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Abstract— Recent developments in remote sensing are offer-
ing a promising opportunity to rethink conventional control
strategies of wind turbines. With technologies such as LIDAR,
the information about the incoming wind field - the main
disturbance to the system - can be made available ahead
of time. Feedforward control can be easily combined with
traditional collective pitch feedback controllers and has been
successfully tested on real systems. Nonlinear model predictive
controllers adjusting both collective pitch and generator torque
can further reduce structural loads in simulations but have
higher computational times compared to feedforward or linear
model predictive controller. This paper compares a linear
and a commercial nonlinear model predictive controller to a
baseline controller. On the one hand simulations show that both
controller have significant improvements if used along with the
preview of the rotor effective wind speed. On the other hand
the nonlinear model predictive controller can achieve better
results compared to the linear model close to the rated wind
speed.

I. I NTRODUCTION

To reduce the structural loads of wind turbines by ad-
vanced control is an important issue to lower the cost of
energy. Conventional feedback controllers relying on the
measured rotational speed can only provide delayed com-
pensation for excitations such as gusts due to the huge
inertia of the rotor. This usually results in additional loads
on the wind turbine and requires high actuator rates for the
disturbance compensation. New remote sensing techniques
such as LIDAR (LIght Detection And Ranging) allow a
measurement of the wind in front of the wind turbine
providing a preview disturbance information, which can be
used in new control concepts to improve the disturbance
rejection.

Early work on LIDAR-assisted control was reported in
[1] and this field of investigation has increased significantly
in recent years. While SISO feedforward controllers have
been already successfully tested for load reduction on real
turbines [2], [3], model predictive controllers are promising
to further reduce structural loads, see e.g., [4]-[12]. The
present work illustrates on the one hand that wind preview
is crucial to achieve significant improvement over a baseline
feedback controller. On the other hand a nonlinear model
predictive controller (NMPC) exceed the improvements of a
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Fig. 1. Degrees of freedom for the reduced nonlinear model.

linear model predictive controller (LMPC) due to the high
nonlinearity of the wind turbine close to rated wind speed.

This paper is based on [13] and is organized as follows.
Section II and III summarize the modeling of the wind
turbine and the LIDAR measurements. Section IV describes
the design of an Extended Kalman Filter (EKF), and the
different controllers are outlined in Section V. Section VI
presents simulation results followed by the conclusions and
future work in Section VII.

II. M ODELING OF THEWIND TURBINE

Classically, aeroelastic codes such as FAST [14] and
stochastic wind field generators such as TurbSim [15] are
used for simulations in wind energy, providing models close
to reality. However, they are too complex to be used for
controller design. The internal model for the linear and non-
linear model predictive controller design should be simple
enough to allow simulations in a reasonable computation
time. At the same time it should be accurate enough to
capture the system dynamics that are relevant for wind
turbine control. In addition, current remote sensing methods
such as LIDAR are not able to measure a detailed three
dimensional wind field as used in simulations. But they show
promising capabilities to measure the overall rotor effective
wind speed [2], [3]. Therefore, modeling details such as
the dynamics of individual blades is unnecessary, because
these dynamics cannot be predicted if the corresponding
disturbance preview is missing. In this section, a reduced
nonlinear turbine model with three degrees of freedom and
its linearization are presented.

A. Reduced Nonlinear Model

For the simulations in this work a 5 MW reference wind
turbine [16] is reduced to be used as internal model for
the controller design. The model has been used in previous
studies [9] and is based on [17]. Similar to FAST, it is split



up into a servo-elastic and an aerodynamic subsystem (see
Figure 1).

1) Servo-Elastics: The first tower fore-aft bending mode,
the rotational motion, and the collective pitch actuator are
modeled linearly as:

JΩ̇+Mg/igb = Ma(ẋT ,Ω,θ ,v0) (1a)

mTeẍT + cTeẋT + kTexT = Fa(ẋT ,Ω,θ ,v0) (1b)

θ̈ +2ξ ωθ̇ +ω2(θ −θc) = 0. (1c)

The conservation of the angular momentum (1a) gives the
equation of motion of the rotor speedΩ. The aerodynamic
torque Ma accelerates the rotor, depending on the tower
top fore-aft displacementxT , the effective collective blade
pitch angleθ , and the rotor effective wind speedv0. The
electrical generator torqueMg decelerates the rotor, where
igb is the gear box ratio andJ is the overall sum of the
moments of inertia about the rotation axis. The tower fore-
aft dynamics are modeled as a mass-spring-damper system
(1b), whereFa is the aerodynamic thrust andmTe, cTe, and
kTe are the tower equivalent modal mass, structural damping,
and bending stiffness, respectively. Finally, the blade pitch
actuator (1c) is a second-order linear model, whereω is the
undamped natural frequency,ξ is the damping factor, andθc

is the collective blade pitch control input.
2) Aerodynamics: The aerodynamic torque and thrust act-

ing on the rotor with radiusR are nonlinear static functions:

