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Abstract— Recent developments in remote sensing are offer-
ing a promising opportunity to rethink conventional control
strategies of wind turbines. With technologies such as LIDAR,
the information about the incoming wind field - the main
disturbance to the system - can be made available ahead
of time. Feedforward control can be easily combined with
traditional collective pitch feedback controllers and has been
successfully tested on real systems. Nonlinear model predictive
controllers adjusting both collective pitch and generator torque
can further reduce structural loads in simulations but have
higher computational times compared to feedforward or linear Fig. 1. Degrees of freedom for the reduced nonlinear model.
model predictive controller. This paper compares a linear
and a commercial nonlinear model predictive controller to a

baseline controller. On the one hand simulations show that both . _ .
controller have significant improvements if used along with the in€ar model predictive controller (LMPC) due to the high
preview of the rotor effective wind speed. On the other hand nonlinearity of the wind turbine close to rated wind speed.

the nonlinear model predictive controller can achieve better This paper is based on [13] and is organized as follows.

results compared to the linear model close to the rated wind gaction 11l and 1ll summarize the modeling of the wind

speed. turbine and the LIDAR measurements. Section IV describes

the design of an Extended Kalman Filter (EKF), and the

different controllers are outlined in Section V. Section VI
To reduce the structural loads of wind turbines by adpresents simulation results followed by the conclusiond an

vanced control is an important issue to lower the cost dfiture work in Section VII.

energy. Conventional feedback controllers relying on the

measured rotational speed can only provide delayed com- [I. MODELING OF THEWIND TURBINE

pengation for excitatiqns such as gusts due- fo the hugeClassically, aeroelastic codes such as FAST [14] and
inertia of the rotor. This usually results in additional dsa stochastic wind field generators such as TurbSim [15] are

on the wind turbine anq requires high actuator rates for' tn?sed for simulations in wind energy, providing models close
disturbance compensation. New remote sensing teChn'qUtﬁsreality. However, they are too complex to be used for

such as LIDAR (Light Detection And Ranging) allow @ controller design. The internal model for the linear and-non

measurement of the.wmd In fr_ont of _the wmd wrbin€jinear model predictive controller design should be simple
providing a preview disturbance information, which can b("énough to allow simulations in a reasonable computation

used in new control concepts to improve the disturban(‘tﬁne_ At the same time it should be accurate enough to

rejection. capture the system dynamics that are relevant for wind

Early work on LIDAR-assisted control was reported iny,rhine control. In addition, current remote sensing metho
[1] and this field of investigation has increased signifibant ¢ -1 as LIDAR are not able to measure a detailed three

in recent years. While SISO feedforward controllers havgimensional wind field as used in simulations. But they show
been already successfully tested for load reduction on reﬁllomising capabilities to measure the overall rotor eftect
turbines [2], [3], model predictive controllers are prome \ing speed [2], [3]. Therefore, modeling details such as
to further reduce structural loads, see e.g., [4]-[12]. Thg,e gynamics of individual blades is unnecessary, because
present work illustrates on the one hand that wind previey,oqe dynamics cannot be predicted if the corresponding
is crucial to achieve significant improvement over a baselingistrbance preview is missing. In this section, a reduced

feedback controller. On the other hand a nonlinear modghjinear turbine model with three degrees of freedom and
predictive controller (NMPC) exceed the improvements of &< |inearization are presented.

I. INTRODUCTION

1 Stuttgart Chair of Wind Energy (SWE), Universitat Stuttgart A. Reduced Nonlinear Model
Germany,Davi d. Schl i pf/ St ef f en. Raach/ Powen. Cheng '

@fb.uni-stuttgart.de,* now with Robert Bosch GmbH For the simulations in this work a 5 MW reference wind

2 TriSolutions - Controle e Otimizag&o de Processos, PortgraleBrazil turbine [16] is reduced to be used as internal model for
durai ski @risolutions.com br . . .

