21 research outputs found

    Deep and Surface Sensor Modalities for Myo-intent Detection

    Get PDF
    Electromyography is the gold-standard among sensors for prosthetic control. However, stable and reliable myocontrol remains an unsolved problem in the community. Amid improvements currently under investigation, one focuses on alternative or complementary sensors. In this study, we compare different techniques, recording surface and deep muscle activity. Ten subjects were involved in an experiment in which three different modalities were attached on their forearm: force myography, electro-impedance tomography and ultrasound. They were asked to perform wrist and grasp movements. For the first time, we evaluate and compare in an offline analysis these three different modalities while recording several hand gestures

    Towards zero re-training for long-term hand gesture recognition via ultrasound sensing

    Get PDF

    Assessment of a Wearable Force- and Electromyography Device and Comparison of the Related Signals for Myocontrol

    Get PDF
    In the frame of assistive robotics, multi-finger prosthetic hand/wrists have recently appeared,offering an increasing level of dexterity; however, in practice their control is limited to a few handgrips and still unreliable, with the effect that pattern recognition has not yet appeared in the clinicalenvironment. According to the scientific community, one of the keys to improve the situation ismulti-modal sensing, i.e., using diverse sensor modalities to interpret the subject’s intent andimprove the reliability and safety of the control system in daily life activities. In this work, wefirst describe and test a novel wireless, wearable force- and electromyography device; throughan experiment conducted on ten intact subjects, we then compare the obtained signals bothqualitatively and quantitatively, highlighting their advantages and disadvantages. Our resultsindicate that force-myography yields signals which are more stable across time during whenevera pattern is held, than those obtained by electromyography. We speculate that fusion of the twomodalities might be advantageous to improve the reliability of myocontrol in the near future

    Estimation of Absolute States of Human Skeletal Muscle via Standard B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks

    Get PDF
    Objective: To test automated in vivo estimation of active and passive skeletal muscle states using ultrasonic imaging. Background: Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction nor generalisation of independently varying, active and passive states. We use deep learning to investigate the generalizable content of 2D US muscle images. Method: US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle were recorded from 32 healthy participants (7 female, ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, driftfree, components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous, independent variation of passive (joint angle) and active (electromyography) inputs. Results: For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography, and joint moment were estimated to accuracy 55±8%, 57±11%, and 46±9% respectively. Significance: With 2D US imaging, deep neural networks can encode in generalizable form, the activitylength-tension state relationship of these muscles. Observation only, low power, 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalised muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing

    Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-Inspired Robotic Hand for Prosthetic Applications

    Get PDF
    Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human-robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the highest coherence with hand movements. Our results represent a first step toward a more effective and intuitive control of myoelectric hand prostheses

    Assessment of Myoelectric Controller Performance and Kinematic Behavior of a Novel Soft Synergy-Inspired Robotic Hand for Prosthetic Applications

    Get PDF
    abstract: Myoelectric artificial limbs can significantly advance the state of the art in prosthetics, since they can be used to control mechatronic devices through muscular activity in a way that mimics how the subjects used to activate their muscles before limb loss. However, surveys indicate that dissatisfaction with the functionality of terminal devices underlies the widespread abandonment of prostheses. We believe that one key factor to improve acceptability of prosthetic devices is to attain human likeness of prosthesis movements, a goal which is being pursued by research on social and human–robot interactions. Therefore, to reduce early abandonment of terminal devices, we propose that controllers should be designed so as to ensure effective task accomplishment in a natural fashion. In this work, we have analyzed and compared the performance of three types of myoelectric controller algorithms based on surface electromyography to control an underactuated and multi-degrees of freedom prosthetic hand, the SoftHand Pro. The goal of the present study was to identify the myoelectric algorithm that best mimics the native hand movements. As a preliminary step, we first quantified the repeatability of the SoftHand Pro finger movements and identified the electromyographic recording sites for able-bodied individuals with the highest signal-to-noise ratio from two pairs of muscles, i.e., flexor digitorum superficialis/extensor digitorum communis, and flexor carpi radialis/extensor carpi ulnaris. Able-bodied volunteers were then asked to execute reach-to-grasp movements, while electromyography signals were recorded from flexor digitorum superficialis/extensor digitorum communis as this was identified as the muscle pair characterized by high signal-to-noise ratio and intuitive control. Subsequently, we tested three myoelectric controllers that mapped electromyography signals to position of the SoftHand Pro. We found that a differential electromyography-to-position mapping ensured the highest coherence with hand movements. Our results represent a first step toward a more effective and intuitive control of myoelectric hand prostheses.View the article as published at http://journal.frontiersin.org/article/10.3389/fnbot.2016.00011/ful

    Real-time EMG based pattern recognition control for hand prostheses : a review on existing methods, challenges and future implementation

    Get PDF
    Upper limb amputation is a condition that significantly restricts the amputees from performing their daily activities. The myoelectric prosthesis, using signals from residual stump muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually requires heavy computational power to turn it into a user control signal. Its transition to a practical prosthesis solution is still being challenged by various factors particularly those related to the fact that each amputee has different mobility, muscle contraction forces, limb positional variations and electrode placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for maximum utility across amputees. Modified machine learning schemes for pattern recognition have the potential to significantly reduce the factors (movement of users and contraction of the muscle) affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world (amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP) inventions in the healthcare sector from their technical control perspective. More focus was given to the review of real-world applications and the use of pattern recognition control on amputees. We first reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a discussion of the existing challenges and future research recommendations

    Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol:a single-case experimental design

    Get PDF
    Background Machine-learning-based myocontrol of prosthetic devices suffers from a high rate of abandonment due to dissatisfaction with the training procedure and with the reliability of day-to-day control. Incremental myocontrol is a promising approach as it allows on-demand updating of the system, thus enforcing continuous interaction with the user. Nevertheless, a long-term study assessing the efficacy of incremental myocontrol is still missing, partially due to the lack of an adequate tool to do so. In this work we close this gap and report about a person with upper-limb absence who learned to control a dexterous hand prosthesis using incremental myocontrol through a novel functional assessment protocol called SATMC (Simultaneous Assessment and Training of Myoelectric Control). Methods The participant was fitted with a custom-made prosthetic setup with a controller based on Ridge Regression with Random Fourier Features (RR-RFF), a non-linear, incremental machine learning method, used to build and progressively update the myocontrol system. During a 13-month user study, the participant performed increasingly complex daily-living tasks, requiring fine bimanual coordination and manipulation with a multi-fingered hand prosthesis, in a realistic laboratory setup. The SATMC was used both to compose the tasks and continually assess the participant's progress. Patient satisfaction was measured using Visual Analog Scales. Results Over the course of the study, the participant progressively improved his performance both objectively, e.g., the time required to complete each task became shorter, and subjectively, meaning that his satisfaction improved. The SATMC actively supported the improvement of the participant by progressively increasing the difficulty of the tasks in a structured way. In combination with the incremental RR-RFF allowing for small adjustments when required, the participant was capable of reliably using four actions of the prosthetic hand to perform all required tasks at the end of the study. Conclusions Incremental myocontrol enabled an upper-limb amputee to reliably control a dexterous hand prosthesis while providing a subjectively satisfactory experience. The SATMC can be an effective tool to this aim
    corecore