1,474 research outputs found

    A randomized polynomial kernel for Subset Feedback Vertex Set

    Get PDF
    The Subset Feedback Vertex Set problem generalizes the classical Feedback Vertex Set problem and asks, for a given undirected graph G=(V,E)G=(V,E), a set SVS \subseteq V, and an integer kk, whether there exists a set XX of at most kk vertices such that no cycle in GXG-X contains a vertex of SS. It was independently shown by Cygan et al. (ICALP '11, SIDMA '13) and Kawarabayashi and Kobayashi (JCTB '12) that Subset Feedback Vertex Set is fixed-parameter tractable for parameter kk. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where SS is a set of edges. In a first step we show that Edge Subset Feedback Vertex Set has a randomized polynomial kernel parameterized by S+k|S|+k with O(S2k)O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstr\"om (FOCS '12) that for example were used to obtain a polynomial kernel for ss-Multiway Cut. Next we present a preprocessing that reduces the given instance (G,S,k)(G,S,k) to an equivalent instance (G,S,k)(G',S',k') where the size of SS' is bounded by O(k4)O(k^4). These two results lead to a polynomial kernel for Subset Feedback Vertex Set with O(k9)O(k^9) vertices

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in GFG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an O(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic

    Simultaneous Feedback Vertex Set: A Parameterized Perspective

    Get PDF
    Given a family of graphs F\mathcal{F}, a graph GG, and a positive integer kk, the F\mathcal{F}-Deletion problem asks whether we can delete at most kk vertices from GG to obtain a graph in F\mathcal{F}. F\mathcal{F}-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G=(V,i=1αEi)G = (V, \cup_{i=1}^{\alpha} E_{i}), where the edge set of GG is partitioned into α\alpha color classes, is called an α\alpha-edge-colored graph. A natural extension of the F\mathcal{F}-Deletion problem to edge-colored graphs is the α\alpha-Simultaneous F\mathcal{F}-Deletion problem. In the latter problem, we are given an α\alpha-edge-colored graph GG and the goal is to find a set SS of at most kk vertices such that each graph GiSG_i \setminus S, where Gi=(V,Ei)G_i = (V, E_i) and 1iα1 \leq i \leq \alpha, is in F\mathcal{F}. In this work, we study α\alpha-Simultaneous F\mathcal{F}-Deletion for F\mathcal{F} being the family of forests. In other words, we focus on the α\alpha-Simultaneous Feedback Vertex Set (α\alpha-SimFVS) problem. Algorithmically, we show that, like its classical counterpart, α\alpha-SimFVS parameterized by kk is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant α\alpha. In particular, we give an algorithm running in 2O(αk)nO(1)2^{O(\alpha k)}n^{O(1)} time and a kernel with O(αk3(α+1))O(\alpha k^{3(\alpha + 1)}) vertices. The running time of our algorithm implies that α\alpha-SimFVS is FPT even when αo(logn)\alpha \in o(\log n). We complement this positive result by showing that for αO(logn)\alpha \in O(\log n), where nn is the number of vertices in the input graph, α\alpha-SimFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014)
    corecore