3 Universidade Federal do Rio Grande do Sul, Porto AlegreziBra the controller design. The model has been used in previous

j orge@nq. ufrgs. br studies [9] and is based on [17]. Similar to FAST, it is split



up into a servo-elastic and an aerodynamic subsystem (s 150
Figure 1).

1) Servo-Elastics: The first tower fore-aft bending mode,
the rotational motion, and the collective pitch actuatce ar
modeled linearly as:
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Used circular scan for the LIDAR measurements.

The conservation of the angular momentum (1a) gives the

equation of motion of the rotor speel. Thfa aerodynamic B. Reduced Linear Mode

torque M, accelerates the rotor, depending on the tower ) ) ) )
top fore-aft displacementr, the effective collective blade N order to design a linear MPC, a linear representation
pitch angled, and the rotor effective wind speeg. The IS needed. Therefore, the obtained nonlinear reduced model
electrical generator torquily decelerates the rotor, where (2)-(4) is linearized at an equilibrium point defined kay.

ig is the gear box ratio and is the overall sum of the 1hen the linear state space representation is

moments of inertia about the rotation axis. The tower fore- 0 1 0 0 0
aft dynamics are modeled as a mass-spring-damper system | —kre —Cret+dFa/d%r  dFa/0Q  dFa/d6 0
(1b), whereF, is the aerodynamic thrust andre, Cre, and . ”ge OMa) S oMaBa a6 o |x
kre are the tower equivalent modal mass, structural damping, J J J
and bending stiffness, respectively. Finally, the bladehpi 0 0 02 1
actuator (1c) is a second-order linear model, wheris the 0 0 0 —w —28w
undamped natural frequendy,is the damping factor, ané. A
is the collective blade pitch control input. 0 o 0
2) Aerodynamics. The aerodynamic torque and thrust act- 0O 0 9Fa/dVo
ing on the rotor with radiuRk are nonlinear static functions: +10 % Au+ f"V'T;%Vo Ad
g J
0O O 0
Mo = 2o POz, @a) Z 0 X
Fae %anch()\ 0N, (2b) B B
—kre  —CretdFa/O%r  0Fa/0Q  OFa/08
wherecp andcr are the effective power and thrust coeffi-Ay = | Mre Mre Mre MTe 4 AX
. . . . X 0 0 1 0
cients obtained from steady-state simulations anis the
air density. The relative wind speedq is defined as a C
superposition of tower top speed and mean wind speed 0 0 dFa/dvg
+ Au+ | e | Ad.
Vre = Vo — XT 3) [i,gl 0 ]
Dy D
and the tip-speed ratid is ‘ (5)
A — fB (4) The partial derivatives oF, and M, are obtained by fitting
Vid polynomials toce andcy and calculating the corresponding
The individual differential equations can be transformed idenvatwes at the operation point.
the state space representation with the system states 1. SIMULATED LIDAR M EASUREMENTS
x=[xr % Q 6 Q]T’ The preview of the rotor effective wind speed is extracted
from the 3D wind fields used for the aero-elastic simulation.
the control inputu, and disturbance: Similar to [9] a pulsed system with a circular trajectory is
simulated (Figure 2), assuming that the turbulent wind field
u= [Mg GC]T, d=vp. moves unaffected with the average wind speed and thus is

scanned at times corresponding to the 5 distances before it
The system outputyg of the design model are the acceler-reaches the rotor. Due to the limited points and the linutati
ation of the tower top and the rotor speed accessible frogg “line-of-sight” measurements, only the low frequencies
commonly used sensors: can be measured correctly. To avoid harmful control action
) T due to uncorrelated frequencies the wind speed previgw
y= [XT Q} : is filtered by a low-pass filter designed according to [18].