Ma =
1
2

ρπR3 cP(λ ,θ)
λ

v2
rel (2a)

Fa =
1
2

ρπR2cT (λ ,θ)v2
rel , (2b)

wherecP and cT are the effective power and thrust coeffi-
cients obtained from steady-state simulations andρ is the
air density. The relative wind speedvrel is defined as a
superposition of tower top speed and mean wind speed

vrel = v0− ẋT (3)

and the tip-speed ratioλ is

λ =
ΩR
vrel

. (4)

The individual differential equations can be transformed in
the state space representation with the system states

x =
[
xT ẋT Ω θ θ̇

]T
,

the control inputu, and disturbanced:

u =
[
Mg θc

]T
, d = v0.

The system outputsy of the design model are the acceler-
ation of the tower top and the rotor speed accessible from
commonly used sensors:

y =
[
ẍT Ω

]T
.
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Fig. 2. Used circular scan for the LIDAR measurements.

B. Reduced Linear Model

In order to design a linear MPC, a linear representation
is needed. Therefore, the obtained nonlinear reduced model
(2)-(4) is linearized at an equilibrium point defined byv0.
Then the linear state space representation is

∆ẋ =










0 1 0 0 0
−kTe
mTe

−cTe+∂Fa/∂ ẋT
mTe

∂Fa/∂Ω
mTe

∂Fa/∂θ
mTe

0

0 ∂Ma/∂ ẋT
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(5)

The partial derivatives ofFa and Ma are obtained by fitting
polynomials tocP andcT and calculating the corresponding
derivatives at the operation point.

III. S IMULATED LIDAR M EASUREMENTS

The preview of the rotor effective wind speed is extracted
from the 3D wind fields used for the aero-elastic simulation.
Similar to [9] a pulsed system with a circular trajectory is
simulated (Figure 2), assuming that the turbulent wind field
moves unaffected with the average wind speed and thus is
scanned at times corresponding to the 5 distances before it
reaches the rotor. Due to the limited points and the limitation
to “line-of-sight” measurements, only the low frequencies
can be measured correctly. To avoid harmful control action
due to uncorrelated frequencies the wind speed previewv0L

is filtered by a low-pass filter designed according to [18].



IV. ESTIMATOR DESIGN

To realize a model based controller all system states have
to be available. For a realistic measurement scenario only the
rotor speedΩ and the tower top acceleration ¨xT are assumed
to be measurable. An EKF is used to reconstruct the missing
states of the nonlinear model considering noise.

It can be separated into the prediction update part and the
measurement update part. For the prediction update part the
discrete nonlinear system is used

x̃k = f (x̂k−1,uk)

ỹk = h(x̃k), (6)

where ˜xk and ỹk are priori values, ˆxk−1 is the posteriori esti-
mation from the previous time step anduk the actual input.
The measurement update part uses a linearized representation
around the actual priori state ˜xk. The error equation is

ẽxk ≈ A ·(xk−1− x̂k−1)+ εk

ẽyk ≈ H · ẽxk +ηk, (7)

with A and H the Jacobian of the vector fieldsf and h,
respectively.εk is the covariance matrixWkQW T

k and ηk

VkRV T
k , whereWk is the Jacobian off with respect to the

state noisew andVk is the Jacobian ofh with respect to the
measurement noisev at time stepk. Q and R are variances
of the assumed noises. The prediction update part is then

x̂−k = f (x̂k−1,uk)

P−
k = AkPk−1AT

k +WkQk−1W T
k , (8)

where− means that this value is calculated in the prediction
step and will be updated in the measurement update part.
Together with the Kalman Gain

Kk = P−
k HT

k

(
HkP−

k HT
k +VkRV T

k

)−1
(9)

the measurement update part is

x̂k = x̂−k +Kk(yk −h(x̂−k ))

Pk = (I −KkHk)P
−
k . (10)

Figure 3 depicts a comparison between the estimated and the
simulated values.
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Fig. 3. Comparison between estimated (black) tower fore-aft position and
velocity and the simulated values (gray) from a FAST simulation.
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Fig. 4. Principle of the MPC: The projected control inputsui over a control
horizon are optimized, considering the system statesxi and the disturbance
d over a prediction horizon.

V. CONTROLLER DESIGN

In this section a Linear (LMPC) and a Nonlinear Model
Predictive Controller (NMPC) using the wind speed preview
information are derived. Both are solving in principle the
same optimal control problem, but using different models and
algorithms. The baseline controller (FB) is based on feedback
only and is implemented as described in [16], combining a
variable speed generator torque controller and a collective
pitch controller.

