Yan et al. 2010; Franklin et al. 2011). These

studies have confirmed that by involving the crowd in tasks that computers do not

perform well, the overall performance of the system can be increased.

88

5.2 Research Questions and Hypotheses

As previously mentioned, computational algorithms are very limited in describing the

conceptual information of images. This limitation has caused very low performance in

CBIR systems. Furthermore, the human is highly capable of comparing images and easily

defines the degree of similarity between two images. Therefore, our research question is:

Can the power of the crowd cover the limitations of a CBIR system and does

crowdsourcing improve the performance of a CBIR system using a hybrid human–

machine system?

The specific hypothesis is:

H3: Involving crowds in a CBIR system and designing a human–machine hybrid image

similarity search system will improve the overall system’s performance.

5.3 Research Design and Methodology

To test our hypothesis, we designed a simple CBIR system using four different feature

detectors/descriptors as the first subsystem of our hybrid system (the system architecture

was explained in Chapter 4). For the second subsystem, we crowdsourced the output

results of an image similarity search of the CBIR system. The performance of the system

was computed in each subsystem and compared with each other. In contrast, our goal is to

compare the performance of a pure CBIR image similarity search system using four

feature detector/descriptors (SIFT, SURF, SURF128 and ORB) with the performance of

hybrid Human–Machine image similarity search system.

89

Table 5-1. Research Design

Feature
Detector/Descriptor

Pure Computation CBIR
System Performance

Hybrid Human–Machine
System Performance

SIFT 20 ImageDatsets
Same 20 ImageDatasets

10 Unique Mturk Workers

SURF 20 ImageDatsets
Same 20 ImageDatasets

10 Unique Mturk Workers

SURF128 20 ImageDatsets
Same 20 ImageDatasets

10 Unique Mturk Workers

ORB 20 ImageDatsets
Same 20 ImageDatasets

10 Unique Mturk Workers

In the following section, the crowdsourcing subsystem, our experiment and the results

are described.

5.3.1 Selecting Crowdsourcing Platform

As noted in Chapter 2, there are different platforms that can be used to perform

microtasking crowdsourcing tasks. CrowdFlower and Amazon Mechanical Turk (MTurk)

are two very famous examples. We compared these two platforms to choose the best one

to match our requirements:

CrowdFlower is a crowdsourcing service founded in 2009 by Lukas Biewald and Chris

Van Pelt. In this microtasking platform, it is possible to provide gold-standard data along

with the requested task to measure the performance of each worker. CrowdFlower puts

the benchmark data within the actual task, compares the results provided with the

benchmark and calculates a quality factor for each worker. Based on the quality factor,

crowdsourcers can accept or reject responses of a specific worker.

CrowdFlower provides a very limited tool to define the crowdsourcing task. This

limited tool prevents the design of tasks with different user interfaces (UIs). For text-

90

based crowdsourcing tasks, CrowdFlower is a very efficient tool but for tasks involving

images or other objects, CrowdFlower is not a good platform.

MTurk is another microtasking crowdsourcing platform: it was founded by Amazon

and is a marketplace in which requesters can put their tasks and workers can sign into the

system and do the tasks. Tasks on MTurk are called HITs (Human Intelligence Tasks)

and grouped into HITGroups. Requesters can assign each HIT to more than one worker to

be done. Tasks in MTurk typically take no longer than a minute but, at the extreme end of

the scale, some tasks may require an hour to complete. Some of the HITs are just one

single task but some can be a collection of, for example, comparison between 50 images.

MTurk provides two different tools for designing crowdsourcing tasks. The first one is

its online task designer which is limited but suitable for simple text-based tasks or

comparison tasks. MTurk also provides different programming APIs for developers to

design customised tasks programmatically. Using these APIs and a special task type

called “ExternalQuestions”, it is possible to design highly customised crowdsourcing

tasks.

MTurk is limited in defining quality control procedures. The only method provided

directly with MTurk is qualification tests. MTurk makes it possible to select from

predefined qualification controls or to design a specific qualification task and based on

the score of workers, they can gain access to the actual task. Our studies on defining

qualification tasks have shown that custom-designed qualification tasks will result in less

willingness of workers to accept the task. In other words, workers prefer to perform the

tasks without qualification controls and if a task has a qualification test fewer workers

91

will accept it. One solution to this problem is putting quality control constraints within

the task (such as time) and rejecting the worker’s response depending on the constraint.

This method is explained in Section 5.3.3.

Regarding the nature of our crowdsourcing task which deals with images and also our

plan to design an automated hybrid system, we found MTurk to be a more flexible

platform for our task.

5.3.2 What is the Right Amount of Reward for the Task?

The amount of reward in microtasking crowdsourcing plays an important role. While

(Harris 2011)suggest that an increased reward encourages the quality of results in a

resumé review task, other studies have shown that an increased reward results in

decreased response time and increased demand for the task but not necessarily increases

the quality in Amazon Mechanical Turk (MTurk) (Franklin et al. 2011; Faridani et al.

2011; Buhrmester et al. 2011; Mason & Watts 2009).

Rewards on MTurk vary from $0.01 to $50 and, based on the difficulty of the task and

the average time it takes to be completed by workers, the reward is calculated with the US

(United States) minimum wage of $8/hour.

To decide on the right amount of reward for our task that would attract workers and, at

the same time, not have a negative impact on the quality of responses, we examined

different rewards. Our crowdsourcing task was very simple and did not take more than

two minutes on average so we decided to study $0.01, $0.05 and $0.10 rewards. The

results of this preliminary study showed that $0.01 did not attract enough workers in our

92

defined time frame (two hours). As $0.05 and $0.10 rewards were not very different in

terms of the number of workers in the time frame and the quality of workers’ responses,

we decided to use $0.05 as the reward for our task.

5.3.3 HIT Quality Control

Unlike CrowdFlower, MTurk does not have a built-in mechanism to provide

benchmarked data for the tasks to test the quality of crowdworkers’ responses. Instead,

MTurk has a tool called “Qualification Type”. There are a number of predefined

Qualification Types such as Masters, Categorization Masters, Photo Moderation Masters,

etc. If requesters put one of these qualification requirements in the HIT design, only

workers with these qualifications will be able to perform the task. In our task, we set

Photo Moderation Masters as the qualification requirements of our HIT.

MTurk also gives requesters the ability to design custom qualification tests for their

HIT. In this case, workers had to pass the qualification tests in order to be able to perform

the task. Our preliminary studies showed that assigning custom-designed qualification

tests for HITs will result in a reduced number of workers who accept the task.

Another option to control the quality of crowdworkers’ responses is to define some

factors to detect and reject low quality results. In the case of our experiment, we decided

to put a hidden timer in the task to compute the time each worker spent to finish the task.

The time to complete our task correctly was from 90-180 seconds and we rejected the

tasks with time of less than 30 seconds as low quality results.

93

We also used another mechanism to prevent workers from skipping the task or entering

incorrect responses. We designed the task user interface (UI) in such a way that workers

had to complete the task and provide ratings for all images before submitting the

response. In addition to this, workers were not allowed to enter numbers out of our

specific range for rating images. (The user interface (UI) design of the task in explained

in Section 5.3.5.)

5.3.4 How Many Crowdworkers for Each HIT?

The power of microtasking crowdsourcing is that more than one worker performs the

task and studies have shown that these aggregated results are reliable and can even be

used as ground truth (Urbano et al. 2010). The number of crowdworkers performing a

single HIT varies depending on the type of the task and can be at least two. Studies by

Blanco et al. (2011) and Snow et al. (2008) have shown that three and four judgments are

sufficient to build the gold standard using crowdsourcing.