IV. ESTIMATOR DESIGN
To realize a model based controller all system states have !

to be available. For a realistic measurement scenario aely t . ; o ;
rotor speed? and the tower top acceleration are assumed ~ * . . ‘ ‘
to be measurable. An EKF is used to reconstruct the missing Y1 ; y"+P§

states of the nonlinear model considering noise.

It can be separated into the prediction update part and the
measurement update part. For the prediction update part the dk_

discrete nonlinear system is used Uk
u '
%o = T (R-1, Uk) e .
Yk = h(X), (6) past [ control hOI‘IZOI'-I —» | |
wherexg andyj, are priori valuesy 1 is the posteriori esti- prediction horizon '

mation from the previous time step ang the actual input.

The measurement update partuses a linearized repreeantaplg 4. Principle of the MPC: The projected control input®ver a control

around the actual priori statg. The error equation is horizon are optimized, considering the system statesd the disturbance
5 R d over a prediction horizon.
8 A (X1 —R-1) + &
& ~H-& + Nk (7)
_ _ i V. CONTROLLERDESIGN
with A and H the Jacobian of the vector fields and h, . _ _ _
respect|ve|y & is the covariance matrnV\ﬁ(QWT and Nk In this section a Linear (LMPC) and a Nonlinear Model

VKRV, whereW is the Jacobian of with respect to the Predictive Controller (NMPC) using the wind speed preview
state noisav andV is the Jacobian ofi with respect to the information are derived. Both are solving in principle the
measurement noise at time stepk. Q and R are variances Same optimal control problem, but using different models an
of the assumed noises. The prediction update part is then@lgorithms. The baseline controller (FB) is based on feekiba
only and is implemented as described in [16], combining a
% = F (%1, ) variable speed generator torque controller and a colkectiv
P = AR 1AL +WeQi 1W! (8) pitch controller.

where— means that this value is calculated in the predictiol, The Optimal Control Problem
step and will be updated in the measurement update part.

Together with the Kalman Gain The considered optimal wind turbine control problem
for the full load region can be described as follows (see
Kk =P H{ (HkP[HkT +ka\/kT)’l (9) Figure 4). The objective is to find the optimal control inputs

u; minimizing the cost functional, which is defined as the

the measurement update part is sum of all deviations from the system outpwytsfrom the

R = %+ Ki(yk— (%)) reference values over the prediction horizo> weighted
A= (1 — KeHP; . (10) with Q and the sum of all changes in the control inpugs
over the control horizoM weighted withR:
Figure 3 depicts a comparison between the estimated and the .
simulated values. uk‘_.rf,l'ﬂ,lfl J
k+P k+M—1
03 : : . . . with: J = 1Qly: —r]II* + Ek IR — ui—a]|%,
i=kT1 i=
E 0.15 A “/\\/’{‘\N%/\VVV‘/\,/\/\/\/\'V\’V‘A/V/\/\/\A/“/\) s.t.i AX 1 = AAX + BiAu; + BgiAd
£ ‘ ‘ ‘ ‘ Ay; = CiAX; + DyiAu; + DgiAd;
0 ; ; ; . L U=Uym1 Vi=k+M...k+P
02 ; ; Umin < U < Umax Vi=k...kt+M—1
g offf \I[«MU\’ [/“‘f \[ [{_ / \\\\/\f |(ui—ui_1)/At|§U,.nax Vi=k..k+M-1
p | W L Ymin <Vi <Ymax Vi=k+1...k+P. (11)
-0.2