A. The Optimal Control Problem

The considered optimal wind turbine control problem
for the full load region can be described as follows (see
Figure 4). The objective is to find the optimal control inputs
ui minimizing the cost functionalJ, which is defined as the
sum of all deviations from the system outputsyi from the
reference valuesr over the prediction horizonP weighted
with Q and the sum of all changes in the control inputsui

over the control horizonM weighted withR:

min
uk...uk+M−1

J

with: J =
k+P

∑
i=k+1

‖Q[yi − r]‖2+
k+M−1

∑
i=k

‖R[ui −ui−1]‖
2,

s.t.: ∆xi+1 = Ai∆xi +Bui∆ui +Bdi∆di

∆yi =Ci∆xi +Dui∆ui +Ddi∆di

ui = uk+M−1 ∀ i = k+M . . .k+P

umin ≤ ui ≤ umax ∀ i = k . . .k+M−1

|(ui −ui−1)/∆t| ≤ u̇max ∀ i = k . . .k+M−1

ymin ≤ yi ≤ ymax ∀ i = k+1. . .k+P. (11)

The control inputs are held constant for the remaining time.
The system matricesAi,Bui,Bdi,Ci,Dui,Ddi and deviations
∆xi,∆yi,∆ui,∆di are different for the two approaches and will
be explained in the next subsections. The referencer and the
constraints for the system outputs, control inputs, and forthe



deviations in the control inputs are

r = [0
m
s2 Ωrated ]

T

umin = [0.9 Mg,rated 0 deg]T

umax = [1.1 Mg,rated 90 deg]T

u̇max = [15
kNm

s
8

deg
s

]T

ymin = [−0.5
m
s2 0.8 Ωrated ]

T

ymax = [0.5
m
s2 1.2 Ωrated ]

T ,

whereΩrated and Mg,rated are the rotor speed and generator
torque at rated power.

B. Linear Model Predictive Control

For the LMPC the Model Predictive Control Toolbox
[19] and the linear model (5) at the operation point
v0 = 16 m/s was used. In this case, the system ma-
trices Ai,Bui,Bdi,Ci,Dui,Ddi in (11) are discretized con-
stant versions ofA,Bu,Bd ,C,Du,Dd and the deviations
∆xi,∆yi,∆ui,∆di denote deviations from the operation point.
The system input and outputs were further scaled to speed up
the calculation. The used toolbox solves the optimal control
problem (11) via Quadratic Programming.

C. Nonlinear Model Predictive Control

The algorithm of the Local Linearization on the Trajectory
(LLT), shown in [20] and [21], minimizes an objective func-
tion by using a nonlinear model, which will be consecutively
linearized for each prediction step of the prediction horizon.

The LLT algorithm is oriented at the linear MPC algo-
rithm, in which only one model is used to predict the outputs.
The basic idea of the LLT is to linearize a nonlinear model
at each point of the prediction horizon and to getP different
linearized models. The benefit of this algorithm in compari-
son to a normal nonlinear MPC-algorithm is that a powerful
and fast QP-Solver can be used. The first step is to solve a
QP with one linearized model at the actual point to get the
first sequence of future inputsui. With this sequence and the
nonlinear model the future statesxi can be calculated. Then
P models are obtained by linearizing along the trajectories.
By using the system matricesAi,Bui,Bdi,Ci,Dui,Ddi at the
actual linearization point and the deviations from the last

∆xi = xi − xLP
i−1 ∆yi = yi − yLP

i−1

∆ui = ui −uLP
i−1 ∆di = di −dLP

i−1 (12)

the QP can be updated and solved again. After that with the
new calculated sequence of future inputs, new trajectoriesof
the states can be simulated. This process will be repeated
until the changes inui falls below a certain tolerance.
After the control action is applied, the transient responseis
evaluated and a new trajectory is designed, which is used as a
starting trajectory for the next control action determination.
Therefore, the actual operational point is used as starting
point only in the first control action determination. Every
other calculation, after the controller has been started, is
performed considering the transient behavior of the process.
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Fig. 5. Overview of the simulation environment.

VI. SIMULATION RESULTS

The controllers are compared controlling the FAST 5 MW
reference turbine with 16 degrees of freedom and a pitch
actuator (1c). The LMPC and the NMPC are simulated with a
comparable control and prediction horizon as well as weights
for the cost functional. The EKF is used to estimate the tower
top position and speed, see Figure 5.