We examined the performance of aggregated results using different numbers of

workers. We examined five, 10 and 20 workers for our HIT. Our studies showed that

asking five workers to perform the task will result in low performance aggregated results.

While the performance of aggregated results from 10 workers was very close to the

performance using 20 workers, the price and execution time of the task using 20 workers

for each HIT were higher. Based on the findings of this study, we decided to ask

10 workers to perform each HIT.

94

In MTurk, to assign the HIT to more than one crowdworker, we can set the number of

assignments to our desired number. MTurk then will create these assignments and allow

crowdworkers to accept them and perform the job. Using this process, MTurk prevents

crowdworkers from performing the HIT more than once and we can make sure that the

results are unique and there are no duplicates. Crowdworkers are allowed to accept other

HITs that we publish. In our experiment, we submitted 80 HITs, each with

10 assignments (total of 800 HITs): we had 796 accepted HITs with 248 unique workers

and approximately 75% of workers performed more than one HIT during our experiment.

5.3.5 User Interface Design

Our studies in Chapter 3 showed that the user interface (UI) design of crowdsourcing

tasks affects the performance of crowdworkers’ responses. For this part of our

experiment, we used the Rate UI design, which had the higher performance of the three

UI designs, for our HITs. In a very similar way to our experiment in Chapter 3, we put the

query image and the images returned from the CBIR system in their original ranking into

an HTML page and asked crowdworkers to rate the degree of similarity of each image

with the given query image.

As previously noted, we put some controls in the UI design to prevent cheaters or

workers who tried to skip performing the task. One of the mechanisms we used to ensure

that workers did not skip the task is that they were allowed to submit the task only when

they provided ratings for every one of the 10 images on the page. The advantage of using

this procedure is that we could make sure that workers provided a rating for each image;

however, this rating might not necessarily be a good rating. Another control we put inside

95

the HIT page was that workers were allowed to enter a scale in our HIT provided it was

in the specific range and any number out of the range was not accepted by the system. By

using this control, we could eliminate an out-of-range rating; however, again we could

not make sure that the provided rating was an accurate and careful rating.

 Rating Scale

There are several rating scales used in recommendation or review systems. Some

systems use 1-10 scales and many other systems use 1-5 rating scales (IMDB10, NetFlix11,

Movielens (Miller et al. 2003)): in our experiment, we decided to use a 1-5 rating scale.

We asked crowdworkers to rate an image 5 if the image was very similar to the query

image and 1 if the image was not very similar to the query image. Figure 5-3 presents a

screenshot of a HIT.

10 http://www.imdb.com/
11 https://www.netflix.com/

96

Figure 5-3. HIT screenshot

5.3.6 Aggregating Crowdsourced Responses

Similar to our user interface (UI) study (Chapter 3), we computed the average of the

ratings to aggregate the crowd’s responses.

In our research, we used the Spearman 2 for the rank correlation coefficient between

the aggregated ranking by crowdworkers for each UI design and the gold-standard data.

While 2 is a nonparametric value, we also calculated Spearman’s footrule distance to

compare rankings.

5.4 Experimental Results

We used the system we designed in Chapter 3 to create HITs and collect results. This

system consists of three applications (Figure 5-4). The first part is the CBIR system that

we designed in Chapter 4. The second part of this system comprises PHP scripts and a

97

MySQL database used to receive information from the CBIR system (QueryImage-

RankedList pairs) to create HIT HTML pages. The final part of the system is another C#

application developed to create the HITs, send them to MTurk and programmatically

collect the crowd’s responses. We used MTurk C# API for this part of the system.

The difference between this experiment and the Chapter 3 experiment is that in this

experiment, we did not use random images in our HITs. The HIT pages were created

using the QueryImage-RankedList pairs of the CBIR system as explained in Chapter 4.

As was also explained in Chapter 4, we used six sets out of eight sets of the Corel-

Princeton dataset with their corresponding query image. Each query image was given to

the CBIR system as input and the top 10 images from the results were selected and

removed from the image set to create a new set. This process was repeated until the

remaining images from each set were less than 10. By using this procedure for each

image set result, we created 20 QueryImage-RankedList pairs. Each QueryImage-

RankedList pair was used to create an HTML page with the Rate UI designed HIT. In

total, 20 HITs were created using our C# application each with 10 assignments. This

process was repeated for each feature detector/descriptor (SIFT, SURF, SURF128 and

ORB) and in total we published 4*20 HITs and 800 assignments.

98

Figure 5-4. System overview

We designed our HITs with these controls:

• $0.05 reward

• instructions for users to do the task

• each worker was permitted to perform the task only one time

• added time stamps to the design of the HIT to identify and remove the workers

who just clicked and did not perform the task carefully

• for each HIT, we asked 10 workers to perform the task (10 assignments).

Table 5-2 shows the Spearman 2 for the different feature detectors/descriptors in

machine only (CBIR) and machine+crowd. Figure 5-5 to Figure 5-8 compare the Spearman

2 in the pure computational results and the results after involving crowds.

99

Table 5-2. Spearman � between machine only and machine+crowds ranking for using different feature types

Spearman�

SIFT SURF Surf128 ORB

Machine

only
Machine
+Crowd

Machine
only

Machine
+Crowd

Machine
only

Machine
+Crowd

Machine
only

Machine
+Crowd

airplane1 -0.1273 0.85107 -0.41818 0.8997 -0.2848 0.83538 0.3697 0.98359

airplane2 0.09091 0.94833 -0.33333 0.65654 -0.1636 0.84148 0.06667 0.68485

airplane3 -0.3576 -0.28747 0.10303 0.95099 0.4303 0.95441 -0.6364 0.80489

car1 -0.1879 0.93734 -0.29697 0.82675 0.01818 0.79 -0.1152 0.93

car2 0.11515 0.81961 0.06667 0.95417 0.68485 0.87175 0.09091 0.8997

car3 -0.5394 0.35976 -0.47879 0.56364 0.24848 0.79028 -0.0545 0.74164

car4 -0.3939 0.93582 0.24848 0.89091 0.04911 0.85595 0.01818 0.82471

flower1 0.55152 0.92075 0.27273 0.81818 -0.1273 0.88689 -0.4061 0.88681

flower2 0.53939 0.83891 -0.10303 0.82572 0.06667 0.79028 0.01818 0.8651

flower3 -0.1636 0.83538 -0.11515 0.93294 -0.4303 0.92402 0.30909 0.76693

fruit1 -0.3576 0.67273 -0.21212 0.67684 0.2 0.54776 -0.103 0.49083

fruit2 -0.3455 0.30909 0.22424 0.99392 0.52727 0.66061 0.58788 0.6383

fruit3 0.50303 0.13583 -0.18788 0.87879 -0.1273 0.88626 -0.0909 0.44928

horse1 0.40606 0.91515 0.52727 0.94833 0.45455 0.98481 -0.3212 0.91186

horse2 0.00606 0.95099 0.68485 0.97242 -0.15151 0.96363 -0.2485 0.9301

horse3 -0.0909 0.7805 0.6 0.89857 0.45455 0.93872 0.10303 0.91465

model1 0.27273 0.36426 -0.23636 0.75988 -0.1515 0.75758 0.47879 0.73172

model2 0.52727 -0.0614 0.24848 0.82675 0.17576 0.89362 -0.1273 0.92575

model3 -0.297 0.81495 -0.0667 0.64026 0.72121 -0.5627 0.28485 0.29879

model4 -0.1273 0.86323 -0.30909 0.3988 0.06667 0.07976 0.04242 0.8693

Average 0.001206 0.645242 0.010908 0.815705 0.1333065 0.734525 0.01333 0.77744

100

Figure 5-5. Spearman ρ for SIFT

Figure 5-6. Spearman ρ for SURF

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
p

e
a

rm
a

n
22 22

Image Datasets

SIFT SIFT Machine

SIFT Machine+Crowd

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
p

e
a

rm
a

n
22 22

Image Datasets

SURF
SURF Machine

SURF Machine+Crowd

101

Figure 5-7. Spearman ρ for SURF128

Figure 5-8. Spearman ρ for ORB

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
a

ir
p

la
n

e
1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
22 22

Image Datasets

SURF 128 SURF128 Machine

SURF128 Machine+Crowd

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

a
ir

p
la

n
e

1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
22 22

Image Datasets

ORB
ORB Machine

ORB Machine+Crowd

102

Results show that the Spearman 2 is increased by involving crowds in the image

similarity search for all four features in most of the datasets. The increased rank

correlation coefficient shows that the ranked list provided after crowdsourcing is more

similar to the gold standard and can be translated into a higher performance system.

