1,452 research outputs found

    Variability, negative evidence, and the acquisition of verb argument constructions

    Get PDF
    We present a hierarchical Bayesian framework for modeling the acquisition of verb argument constructions. It embodies a domain-general approach to learning higher-level knowledge in the form of inductive constraints (or overhypotheses), and has been used to explain other aspects of language development such as the shape bias in learning object names. Here, we demonstrate that the same model captures several phenomena in the acquisition of verb constructions. Our model, like adults in a series of artificial language learning experiments, makes inferences about the distributional statistics of verbs on several levels of abstraction simultaneously. It also produces the qualitative learning patterns displayed by children over the time course of acquisition. These results suggest that the patterns of generalization observed in both children and adults could emerge from basic assumptions about the nature of learning. They also provide an example of a broad class of computational approaches that can resolve Baker's Paradox

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Acquiring and processing verb argument structure : distributional learning in a miniature language

    Get PDF
    Adult knowledge of a language involves correctly balancing lexically-based and more language-general patterns. For example, verb argument structures may sometimes readily generalize to new verbs, yet with particular verbs may resist generalization. From the perspective of acquisition, this creates significant learnability problems, with some researchers claiming a crucial role for verb semantics in the determination of when generalization may and may not occur. Similarly, there has been debate regarding how verb-specific and more generalized constraints interact in sentence processing and on the role of semantics in this process. The current work explores these issues using artificial language learning. In three experiments using languages without semantic cues to verb distribution, we demonstrate that learners can acquire both verb-specific and verb-general patterns, based on distributional information in the linguistic input regarding each of the verbs as well as across the language as a whole. As with natural languages, these factors are shown to affect production, judgments and real-time processing. We demonstrate that learners apply a rational procedure in determining their usage of these different input statistics and conclude by suggesting that a Bayesian perspective on statistical learning may be an appropriate framework for capturing our findings

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg
    corecore