6 research outputs found

    A Real-time MHE and NMPC Scheme for Wind Turbine Control

    Get PDF
    Among the several problems arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil trajectory during power generation. Tethered flight is a fast, strongly nonlinear, unstable and constrained process, motivating control approaches based on fast Non-linear Model Predictive Control. In this paper, a computationally efficient model is proposed, based on Differential-Algebraic equations. A control scheme based on Nonlinear Model Predictive Control (NMPC) and an estimator based on Moving Horizon Estimation (MHE) is proposed to handle the wind turbulences. In order to make a real-time application of Non-linear Model Predictive Control possible, a Real-Time Iteration scheme is proposed

    Comparison of linear and nonlinear model predictive control of wind turbines using LIDAR

    Get PDF
    Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as LIDAR, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Feedforward control can be easily combined with traditional collective pitch feedback controllers and has been successfully tested on real systems. Nonlinear model predictive controllers adjusting both collective pitch and generator torque can further reduce structural loads in simulations but have higher computational times compared to feedforward or linear model predictive controller. This paper compares a linear and a commercial nonlinear model predictive controller to a baseline controller. On the one hand simulations show that both controller have significant improvements if used along with the preview of the rotor effective wind speed. On the other hand the nonlinear model predictive controller can achieve better results compared to the linear model close to the rated wind speed

    Model predictive controllers for reduction of mechanical fatigue in wind farms

    Full text link
    We consider the problem of dispatching WindFarm (WF) power demand to individual Wind Turbines (WT) with the goal of minimizing mechanical stresses. We assume wind is strong enough to let each WTs to produce the required power and propose different closed-loop Model Predictive Control (MPC) dispatching algorithms. Similarly to existing approaches based on MPC, our methods do not require changes in WT hardware but only software changes in the SCADA system of the WF. However, differently from previous MPC schemes, we augment the model of a WT with an ARMA predictor of the wind turbulence, which reduces uncertainty in wind predictions over the MPC control horizon. This allows us to develop both stochastic and deterministic MPC algorithms. In order to compare different MPC schemes and demonstrate improvements with respect to classic open-loop schedulers, we performed simulations using the SimWindFarm toolbox for MatLab. We demonstrate that MPC controllers allow to achieve reduction of stresses even in the case of large installations such as the 100-WTs Thanet offshore WF

    A real-time MHE and NMPC scheme for wind turbine control

    No full text
    corecore