50 70 80 90 100 110 120 The control mputs_ are held constant for the remaining time.
The system matricesy, By, Bgi,Ci,Dyi, Dgi and deviations
AX;, Ay, Au;, Ad; are different for the two approaches and will
Fig. 3. Comparison between estimated (black) tower fore-aitipn and b€ explained in the next subsections. The refererared the
velocity and the simulated values (gray) from a FAST simutatio constraints for the system outputs, control inputs, andHer

time [s]



deviations in the control inputs are VoL wind field

r= [O ) Qrated]T
s : LMPC/NMPC
Unese = [1.1 Mg rated 90 deg” X
kNm deg
Ummex = [15 S 8 ? Fig. 5. Overview of the simulation environment.
m
Ynin = [-05 0.8 Qrated]”
Vimax = [0.592 1.2 Qraed] " VI. SIMULATION RESULTS

hereQ dMm h d and The controllers are compared controlling the FAST 5 MW
torque at 13 ac? grated Are the rotor speed and generatofeferance turbine with 16 degrees of freedom and a pitch
toraue at rated power. actuator (1c). The LMPC and the NMPC are simulated with a
B. Linear Model Predictive Control comparable control and prediction horizon as well as wsight

For the LMPC the Model Predictive Control Toolbox OF the cost functional. The EKF is used to estimate the tower

[19] and the linear model (5) at the operation poinfOP POsition and speed, see Figure 5.
Vo = 16 m/s was used. In this case, the system maa Extreme Load Smulations

trices A, Byi,Bgi,Ci,Dyi,Dgi in (11) are discretized con-

stant versions ofA By,Bq,C,Dy,Dq and the deviations

Ax;, Ay, Ay, Ad; denote deviations from the operation point
The system input and outputs were further scaled to speed
the calculation. The used toolbox solves the optimal contr
problem (11) via Quadratic Programming.

In a first evaluation, perfect measurement is assumed and
the wind turbine is disturbed by a Extreme Operating Gust
(EOG) at 14 nfs based on [22]. Here, compared to the

Poportional-integral (PI) controller both the LMPC anckth

MPC are able to compensate the gust and hold the rotor
speed almost constant, see Figure 6. Although the aero-
C. Nonlinear Model Predictive Control elastic model used for the simulation is of higher order

The algorithm of the Local Linearization on the Trajectorycompared to the controller design model, the difference in
(LLT), shown in [20] and [21]’ minimizes an Objective func- the aerOdynamiC torqlMa in the case of the NMPC is small.
tion by using a nonlinear model, which will be consecutively~or the LMPC, a steady state error can be observed due to
linearized for each prediction step of the prediction hamiz the use of an internal model which was linearized at ¥6.m

The LLT algorithm is oriented at the linear MPC algo-
rithm, in which only one model is used to predict the outputs
The basic idea of the LLT is to linearize a nonlinear modele
at each point of the prediction horizon and to gatifferent %
linearized models. The benefit of this algorithm in compari-~ 12
son to a normal nonlinear MPC-algorithm is that a powerful 20 ' ' '
and fast QP-Solver can be used. The first step is to solvew ] R A /-\ T
QP with one linearized model at the actual point to get th& 10 ﬁ/ AN EREEE
first sequence of future inputs. With this sequence and the & SRR
nonlinear model the future statgscan be calculated. Then 0
P models are obtained by linearizing along the trajectories
By using the system matrice4, By, Bgi,Ci, Dyi, Dgi at the

20
16 |

[&)]

B
actual linearization point and the deviations from the last £
c
A =X — X7, Dy =y, — Yy
AU = U LP R LP
U =U— U4 Adi =d —d™ (12)

the QP can be updated and solved again. After that with thg
new calculated sequence of future inputs, new trajectafies =,
the states can be simulated. This process will be repeat&
until the changes iny; falls below a certain tolerance. 3 - - -
After the control action is applied, the transient respoisse 45 50 _ % 60 65
evaluated and a new trajectory is designed, which is used as a time {s]

starting trajectory for the next control action determiioiat Fig. 6. Top: rotor effective wind speed. Below: pitch anglendnd,
Therefore, the actual operational point is used as startingtor speed, and aerodynamic torque for Pl (dark gray), LMB&ck), and
point only in the first control action determination. EveryN’V'PC (light gray). Simulation model (dashed) and internal nid¢detted).
other calculation, after the controller has been startsd, i

performed considering the transient behavior of the pmces
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Fig. 7.  Top: rotor effective wind speed. Below: pitch anglenthnd, Fig. 8.  Top: rotor effective wind speed. Below: pitch anglentand,
generator torque, rotor speed, and tower top acceleratioRIf(dark gray) generator torque, rotor speed, and tower top acceleratioRIf(dark gray),
and LMPC without wind preview (light gray). LMPC (light gray), and NMPC (black).