Since Spearman 2 is not a scalar value, we decided to compute the Spearman Distance.

The following tables and figures show the Spearman Distance between machine-only

results and the gold standard, compared with the Spearman Distance between

machine+crowd results and the gold standard.

In Figure 5-9 to Figure 5-12 we can see how much crowdsourcing has decreased the

Spearman Distance with the gold standard and improved the search performance.

103

Figure 5-9. SIFT Spearman Distance

SIFT-Spearman Distance

Dataset Machine Machine+crowd

airplane1 38 13

airplane2 32 7

airplane3 42 38

car1 32 7

car2 30 14

car3 46 26

car4 40 8

flower1 22 7

flower2 20 14

flower3 55 10

fruit1 42 18

fruit2 40 24

fruit3 20 30

horse1 24 8

horse2 28 6

horse3 36 14

model1 30 26

model2 22 39

model3 40 14

model4 40 11

0

10

20

30

40

50

60

a
ir

p
la

n
e

1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
 D

is
ta

n
c
e

Datasets

SIFT
SIFT Machine

SIFT Machine+Crowd

104

Figure 5-10. SURF Spearman Distance

SURF-Spearman Distance

Dataset Machine Machine+Crowd

airplane1 42 9

airplane2 42 19

airplane3 34 6

car1 38 12

car2 34 6

car3 40 22

car4 24 10

flower1 24 10

flower2 32 14

flower3 36 8

fruit1 38 17

fruit2 26 2

fruit3 38 10

horse1 22 7

horse2 20 5

horse3 20 9

model1 36 17

model2 28 11

model3 55 34

model4 42 28

0

10

20

30

40

50

60

a
ir

p
la

n
e

1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
 D

is
ta

n
c
e

Datasets

SURF
SURF- Machine

SURF Machine+Crowd

105

Figure 5-11. SURF128 Spearman Distance

SURF128-Spearman Distance

Dataset Machine Machine+Crowd

airplane1 34 12

airplane2 36 13

airplane3 24 7

car1 36 14

car2 16 9

car3 28 13

car4 31 11

flower1 38 12

flower2 34 15

flower3 44 7

fruit1 28 21

fruit2 26 18

fruit3 36 12

horse1 22 3

horse2 20 5

horse3 22 6

model1 36 16

model2 28 9

model3 14 42

model4 34 30

0

10

20

30

40

50

a
ir

p
la

n
e

1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
 D

is
ta

n
c
e

Datasets

SURF128 SURF128 Machine

SURF128 Machine+Crowd

106

Figure 5-12. ORB Spearman Distance

ORB-Spearman Distance

Dataset Machine Machine+Crowd

airplane1 24 10

airplane2 30 16

airplane3 46 14

car1 40 9

car2 32 9

car3 32 16

car4 32 12

flower1 46 10

flower2 30 8

flower3 26 17

fruit1 40 23

fruit2 20 15

fruit3 32 25

horse1 42 8

horse2 38 6

horse3 28 8

model1 20 14

model2 36 8

model3 28 28

model4 32 13

0

10

20

30

40

50

a
ir

p
la

n
e

1

a
ir

p
la

n
e

2

a
ir

p
la

n
e

3

ca
r1

ca
r2

ca
r3

ca
r4

fl
o

w
e

r1

fl
o

w
e

r2

fl
o

w
e

r3

fr
u

it
1

fr
u

it
2

fr
u

it
3

h
o

rs
e

1

h
o

rs
e

2

h
o

rs
e

3

m
o

d
e

l1

m
o

d
e

l2

m
o

d
e

l3

m
o

d
e

l4

S
p

e
a

rm
a

n
 D

is
ta

n
ce

Image Datasets

ORB
ORB Machine

ORB Machine+Crowd

107

We also computed the average Spearman Distance for all image sets for each feature

detector/descriptor. Running t-Test confirms that results are statistically significant and

we can’t reject the null hypothesis of Machine+Crowd having higher performance.

Figure 5-13. Average Spearman Distance

Average Spearman Distance

 Machine Only Machine+Crowd

SIFT 33.95 17

SURF 33.10526 12

SURF128 29.10526 13.89474

ORB 32.73684 13.47368

5.5 Discussion

The results of our experiment highlight the effects of combining the power of crowds

with computational algorithms to improve the performance of the overall system.

Crowdsourcing is a very cost-effective way with reasonable speed and accuracy of

involving humanss in some areas of studies where computers have low performance.

Based on the findings of our studies, image similarity search or CBIR systems have good

potential to achieve performance improvement if combined with crowds. Our results

showed that the performance of the CBIR system significantly increased after re-ranking

the image list with crowdsourcing. Further experiments on a diverse range of image

datasets and crowdsourcing platforms will help in designing a universal hybrid platform.

108

The detailed analysis of results showed that the Spearman Distance was decreased in

almost all of the datasets for every feature detector/extractor except in three datasets

(SIFT fruit3 and model2, SURF128 model3).

Figure 5-14. SIFT model2 dataset–Sample of decreased Spearman Distance in hybrid system

109

Figure 5-15. SURF128 fruit3 dataset– Sample of decreased Spearman Distance in hybrid system

Two of the datasets in which Spearman Distance is decreased in hybrid system

contained images of humans. Studies on cross-cultural facial recognition suggest that

cultural differences affect the accuracy of judgments in facial emotions and expressions

(McAndrew 1986; Prado et al. 2013). In a universal crowdsourcing platform such as

MTurk, crowdworkers can be from a wide range of different cultures and we believe this

cultural diversity affected the performance of responses in the dataset that involved facial

comparison.

Taking a closer look at the SURF128 fruit3 dataset, we can see that the query image

for this dataset is not very clear and result images are not very similar to the query image.

We believe that this low level of similarity between query image and results lead to

decreased Spearman Distance in hybrid system.

110

Also results show that for SIFT air3 dataset, Spearman Distance in hybrid system is not

much higher than CBIR alone system (Figure 5-16). In depth study of this dataset suggests

that for this dataset, similar to SURF128 fruit3 dataset, result images have little similarity

to the query image and caused lower Spearman Distance in hybrid system.

Figure 5-16. SIFT air3 dataset-Hybrid system's performance is low but still higher than CBIR performance

We suggest that further investigation on the performance of crowds on different types

of image datasets can help to build the foundation of hybrid human–machine CBIR

systems.

5.6 Conclusion

The evolution in digital imaging and the interest in digital images have increased

enormously over the past few years and have resulted in the creation of large image

databases and highlighted the need for powerful and efficient image retrieval systems.