A. Extreme Load Simulations

In a first evaluation, perfect measurement is assumed and
the wind turbine is disturbed by a Extreme Operating Gust
(EOG) at 14 m/s based on [22]. Here, compared to the
proportional-integral (PI) controller both the LMPC and the
NMPC are able to compensate the gust and hold the rotor
speed almost constant, see Figure 6. Although the aero-
elastic model used for the simulation is of higher order
compared to the controller design model, the difference in
the aerodynamic torqueMa in the case of the NMPC is small.
For the LMPC, a steady state error can be observed due to
the use of an internal model which was linearized at 16 m/s.
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Fig. 6. Top: rotor effective wind speed. Below: pitch angle demand,
rotor speed, and aerodynamic torque for PI (dark gray), LMPC (black), and
NMPC (light gray). Simulation model (dashed) and internal model (dotted).
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Fig. 7. Top: rotor effective wind speed. Below: pitch angle demand,
generator torque, rotor speed, and tower top acceleration for PI (dark gray)
and LMPC without wind preview (light gray).

B. Fatigue Load Simulations

In the next evaluation, a turbulent wind field is used
with a mean wind of 16 m/s and a turbulent intensity of
18 % for the aero-elastic simulations and simultaneously
scaned with the simulated LIDAR system. First, the baseline
proportional-integral (PI) controller and the LMPC without
wind speed information are compared in Figure 7. The
LMPC achieves a slightly better rotor speed regulation using
the generator torque to react fast on rotor speed deviations.
However, due to the limitation to one linear model, a steady
state error inMg occurs. The generator torque for the baseline
controller is hold constant for better comparison.

In a next step the baseline PI controller with feed-forward
control (PI+FF) as presented in [23] and tuned for load
reduction, the LMPC and NMPC with wind preview are
compared, see Figure 8. Because of the advantage of having a
forecast all preview controller have an improved rotor speed
regulation. The steady state error of the LMPC disappears
when used together with the wind speed preview. In Table I
can be seen that the NMPC achieves slightly better control
performance than feedforward and LMPC controller. Com-
paring LMPC and NMPC it is remarkable that around the
linearized wind speed both achieve nearly similar results.
But overall the NMPC achieves better rotor speed regulation
especially for low wind speeds where high nonlinearity in the

ẍ T
[m

/s
2
]

time [s]

Ω
[r

pm
]

M
g

[k
N

m
]

θ c
[d

eg
]

v 0
[m

/s
]

60 70 80 90 100 110 120
−0.6

−0.3

0

0.3

0.6
11.9

12

12.1

12.2

12.3
42.9

43

43.1

43.2

43.3
8

10

12

14

16
14

16

18

Fig. 8. Top: rotor effective wind speed. Below: pitch angle demand,
generator torque, rotor speed, and tower top acceleration for PI (dark gray),
LMPC (light gray), and NMPC (black).

aerodynamics occurs. For the NMPC the rotor speed is not
always kept to rated rotor speedΩrated =12.1 rpm because
of the trade-off in the cost functional.

In Figure 9, the spectra of the pitch rate, rotor speed and
tower top acceleration are depicted. Both MPC controller
can reduce the rotor speed spectra below the 1P (once per
revolution) frequency at around 0.2 Hz, but are reaching this
performance by a higher control activity. Further investiga-
tions have to be made to determine, if frequencies above the
1P frequency can be omitted by better filtering or estimator
tuning, because no benefit is achieved at these frequencies.
The spectra of the tower top acceleration can be also be
reduced below 1P frequency by both MPC controllers. The
reduction is not significant due to the peak in the spectra
at the 3P frequency, which is difficult to compensate by a
collective pitch control approach.

TABLE I

COMPARISON OF SIMULATION RESULTS.

Controller st. dev.Ω [rpm] st. dev. ¨xT [m/s2]
PI 0.6193 0.1909

LMPC no preview 0.3226 0.1913
PI+FF 0.0574 0.1970
LMPC 0.0503 0.1929
NMPC 0.0460 0.1910
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VII. C ONCLUSIONS ANDOUTLOOK

In this paper, we have compared two model predictive
controller to a baseline wind turbine controller. Both con-
troller optimize the control trajectories of the collective pitch
and the generator torque using simulated LIDAR measure-
ments of the wind inflow. While the linear model predictive
controller (LMPC) uses a linear model of one linearization
point, the commercial nonlinear model predictive controller
(NMPC) uses a nonlinear model, which is linearized for each
prediction step. Furthermore, an Extended Kalman Filter is
presented, which estimates the tower top displacement and
speed, which are usually not available on wind turbines.

Compared to the baseline controller the LMPC is only able
to minimize significantly the standard deviation of the rotor
speed, if used with wind preview. The NMPC can achieve
even better results at wind speeds far from the linearization
point of the LMPC, but has higher computational times.

In future work we plan to develop a multivariable feed-
forward controller for wind speeds around rated wind speed
and compare it to the developed MPC. Furthermore, we will
investigate the benefit of MPC to floating offshore wind
turbines.
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