11,018 research outputs found

    Shape-constrained Estimation of Value Functions

    Full text link
    We present a fully nonparametric method to estimate the value function, via simulation, in the context of expected infinite-horizon discounted rewards for Markov chains. Estimating such value functions plays an important role in approximate dynamic programming and applied probability in general. We incorporate "soft information" into the estimation algorithm, such as knowledge of convexity, monotonicity, or Lipchitz constants. In the presence of such information, a nonparametric estimator for the value function can be computed that is provably consistent as the simulated time horizon tends to infinity. As an application, we implement our method on price tolling agreement contracts in energy markets

    Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval

    Get PDF
    In recent literature, a general two step procedure has been formulated for solving the problem of phase retrieval. First, a spectral technique is used to obtain a constant-error initial estimate, following which, the estimate is refined to arbitrary precision by first-order optimization of a non-convex loss function. Numerical experiments, however, seem to suggest that simply running the iterative schemes from a random initialization may also lead to convergence, albeit at the cost of slightly higher sample complexity. In this paper, we prove that, in fact, constant step size online stochastic gradient descent (SGD) converges from arbitrary initializations for the non-smooth, non-convex amplitude squared loss objective. In this setting, online SGD is also equivalent to the randomized Kaczmarz algorithm from numerical analysis. Our analysis can easily be generalized to other single index models. It also makes use of new ideas from stochastic process theory, including the notion of a summary state space, which we believe will be of use for the broader field of non-convex optimization

    Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

    Get PDF
    We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the l1-constraint. It is defined by a stochastic version of the mirror descent algorithm (i.e., of the method which performs gradient descent in the dual space) with an additional averaging. The main result of the paper is an upper bound for the expected accuracy of the proposed estimator. This bound is of the order (logM)/t\sqrt{(\log M)/t} with an explicit and small constant factor, where MM is the dimension of the problem and tt stands for the sample size. A similar bound is proved for a more general setting that covers, in particular, the regression model with squared loss.Comment: 29 pages; mai 200
    corecore