111

The limitations of text-based image retrieval systems have led to new-generation content-

based image retrieval (CBIR) systems in which shape, colour, texture or other features of

images are described and used for similarity search. Despite the advances in feature

detection/extraction methods, CBIR systems have a very low performance.

Conversely, humans compare images for similarity with a top-down overall view.

Having a conceptual view of images, humans can select a similar image from a collection

more effectively and accurately. Crowdsourcing can be a good solution to reduce the gap

but the problem with a database of images containing millions of images is that asking the

crowd to search for similar images is an expensive and time-consuming task.

Our proposed solution is a hybrid human–machine CBIR system that takes advantage

of computational algorithms to search within large image databases and of the power of

humans to improve the performance of returned results. We designed a system based on

the proposed solution and tested our hypothesis. The results confirmed that involving the

crowd in an image similarity search increased the overall performance of the system. Our

finding confirms that in some class of problems that machine can’t provide high

performance results (such as image similarity search), designing a hybrid system which

takes advantage of crowdsourcing can lead to higher performance and more accurate

results.

Chapter 6

6 Conclusions

The purpose of this research was to study the effects of combining the power of

humans or crowds with computational algorithms on the performance of the resulting

hybrid human–machine system. We designed our content-based image retrieval (CBIR)

system and combined it with Amazon Mechanical Turk (MTurk) as the microtasking

crowdsourcing platform. We also examined different user interface (UI) designs in our

crowdsourcing task and studied their effects on the performance of crowd-produced

results.

This chapter presents an overview of our findings, the implications and limitations of

our research, and suggestions for future work.

6.1 Review of Findings

6.1.1 Hybrid Human–Machine CBIR System

The evolution of the World Wide Web and the establishment of Web 2.0 as a read-

write web have provided a framework for user interactions and Internet users are today

113

not only information consumers but also data providers. The widespread availability of

Internet access and the new interactive web framework have given rise to a new

workforce which Howe coined as “crowdsourcing” (Howe 2006) in 2006. Since then,

many successful projects, platforms and applications have been implemented based on

using crowdsourcing (Wikipedia12, Threadless13, Amazon Mechanical Turk (MTurk)14,

CrowdDB (Franklin et al. 2011)) and studies have shown that results provided by

crowdsourcing are reliable and can even be used as the gold standard (Blanco et al. 2011;

Nowak & Rüger 2010).

Even though there have been extensive developments in Artificial Intelligence and

computational algorithms, there are still some tasks in which humans outperform

computers. Content-based image retrieval (CBIR) systems are an example of such

systems. In CBIR systems, images are represented as specific features and similarity

comparison is performed by comparing these features. Despite advanced methods for

comparing image contents and judging them on the degree of similarity, classic CBIR

systems lack performance.

On the contrary, humans are very fast and accurate at comparing images and at

defining the degree of similarity; therefore, crowdsourcing can provide a solution to

improve the performance of CBIR systems. To search for similar images to a given query

image within an image dataset, one solution is to crowdsource the whole image dataset

and ask the crowds to find similar images. The problem with this solution is that with a

large image dataset consisting of thousands of images, it is very time-consuming and

12 www.wikipedia.org
13 www.threadless.com
14www.mturk.com

114

expensive to crowdsource the whole dataset and search for similar images. Another

solution is to use a hybrid human–machine system in which computational algorithms

search the large dataset of images for similarities and crowds refine the results. To test

our specific hypothesis, we designed a hybrid human–machine CBIR system and

conducted an experiment using this system. We designed four query-by-example (QBE)

CBIR systems using four feature detectors/descriptors (SIFT, SURF, SURF128 and

ORB) to search for similar images based on a given query image. Using the Corel–

Princeton Image Similarity Benchmark, we compared the performance of the system

using each feature detector/descriptor against the gold standard provided by the dataset.

Our experiment showed that the systems using SIFT, SURF, SURF128 and ORB have

similar performance in a query-by-example image search.

For the crowdsourcing subsystem, we used Amazon Mechanical Turk (MTurk) and

designed a custom HIT using MTurk’s provided APIs. In the next step, we sent the results

of our QBE system to be re-ranked by crowdworkers. We conducted experiment and

measured the distance between the new ranked list and the gold standard (provided by

Corel-Princeton) and our results showed that the performance of the system increased

significantly. We conclude that a hybrid human–machine CBIR system can take

advantage of a computational algorithm to increase speed and reduce the cost of the

system and of crowdsourcing to increase the accuracy and performance.

6.1.2 User Interface Design

We noted that we used MTurk for our crowdsourcing task and designed our own HITs

using HTML (HyperText Markup Language) pages. MTurk presents all HITs in a limited

115

small area inside its main interface (iframe) and this limited visual space highlights the

importance of a well-designed user interface (UI). Previous research has focused on the

cognitive load aspects of UI design in software design (Juristo et al. 2007; Seuken et al.

2010; Liu & Ma 2010), and on the effects of cognitive load and its integration with

human–computer interaction (HCI) concepts on UI design (Huang et al. 2009; Antle &

Wise 2013). There are not enough studies on the effects of UI design on crowdsourcing

using the MTurk platform (Khanna et al. 2010).

We hypothesized that a poor UI design in MTurk crowdsourcing tasks reduces the

performance of crowd-produced results. In addition, a poorly designed UI reduces

crowdworkers’ willingness to accept the task and results in higher execution time for the

crowdsourced task. To test our hypothesis, we designed three UIs with different levels of

cognitive load (Rank, Sort and Rate) for an image-ranking task and carried out

experiments. Our results showed that crowd responses for the tasks using Rate UI design,

which we believed has a lower cognitive load, have a higher performance than for the

other two UI designs.

In another experiment, we designed two UIs with different complexity levels for an

image classification task to study the effect on the task execution time. Our results

confirmed that crowdworkers do not select HITs with complex UI designs and therefore

the total execution time of the crowdsourced task increases.

116

6.2 Research Implications

Computers are very good at complex calculations and storing data. They are also good

at storing and retrieving data: a computer never forgets facts or exaggerates. However,

computers are not good at everything and when adaptation to change, observation and

learning from experiments, or making judgments is needed, humans seem to perform

better. Crowdsourcing provides a fast, easily accessible and efficient way of benefiting

from the power of humans. Designing a hybrid human–machine system can take

advantage of computers’ calculation power and humans’ judgment to provide higher

performance results.

The outcomes of our research confirmed that a hybrid human–machine CBIR system is

more powerful than humans or machines alone and that a number of applications can

benefit from the performance of our proposed CBIR system. Crime investigators, gallery

and museum owners, or biologists can use such a hybrid system to filter pictures and

videos quickly and efficiently. However, the copyright and confidentiality of material

being published in crowdsourcing platforms are very important factors and should be

considered carefully by designers of these systems.

There are a number of research studies on hybrid human–machine systems and some

systems have been designed (e.g. CrowdDB for query processing (Franklin et al. 2011),

Soylent for text editing (Bernstein et al. 2010), VizWiz image search for blind people

(Bigham et al. 2010)), but there are still some fields of study in which humans defeat

computers in performance and where a hybrid system can act more efficiently.

Translating from one language to another is one of the tasks that computers can perform

117

very fast but with very low performance. Using a crowdsourcing method, results from a

machine translator can be verified by humans and improve the accuracy of translated text.

Urban traffic monitoring, Web crawling and city map correction are other examples

where a hybrid human–machine system can provide a better solution than traditional

computing.

6.3 Research Limitations

This study faced a number of limitations and we suggest future work to resolve them

and extend the findings.

