2,104 research outputs found

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    Intra Coding Strategy for Video Error Resiliency: Behavioral Analysis

    Get PDF
    One challenge in video transmission is to deal with packet loss. Since the compressed video streams are sensitive to data loss, the error resiliency of the encoded video becomes important. When video data is lost and retransmission is not possible, the missed data should be concealed. But loss concealment causes distortion in the lossy frame which also propagates into the next frames even if their data are received correctly. One promising solution to mitigate this error propagation is intra coding. There are three approaches for intra coding: intra coding of a number of blocks selected randomly or regularly, intra coding of some specific blocks selected by an appropriate cost function, or intra coding of a whole frame. But Intra coding reduces the compression ratio; therefore, there exists a trade-off between bitrate and error resiliency achieved by intra coding. In this paper, we study and show the best strategy for getting the best rate-distortion performance. Considering the error propagation, an objective function is formulated, and with some approximations, this objective function is simplified and solved. The solution demonstrates that periodical I-frame coding is preferred over coding only a number of blocks as intra mode in P-frames. Through examination of various test sequences, it is shown that the best intra frame period depends on the coding bitrate as well as the packet loss rate. We then propose a scheme to estimate this period from curve fitting of the experimental results, and show that our proposed scheme outperforms other methods of intra coding especially for higher loss rates and coding bitrates

    BAR: Blockwise Adaptive Recoding for Batched Network Coding

    Full text link
    Multi-hop networks become popular network topologies in various emerging Internet of things applications. Batched network coding (BNC) is a solution to reliable communications in such networks with packet loss. By grouping packets into small batches and restricting recoding to the packets belonging to the same batch, BNC has a much smaller computational and storage requirements at the intermediate nodes compared with a direct application of random linear network coding. In this paper, we propose a practical recoding scheme called blockwise adaptive recoding (BAR) which learns the latest channel knowledge from short observations so that BAR can adapt to the fluctuation of channel conditions. We focus on investigating practical concerns such as the design of efficient BAR algorithms. We also design and investigate feedback schemes for BAR under imperfect feedback systems. Our numerical evaluations show that BAR has significant throughput gain for small batch size compared with the existing baseline recoding scheme. More importantly, this gain is insensitive to inaccurate channel knowledge. This encouraging result suggests that BAR is suitable to be realized in practice as the exact channel model and its parameters could be unknown and subject to change from time to time.Comment: submitted for journal publicatio
    • …
    corecore