B. Fatigue Load Smulations aerodynamics occurs. For the NMPC the rotor speed is not
In the next evaluation, a turbulent wind field is usec®/ways kept to rated rotor spe}aeq =12.1 rpm because
with a mean wind of 16 s and a turbulent intensity of Of the trade-off in the cost functional.
18 % for the aero-elastic simulations and simultaneously In Figure 9, the spectra of the pitch rate, rotor speed and
scaned with the simulated LIDAR system. First, the baselin@wer top acceleration are depicted. Both MPC controller
proportional-integral (PI) controller and the LMPC withou can reduce the rotor speed spectra below the 1P (once per
wind speed information are compared in Figure 7. Theevolution) frequency at around2Hz, but are reaching this
LMPC achieves a slightly better rotor speed regulationgisinperformance by a higher control activity. Further investig
the generator torque to react fast on rotor speed deviatiod®ns have to be made to determine, if frequencies above the
However, due to the limitation to one linear model, a stead¥P frequency can be omitted by better filtering or estimator
state error iy occurs. The generator torque for the baselinéning, because no benefit is achieved at these frequencies.
controller is hold constant for better comparison. The spectra of the tower top acceleration can be also be
In a next step the baseline PI controller with feed-forwardeduced below 1P frequency by both MPC controllers. The
control (PI+FF) as presented in [23] and tuned for loadeduction is not significant due to the peak in the spectra
reduction, the LMPC and NMPC with wind preview areat the 3P frequency, which is difficult to compensate by a
compared, see Figure 8. Because of the advantage of havingadlective pitch control approach.
forecast all preview controller have an improved rotor spee
regulation. The steady state error of the LMPC disappears
when used together with the wind speed preview. In Table |
can be seen that the NMPC achieves slightly better control

TABLE |
COMPARISON OF SIMULATION RESULTS

performance than feedforward and LMPC controller. Com- Controller || st. dev.Q [rpm] | st. dev.xi[m/s]
paring LMPC and NMPC it is remarkable that around the PL 0.6193 0.1909
li ized wind speed both achieve nearly similar results LMPC no preview 0.3226 0.1913
inéarize p : y ILS. PI+FF 0.0574 0.1970
But overall the NMPC achieves better rotor speed regulation LMPC 0.0503 0.1929

especially for low wind speeds where high nonlinearity ia th NMPC 0.0460 0.1910
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[9]
VII. CONCLUSIONS ANDOUTLOOK [10]

In this paper, we have compared two model predictive
controller to a baseline wind turbine controller. Both cony,
troller optimize the control trajectories of the colleetipitch
and the generator torque using simulated LIDAR measure-
ments of the wind inflow. While the linear model predictive, 12
controller (LMPC) uses a linear model of one linearization
point, the commercial nonlinear model predictive con&oll
(NMPC) uses a nonlinear model, which is linearized for each®!
prediction step. Furthermore, an Extended Kalman Filter ig4]
presented, which estimates the tower top displacement and
speed, which are usually not available on wind turbines.

Compared to the baseline controller the LMPC is only ablge
to minimize significantly the standard deviation of the roto
speed, if used with wind preview. The NMPC can achiev
even better results at wind speeds far from the linearizatio
point of the LMPC, but has higher computational times.

In future work we plan to develop a multivariable feed-lg]
forward controller for wind speeds around rated wind speed
and compare it to the developed MPC. Furthermore, we will
investigate the benefit of MPC to floating offshore Wi”d[lg]
turbines.
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