As described in Chapter 4, we designed our CBIR systems using a single local feature

detector/descriptor for each of SIFT, SURF, SURF128 and ORB to simplify the system

implementation. Using more than one feature detector/descriptor in image search can

improve the search performance and we suggest implementing a more complex and

powerful CBIR system to improve the overall performance of hybrid human–machine

CBIR system. In addition, we used a text search method with Euclidian distance for

clustering, indexing and image retrieval. This method can be replaced with more

sophisticated image search methods such as Earth Mover’s Distance (EMD) (Rubner et

al. 2000).

Considering our research goal which was to study the query-by-example (QBE) image

similarity search, we used Corel-Princeton as our image dataset. The most important part

of our study is measuring the performance of the QBE system by comparing it with a

gold standard and the Corel-Princeton image dataset is the only dataset which provides

118

this gold standard. However, this dataset is limited in the number of images and also it is

no longer available. We constructed the dataset with all the available images that we

could purchase online and this reduced the size of our dataset. For future studies, we

recommend designing a new dataset with the gold standard.

To perform crowdsourcing, we used Amazon Mechanical Turk (MTurk) for the

microtasking platform. MTurk is not very flexible when it comes to selecting and

controlling crowdworkers. The only option to filter crowdworkers is through

Qualification Types and qualification tests which is not very effective and also can

discourage workers from accepting the task. In addition, unlike CrowdFlower, MTurk

does not provide any quality measure tool for crowd-provided responses and our only

option for quality control was built-in mechanisms that we added to our design (time

stamp, controlled data entry). Further studies can be conducted on different platforms and

on the quality control of crowd-provided responses.

6.4 Suggestions for Future Work

This research has answered some questions regarding the effectiveness of associating

crowds with computational algorithms and has provided a baseline for future studies.

In this research, we studied a few different UI designs for an image ranking and

classification task and their effects on crowdworkers’ performance in MTurk. While we

analysed only the cognitive load aspects of UI designs, an extended research similar to

usability design in software can reveal facts to improve the performance of crowd-

generated responses. Furthermore, the effects of UI design on other types of

119

crowdsourcing tasks (e.g. text manipulation, image annotation, etc.) can be studied in

depth. In addition, we analysed the cognitive load of each UI based on cognitive load

theory principles and practical measurement of the actual cognitive load of UIs can

confirm or reject our assumptions.

We conducted all of our experiments on MTurk as the microtasking platform. Other

platforms such as CrowdFlower and Microtask.com have different characteristics and

specifications to MTurk and comprehensive research on these platforms for different

crowdsourcing tasks can build a framework for choosing a platform based on the

crowdsourcing task.

7 References

Antle, A. & Wise, A., 2013. Getting down to details: Using theories of cognition and
learning to inform tangible user interface design. Interacting with Computers, 25(1).

Aquino, J., Nine jobs that humans may lose to robots. Available at:
http://www.nbcnews.com/id/42183592/ns/business-careers/t/nine-jobs-humans-
may-lose-robots/#.UykYefmSyiw [Accessed March 19, 2014].

Archak, N., 2010. Money, glory and cheap talk. In Proceedings of the 19th international

conference on World wide web - WWW ’10. ACM Press, p. 21.

Ayres, P. & Sweller, J., 2005. The Split-Attention Principle in Multimedia Learning. In
The Cambridge handbook of multimedia learning. Cambridge University Press, pp.
135–146.

Bannert, M., 2002. Managing cognitive load—recent trends in cognitive load theory.
Learning and Instruction, 12(1), pp.139–146.

Bay, H., Tuytelaars, T. & Gool, L. Van, 2006. SURF : Speeded Up Robust Features. In
Proceedings of the ninth European Conference on Computer Vision. pp. 404–417.

Bernstein, M. et al., 2012. Analytic Methods For Optimizing Realtime Crowdsourcing. In
Preceeding of Collective Intelligence conference -CI 2012.

Bernstein, M., 2011. Crowds in Two Seconds: Enabling Realtime Crowd-Powered
Interfaces. In Proceedings of the 24th annual ACM symposium on User interface

software and technology -UIST ’11. ACM Press, pp. 33–42.

Bernstein, M. et al., 2010. Soylent : A Word Processor with a Crowd Inside. In
Proceedings of the 23nd annual ACM symposium on User interface software and

technology. pp. 313–322.

Bigham, J.P. et al., 2010. VizWiz: Nearly Real-time Answers to Visual Questions. In
Proceedings of the 23nd annual ACM symposium on User interface software and

technology - UIST ’10. ACM Press, p. 333.

121

Blanco, R. et al., 2011. Repeatable and reliable search system evaluation using
crowdsourcing. In Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information - SIGIR ’11. ACM Press, p. 923.

Bozzon, A., Brambilla, M. & Ceri, S., 2012. Answering search queries with
CrowdSearcher. In Proceedings of the 21st international conference on World Wide

Web - WWW ’12. ACM Press, p. 1009.

Buhrmester, M., Kwang, T. & Gosling, S.D., 2011. Amazon’s Mechanical Turk: A New
Source of Inexpensive, Yet High-Quality, Data? Perspectives on Psychological

Science, 6(1), pp.3–5.

Burn-Callander, R., 2013. Artificial intelligence “will take the place of humans within
five years.” Available at:
http://www.telegraph.co.uk/finance/businessclub/technology/10274420/Artificial-
intelligence-will-take-the-place-of-humans-within-five-years.html [Accessed March
19, 2014].

Carterette, B., 2009. On rank correlation and the distance between rankings. In
Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval - SIGIR ’09. Boston, Massachusetts, USA:
ACM Press, p. 436.

Chang, N.S. & Fu, K.S., 1979. A Relational Database System for Images. Technical

report TR-EE 79-28.

Chang, S.-F. et al., 1997. Visual information retrieval from large distributed online
repositories. Communications of the ACM, 40(12), pp.63–71.

Chapelle, O. et al., 2009. Expected reciprocal rank for graded relevance. In Proceeding of

the 18th ACM conference on Information and knowledge management - CIKM ’09.
ACM Press, p. 621.

Chilton, L.B., Horton, J.J. & Miller, R., 2011. Task Search in a Human Computation
Market Categories and Subject Descriptors. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. pp. 1–9.

Copeland, A., 1951. A “reasonable” social welfare function. Seminar on Mathematics in

Social Sciences.

Davis, J., 2011. From Crowdsourcing to Crowdservicing. IEEE Internet Computing,
15(3), pp.92–94.

Diaconis, P., 1988. Group representations in probability and statistics S. S. Gupta, ed.,
Hayward, CA: Institute of Mathematical Statistics.

122

Diaconis, P. & Graham, R.L., 1977. Spearman’s Footrule as a Measure of Disarray.
Journal of Royal Statistical Society, pp.262–268.

Doan, A., Ramakrishnan, R. & Halevy, A.Y., 2011. Crowdsourcing systems on the
World-Wide Web. Communications of the ACM, 54(4), p.86.

Dontcheva, M., Gerber, E. & Lewis, S., 2011. Crowdsourcing and Creativity. In
Proceedings of CHI Conference on Human Factors in Computing Systems. ACM
Press, pp. 7–10.

Downs, J.S. et al., 2010. Are your participants gaming the system? In Proceedings of the

28th international conference on Human factors in computing systems - CHI ’10.
ACM Press, p. 2399.

Dwork, C. et al., 2001. Rank aggregation methods for the Web. In Proceedings of the

tenth international conference on World Wide Web - WWW ’01. ACM Press, pp.
613–622.

Eagle, N., 2009. txteagle: Mobile Crowdsourcing N. Aykin, ed. Internationalization,

Design and Global Development Lecture Notes in Computer Science, 5623.

Eickhoff, C. & Vries, A.P. De, 2008. How Crowdsourcable is Your Task ? In Workshop

on Crowdsourcing for Search and Data Mining. pp. 11–14.

Elson, J. et al., 2007. Asirra : A CAPTCHA that Exploits Interest-Aligned Manual Image
Categorization. In Proceedings of 14th ACM Conference on Computer and

Communications Security (CCS).

EMarketer, 2014. Smartphone Users Worldwide Will Total 1.75 Billion in 2014.
Available at: http://www.emarketer.com/Article/Smartphone-Users-Worldwide-
Will-Total-175-Billion-2014/1010536 [Accessed July 11, 2014].

Erickson, L.B., 2012. Leveraging the crowd as a source of innovation. In Proceedings of

the 50th annual conference on Computers and People Research - SIGMIS-CPR ’12.
ACM Press, p. 91.

Erickson, L.B., Petrick, I. & Trauth, E.M., 2012. Organizational uses of the crowd. In
Proceedings of the 50th annual conference on Computers and People Research -

SIGMIS-CPR ’12. ACM Press, p. 155.

Erry, C., Ginns, P. & Pitts, C., 2006. Cognitive load theory and user interface design:
Making software easy to learn and use. Available at: http://www.ptg-
global.com/PDFArticles/Cognitive load theory and user interface design Part 1
v1.0.pdf [Accessed March 8, 2013].

123

Fagin, R., Kumar, R. & Mahdian, M., 2004. Comparing and Aggregating Rankings with
Ties. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems. pp. 47–58.

Fagin, R., Kumar, R. & Sivakumar, D., 2003. Efficient similarity search and classification
via rank aggregation. In Proceedings of the 2003 ACM SIGMOD international

conference on Management of data. pp. 301–312.

Faridani, S., Hartmann, B. & Ipeirotis, P.G., 2011. What ’ s the Right Price? Pricing
Tasks for Finishing on Time. In Human Computation: Papers from the 2011 AAAI

Workshop. pp. 26–31.

Feinberg, S. & Murphy, M., 2000. Applying Cognitive Load Theory to the Design of
Web-Based Instruction. In Proceedings of 2000 Joint IEEE International and 18th

Annual Conference on Computer Documentation (IPCC/SIGDOC 2000). IEEE, pp.
353–360.

Franklin, M.J. et al., 2011. CrowdDB: Answering Queries with Crowdsourcing. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management

of data SIGMOD ’11. ACM Press, pp. 61–72.

Fritz, S. et al., 2009. Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land
Cover. Remote Sensing, 1(3), pp.345–354.

Geiger, D. et al., 2011. Managing the Crowd : Towards a Taxonomy of Crowdsourcing
Processes. In Proceedings of 17th Americas Conference on Information Systems.
Detroit, Michigan, pp. 1–11.

Goldman, M., Little, G. & Miller, R.C., 2011. Real-time collaborative coding in a web
IDE. In Proceedings of the 24th annual ACM symposium on User interface software

and technology. New York, New York, USA: ACM Press, p. 155. Available at:
http://dl.acm.org/citation.cfm?doid=2047196.2047215.

Gosling, S.D. et al., 2000. Should we trust web-based studies? A comparative analysis of
six preconceptions about internet questionnaires. The American psychologist, 59(2),
pp.93–104.

Grauman, K., 2010. Efficiently Searching for Similar Images. Communication of the

ACM, 53(6), pp.84–94.

Grauman, K., 2007. The Pyramid Match Kernel : Efficient Learning with Sets of
Features. Journal of Machine Learning Research, 8, pp.725–760.

124

Grauman, K. & Darrell, T., 2005. The Pyramid Match Kernel : Discriminative
Classification with Sets of Image Features. In Proceeding of the IEEE International

Conference on Computer Vision. Beijing, China, pp. 1458 – 1465.

Gupta, A. et al., 2012. mClerk: Enabling Mobile Crowdsourcing in Developing Regions.
In Proceedings of the 2012 ACM annual conference on Human Factors in

Computing Systems - CHI ’12. ACM Press, p. 1843.

Gupta, A. & Jain, R., 1997. Visual Information Retrieval. Communications of the ACM,
40(5), pp.70–79.

Harris, C.G., 2011. You ’ re Hired ! An Examination of Crowdsourcing Incentive Models
in Human Resource Tasks. In Proceedings of WSDM 2011 Workshop on

Crowdsourcing for Search and Data Mining. pp. 15–18.

Heer, J. & Bostock, M., 2010. Crowdsourcing Graphical Perception: Using Mechanical
Turk to Assess Visualization Design. In Proceedings of the 28th Annual Chi

Conference on Human Factors in Computing Systems. ACM Press, pp. 203–212.

Hirth, M., Hoßfeld, T. & Tran-Gia, P., 2011. Cost-Optimal Validation Mechanisms and
Cheat-Detection for Crowdsourcing Platforms. In Fifth International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing. Ieee, pp. 316–
321.

Howe, J., 2006. Crowdsourcing: A Definition. Available at:
http://www.crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
[Accessed August 2, 2013].

Hu, N., Pavlou, P.A. & Zhang, J., 2006. Can Online Reviews Reveal a Product ’ s True
Quality ? Empirical Findings and Analytical Modeling of Online Word-of-Mouth
Communication. In Proceedings of the 7th ACM conference on Electronic

commerce Pages. pp. 324–330.

Huang, W.C. (Darren), Trotman, A. & Geva, S., 2009. A Virtual Evaluation Forum for
Cross Language Link Discovery. In Proceedings of the SIGIR 2009 Workshop on

the Future of IR Evaluation. pp. 19–20.

Ipeirotis, P.G., 2010. Demographics of Mechanical Turk. NYU Center for Digital

Economy Research Working Paper CeDER.

Jansen, B.J. & Spink, A., 2003. An Analysis of Web Documents Retrieved and Viewed.
In Proceedings of 4th International Conference on Internet Computing. pp. 65–69.

125

Jansen, B.J., Spink, A. & Saracevic, T., 2000. Real life, real users, and real needs: a study
and analysis of user queries on the web. Information Processing and Management,
36, pp.207–227.

Jensen, T., 2011. 2nd Page Rankings: Your the #1 Looser. Available at:
http://www.gravitateonline.com/google-search/2nd-place-1st-place-loser-seriously
[Accessed April 11, 2014].

Jing, Y. & Baluja, S., 2008. Pagerank for product image search. In Proceeding of the 17th

international conference on World Wide Web - WWW ’08. New York, New York,
USA: ACM Press, p. 307. Available at:
http://dl.acm.org/citation.cfm?id=1367497.1367540 [Accessed August 23, 2012].

Juristo, N., Moreno, A.M. & Sanchez-Segura, M.-I., 2007. Analysing the impact of
usability on software design. Journal of Systems and Software, 80(9), pp.1506–
1516.

Kazai, G., 2011. In search of quality in crowdsourcing for search engine evaluation. In
Proceedings of the 33rd European conference on Advances in information retrieval.
pp. 165–176.

Ke, Y. & Sukthankar, R., 2004. PCA-SIFT: a more distinctive representation for local
image descriptors. In Proceedings of the 2004 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. Ieee, pp. 506–513.

Kendall, M., 1938. A New Measure of Rank Correlation. Biometrika, 30, pp.81–89.

Khanna, S. et al., 2010. Evaluating and improving the usability of Mechanical Turk for
low-income workers in India. In Proceedings of the First ACM Symposium on

Computing for Development - ACM DEV ’10. ACM Press, p. 12.

Kittur, A. et al., 2011. CrowdForge: Crowdsourcing Complex Work. In Proceedings of

the 24th annual ACM symposium on User interface software and technology. ACM
Press, p. 43.

Kittur, A., Chi, E.H. & Suh, B., 2008. Crowdsourcing user studies with Mechanical Turk.
In Proceeding of the twenty-sixth annual CHI conference on Human factors in

computing systems. ACM Press, p. 453.

Kopeck´, J. & Domingue, J., 2012. ParkJam : crowdsourcing parking availability
information with linked data. In 9th Extended Semantic Web Conference (ESWC

2012).

126

Kulkarni, A., Can, M. & Hartmann, B., 2012. Collaboratively crowdsourcing workflows
with turkomatic. In Proceedings of the ACM 2012 conference on Computer

Supported Cooperative Work. ACM Press, p. 1003.

Kulkarni, A., Can, M. & Hartmann, B., 2011. Turkomatic : Automatic Recursive Task
and Workflow Design for Mechanical Turk. In Extended Abstracts on Human

Factors in Computing Systems. pp. 2053–2058.

Kumar, R. & Vassilvitskii, S., 2010. Generalized Distances between Rankings. In
Proceedings of the 19th international conference on World wide web. ACM, pp.
571–579.

Law, E. & von Ahn, L., 2011. Human Computation. In Synthesis Lectures on Artificial

Intelligence and Machine Learning. pp. 1–121.

Ledlie, J. et al., 2010. Crowd translator: On Building Localized Speech Recognizers
through Micropayments. ACM SIGOPS Operating Systems Review, 43(4), p.84.

Little, G. et al., 2010a. Exploring iterative and parallel human computation processes. In
Proceedings of the ACM SIGKDD Workshop on Human Computation. ACM Press,
p. 68.

Little, G. et al., 2010b. TurKit : Human Computation Algorithms on Mechanical Turk. In
Proceedings of the 23nd annual ACM symposium on User interface software and

technology. pp. 57–66.

Little, G. et al., 2009. TurKit : Tools for Iterative Tasks on Mechanical Turk. In IEEE

Symposium on Visual Languages and Human-Centric Computing. pp. 29–30.

Liu, H. & Ma, F., 2010. Research on Visual Elements of Web UI Design. In Proceedings

of IEEE 11th International Conference on Computer-Aided Industrial Design &

Conceptual Design. Yiwu, China, pp. 428–430.

Liu, X. et al., 2012. CDAS: a crowdsourcing data analytics system. Proceedings of the

VLDB Endowment, 5(10), pp.1040–1051.

Liu, Y.-T. et al., 2007. Supervised rank aggregation. Proceedings of the 16th

international conference on World Wide Web - WWW ’07, p.481. Available at:
http://portal.acm.org/citation.cfm?doid=1242572.1242638.

Long, F., Zhang, H. & Feng, D.D., 2003. Fundamentals of Content-Based Image
Retrieval. In Multimedia Information Retrieval and Management. Springer Berlin
Heidelberg, pp. 1–26.

127

Lowe, D.G., 1999. Object recognition from local scale-invariant features. In Proceedings

of the Seventh IEEE International Conference on Computer Vision. Ieee, pp. 1150–
1157.

Loy, G. & Eklundh, J., 2006. A Review of Benchmarking Content Based Image Retrieval,

Marcus, A., Wu, E., Karger, D., et al., 2011. Crowdsourced Databases: Query Processing
with People. In Proceedings of the 5th Biennial Conference on Innovative Data

Systems Research. CIDR, pp. 211–214.

Marcus, A., Wu, E., Madden, S., et al., 2011. Human-powered sorts and joins. In
Proceedings of the VLDB Endowment. pp. 13–24.

Mason, W. & Watts, D.J., 2009. Financial Incentives and the “ Performance of Crowds .”
In Proceedings of the ACM SIGKDD Workshop on Human Computation. ACM
Press, pp. 77–85.

McAndrew, F.T., 1986. A Cross-Cultural Study of Recognition Thresholds for Facial
Expressions of Emotion. Journal of Cross-Cultural Psychology, 17(2), pp.211–224.

McDuff, D., Kaliouby, R. el & Picard, R., 2011. Crowdsourced data collection of facial
responses. In Proceedings of the 13th international conference on multimodal

interfaces. ACM Press, p. 11.

McGlohon, M., Glance, N. & Reiter, Z., 2010. Star Quality: Aggregating Reviews to
Rank Products and Merchants. In Proceedings of Fourth International Conference

on Weblogs and Social Media (ICWSM), AAAI (2010). AAAI, pp. 114–121.

Mikolajczyk, K. & Schmid, C., 2005. A Performance evaluation of local descriptors.
IEEE transactions on pattern analysis and machine intelligence, 27(10), pp.1615–
30.

Miller, B.N. et al., 2003. MovieLens Unplugged : Experiences with an Occasionally
Connected Recommender System. In Proceedings of the 8th international

conference on Intelligent user interfaces. ACM, pp. 263–266.

Miller, G. a, 1956. The magical number seven, plus or minus two: some limits on our
capacity for processing information. 1956. Psychological review, 101(2), pp.343–
52.

Nowak, S. & Rüger, S., 2010. How reliable are annotations via crowdsourcing. In
Proceedings of the international conference on Multimedia information retrieval.
ACM Press, p. 557.

128

Oviatt, S., 2006. Human-Centered Design Meets Cognitive Load Theory: Designing
Interfaces that Help People Think. In Proceedings of the 14th annual ACM

international conference on Multimedia. ACM Press, pp. 871–880.

Paas, F.G.W.C. & Merrienboer, J.J.G. Van, 1994. Variability of Worked Examples and
Transfer of Geometrical Problem-Solving Skills : A Cognitive-Load Approach c o.
Journal of Educational Psychology, 86(1), pp.122–133.

Pai, D. & Davis, J., 2012. Wally – Crowd powered image matching on tablets. In
Proceedings of the First International Workshop on Crowdsourcing and Data

Mining. pp. 10–14.

Parameswaran, A. & Polyzotis, N., 2011. Answering Queries using Humans , Algorithms
and Databases. In In Fifth Biennial Conference on Innovative Data Systems

Research. pp. 106–166.

Prado, C. et al., 2013. Facial emotion recognition: a cross-cultural comparison of
Chinese, Chinese living in Australia, and Anglo-Australians. Motivation and

Emotion.

Quinn, A.J. & Bederson, B.B., 2011. Human Computation : A Survey and Taxonomy of a
Growing Field. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. pp. 1403–1412.

Rahmani, R. et al., 2008. Localized Content Based Image Retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 30(11), pp.1902–1912.

Rashtchian, C. et al., 2010. Collecting image annotations using Amazon’s Mechanical
Turk. In Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and

Language Data with Amazon’s Mechanical Turk. pp. 139–147.

Reis, H.M. et al., 2012. Towards Reducing Cognitive Load and Enhancing Usability
through a Reduced Graphical User Interface for a Dynamic Geometry System: An
Experimental Study. In Proceedings of IEEE International Symposium on

Multimedia. IEEE, pp. 445–450.

Ricardo Baeza-Yates, B.R.-N., 1999. Modern Information Retrieval, ACM Press.

Ross, J. et al., 2010. Who are the Crowdworkers ? Shifting Demographics in Mechanical
Turk. In Extended Abstracts on Human Factors in Computing Systems. pp. 2863–
2872.

Rosten, E. & Drummond, T., 2006. Machine learning for high-speed corner detection. In
European Conference on Computer Vision. pp. 430–443.

129

Rublee, E. et al., 2011. ORB: An efficient alternative to SIFT or SURF. 2011

International Conference on Computer Vision, pp.2564–2571. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6126544.

Rubner, Y., Tomasi, C. & Guibas, L.J., 2000. The Earth Mover ’ s Distance as a Metric
for Image Retrieval. International Journal of Computer Vision, 40(2), pp.99–121.

Rui, Y., Huang, T.S. & Chang, S.-F., 1999. Image Retrieval: Current Techniques,
Promising Directions, and Open Issues. Journal of Visual Communication and

Image Representation, 10(1), pp.39–62.

Russell, B.C. et al., 2007. LabelMe: A Database and Web-Based Tool for Image
Annotation. International Journal of Computer Vision, 77(1-3), pp.157–173.

Schalekamp, F. & Zuylen, A. van, 1998. Rank Aggregation : Together We ’ re Strong. In
Proceedings of 11th ALENEX. pp. 38–51.

Schneider, D. et al., 2012. CSCWD : Five Characters in Search of Crowds. In
Proceedings of the 2012 IEEE 16th International Conference on Computer

Supported Cooperative Work in Design. pp. 634–641.

Seuken, S. et al., 2010. Hidden Markets : UI Design for a P2P Backup Application. In
CHI2010 : Market Models for Q&A Services. Atlanta, Georgia, USA, pp. 315–324.

Shah, S. et al., 2011. CROWDSAFE: Crowd Sourcing of Crime Incidents and Safe
Routing on Mobile Devices (Demo Paper). In Proceedings of the 19th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems. ACM Press, p. 521.

Silberman, M.S., Irani, L., Tomlinson, B., et al., 2010. Sellers’ problems in human
computation markets. In International Conference on Knowledge Discovery and

Data Mining (2010). pp. 18–21.

Silberman, M.S., Irani, L. & Ross, J., 2010. Ethics and tactics of professional crowdwork.
XRDS: Crossroads, The ACM Magazine for Students - Comp-YOU-Ter, pp.39–43.

Sivic, J. & Zisserman, A., 2003. Video Google: a text retrieval approach to object
matching in videos. In Proceedings Ninth IEEE International Conference on

Computer Vision. IEEE, pp. 1470–1477.

Snoek, C.G.M. et al., 2010. Crowdsourcing rock n’ roll multimedia retrieval. In
Proceedings of the international conference on Multimedia. ACM Press, pp. 1535–
1538.

130

Snow, R. et al., 2008. Cheap and fast-but is it good?: evaluating non-expert annotations
for natural language tasks. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing. pp. 254–263.

Spink, A. et al., 2002. From E-sex to E-commerce: Web Search Changes. IEEE

Computer, 35, pp.107–111.

Stewart, O., Huerta, J.M. & Sader, M., 2009. Designing crowdsourcing community for
the enterprise. In Proceedings of the ACM SIGKDD Workshop on Human

Computation. ACM Press, p. 50.

Stewart, O., Lubensky, D. & Huerta, J.M., 2010. Crowdsourcing participation
inequality:A SCOUT Model for the Enterprise Domain. In Proceedings of the ACM

SIGKDD Workshop on Human Computation. ACM Press, p. 30.

Sweller, J., 1988. Cognitive Load During Problem Solving: Effects on Learning.
Cognitive Science, 12, pp.257–259.

Sweller, J., Merrienboer, J.J.G. Van & Paas, F.G.W.C., 1998. Cognitive Architecture and
Instructional Design. Educational Psychology Review, 10(3), pp.251–296.

Tokarchuk, O., Cuel, R. & Zamarian, M., 2012. A framework to analyze crowd labor and
design a proper set of incentives for humans in the loop. IEEE Internet Computing,
(Special Issue), pp.45–51.

Tran, P., Pyramid Matching Using SURF and SIFT Descriptors for SVM Classification 2
Related Work 1 Introduction 3 Current Experimental Results.

Urbano, J. et al., 2010. Crowdsourcing Preference Judgments for Evaluation of Music
Similarity Tasks. In Proceedings of the SIGIR 2010 Workshop on Crowdsourcing

for Search Evaluation. Geneva,Switzerland, pp. 9–16.

Vailaya, a et al., 2001. Image classification for content-based indexing. IEEE

transactions on image processing, 10(1), pp.117–30.

Vedaldi, A. & Fulkerson, B., 2010. VLFeat - An open and portable library of computer
vision algorithms. In Proceedings of the international conference on Multimedia.
Firenze, Italy, pp. 1469–1472.

Venetis, P. et al., 2012. Max algorithms in crowdsourcing environments. In Proceedings

of the 21st international conference on World Wide Web. New York, New York,
USA: ACM Press, p. 989.

VonAhn, L., 2006. Games with a Purpose. Computer-Invisible Computing, 39(6), pp.92–
94.

131

VonAhn, L. et al., 2008. reCAPTCHA: human-based character recognition via Web
security measures. Science (New York, N.Y.), 321(5895), pp.1465–8.

VonAhn, L., Blum, M. & John, L., 2004. Telling humans and computers apart
automatically. Communication of ACM, 47(2).

VonAhn, L. & Dabbish, L., 2004. Labeling images with a computer game. In
Proceedings of the 2004 conference on Human factors in computing systems - CHI

’04. ACM Press, pp. 319–326.

Vuurens, J., Vries, A.P. De & Eickhoff, C., 2011. How Much Spam Can You Take ? An
Analysis of Crowdsourcing Results to Increase Accuracy. In Proceedings of the

SIGIR 2011 Workshop on Crowdsourcing for Information Retrieval. pp. 66–75.

Wang, J. et al., 2012. CrowdER : Crowdsourcing Entity Resolution. In Proceedings of the

VLDB Endowment. Istanbul, Turkey, pp. 1483–1494.

Wightman, D., 2010. Crowdsourcing Human-Based Computation. In Proceedings of the

6th Nordic Conference on Human-Computer Interaction: Extending Boundaries -

NordiCHI ’10. ACM Press, pp. 551–560.

Williams, J.D. et al., 2011. Crowd-sourcing for difficult transcription of speech. In IEEE

Workshop on Automatic Speech Recognition and Understanding. Hawaii, USA, pp.
535–540.

Xue, S. et al., 2012. Crowd sourcing memory colors for image enhancement. In ACM

SIGGRAPH 2012 Talks. ACM Press;NG, p. 1.

Yan, T., Kumar, V. & Ganesan, D., 2010. CrowdSearch: Exploiting Crowds for Accurate
Real-time Image Search on Mobile Phones. In Proceedings of the 8th international

conference on Mobile systems, applications, and services - MobiSys ’10. ACM
Press, pp. 77–90.

Yuen, M.-C., King, I. & Leung, K.-S., 2011. A Survey of Crowdsourcing Systems. In
IEEE Third International Conference on Privacy Security Risk and Trust and 2011

IEEE Third International Conference on Social Computing. IEEE, pp. 766–773.

Zhang, H. et al., 2011. Crowdsourcing General Computation. In ACM CHI 2011

Workshop on Crowdsourcing and Human Computation. pp. 1–5.

Zhou, X.S. & Huang, T.S., 2000. CBIR : From Low-Level Features to High-Level
Semantics. In Proceeding of SPIE Image and Video Communication and

Processing. San Jose, CA, pp. 24–28.

	Copyright_Statement
	Rahmanian_BR_Thesis.pdf

