660 research outputs found

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout

    Towards Efficient Resource Allocation for Embedded Systems

    Get PDF
    Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebetteten Systemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehr auf einem MPSoC. Die Idee besteht darin, eine Pipeline für die Verarbeitung von Mobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienz der Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch des dynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auch Hardwaremodule werden auf Hotspots im Ressourcenverbrauch untersucht und optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signalverarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben werden können, wird deren dynamisches Scheduling optimiert, um den Ressourcenverbrauch gegenüber dem üblicherweise verwendeten statischen Scheduling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, der die Vorteile von Processing-Networks und der Planung von Task-Graphen kombiniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Parallelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwägen. Der resultierende dynamisch erstellte Schedule reduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Vergleich zu einem statischen Schedule nur um 20% erhöht wird. Zusätzlich wird ein verteilter dynamischer SDF-Scheduler vorgeschlagen, der das Scheduling in verschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, um mehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu einem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufenden Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhandene Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler für eine typische Signalverarbeitungsanwendung verwendet werden können. Das neue dynamische Scheduling-System setzt das Vorhandensein von drei verschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen voraus. Bei der Emulation auf Basis des häufig verwendeten RDMA-Protokolls treten Leistungsprobleme auf. Sehr gut kann RDMA für einmalige Punkt-zu-Punkt-Datenübertragungen verwendet werden, wie sie bei der Ausführung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Datenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO-basierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl im Sender als auch im Empfänger implementiert, um diesen Bedarf zu decken. Die Pufferbehandlung und die Datenübertragung zwischen ihnen erfolgen ausschließlich in Hardware, um den Software-Overhead aus der Anwendung zu entfernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nutzer auf flächen-effiziente Single-Port Speichermodule. Es werden 0,8 der theoretisch möglichen Bandbreite, die normalerweise nur mit flächenmäßig teureren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus definiert eine einfache Message-Passing-Implementierung, die ohne einen Verbindungszustand auskommt. Dieser Modus wird für eine effiziente prozessübergreifende Kommunikation des verteilten Scheduling-Systems und der engen Ansteuerung der restlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher, dass eine große Anzahl von Sendern Nachrichten an denselben Empfänger senden kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen werden, ohne dass eine Verbindung hergestellt werden muss und die Nachrichtenlaufzeit gering bleibt. Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hardware und Software, um die kompromisslose Ressourceneffizienz der dynamischen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf die Abhängigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems gelegt, das auf der Verfügbarkeit spezifischer hardwarebeschleunigter Kommunikationsmethoden beruht.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 SummaryThe main topic is the dynamic resource allocation in embedded systems, especially the allocation of computing time and network traffic on an multi processor system on chip (MPSoC). The idea is to dynamically schedule a mobile communication signal processing pipeline on the chip to improve hardware resource efficiency while not dramatically improve resource consumption because of dynamic scheduling overhead. Both software and hardware modules are examined for resource consumption hotspots and optimized to remove them. Since signal processing can usually be described with the help of static data flow (SDF) graphs, the dynamic handling of those is optimized to improve resource consumption over the commonly used static scheduling approach. A hybrid dynamic scheduler is presented that combines benefits from both processing networks and task graph scheduling. It allows the scheduler to optimally balance parallelization of computation and addition of dynamic scheduling overhead. The resulting dynamically created schedule reduces resource consumption by about 50%, with a runtime increase of only 20% compared to a static schedule. Additionally, a distributed dynamic SDF scheduler is proposed that splits the scheduling into different parts, which are then connected to a scheduling pipeli ne to incorporate multiple parallel working processors. Each scheduling stage is reworked into a load-balanced cluster to increase the number of parallel scheduling jobs further. This way, the still existing dynamic scheduling bottleneck of a centralized scheduler is widened, allowing handling 7x more processors with the pipelined, clustered dynamic scheduler for a typical signal processing application. The presented dynamic scheduling system assumes the presence of three different communication modes between the processing cores. When emulated on top of the commonly used remote direct memory access (RDMA) protocol, performance issues are encountered. Firstly, RDMA can neatly be used for single-shot point-to-point data transfers, like used in task graph scheduling. Process networks usually make use of high-volume and high-bandwidth data streams. A first in first out (FIFO) communication solution is presented that implements a cyclic buffer on both sender and receiver to serve this need. The buffer handling and data transfer between them are done purely in hardware to remove software overhead from the application. The implementation improves the multi-user access to area-efficient single port on-chip memory modules. It achieves 0.8 of the theoretically possible bandwidth, usually only achieved with area expensive dual-port memories. The third communication mode defines a lightweight message passing (MP) implementation that is truly connectionless. It is needed for efficient inter-process communication of the distributed and clustered scheduling system and the worker processing units’ tight coupling. A hardware flow control assures that an arbitrary number of senders can spontaneously start sending messages to the same receiver. Yet, all messages are guaranteed to be correctly received while eliminating the need for connection establishment and keeping a low message delay. The work focuses on the hardware-software codesign optimization to increase the uncompromised resource efficiency of dynamic SDF graph scheduling. Special attention is paid to the inter-level dependencies in developing a distributed scheduling system, which relies on the availability of specific hardwareaccelerated communication methods.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 Summar

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    Energy Efficiency and Performance in Multiprocessors Systems on Chip

    Get PDF
    As process technology shrinks, the transistor count on CPUs has increased. The breakdown of Dennard scaling has led to diminishing returns in terms of performance per power. A trend which promises to impact future CPU designs. This breakdown is due in part to the increase in transistor leakage driven static power. We, now, have constrained energy and power budgets. Thus, energy consumption has to be justified by an increased in performance. Simultaneously, architects have shifted to chip multiprocessors(CMPs) designs with large shared last level cache(LLC) to mitigate the cost of long latency off-chip memory access. A primary reason for that shift is the power efficiency of CMPs. Additionally, technology scaling has allowed the integration of platform components on the chip; a design referred to as multiprocessors system on chip (MpSoC). This integration improves the system performance as the communication latency between the components is reduced. Memory subsystems are essential to CPUs performance. Larger caches provide the CPU faster access to a larger data set. Consequently, the size of last level caches have increased to become a significant leakage power dissipation source. We propose a technique to facilitate power gating a partition of the LLC by migrating the high temporal blocks to a live partition; Thus reducing the performance impact. Given the high latency of memory subsystems, prefetching improves CPU performance by speculating future memory accesses and requesting the data ahead of the demand. In the context of CMPs running multiple concurrent processes, prefetching accuracy is critical to prevent cache pollution effects. Furthermore, given the current constraint energy environment, there is a need for lightweight prefetchers with high accuracy. To this end, we present BFetch a lightweight and accurate prefetcher driven by control flow predictions and effective address speculation. MpSoCs have mostly been used in mobile devices. The energy constraint is more pronounced in MpSoCs-based, battery powered mobile devices. The need to address the energy consumption in MpSoCs is further accentuated by the proliferation of mobile devices. This dissertation presents a framework to optimize the energy in MpSoCs. The proposed framework minimizes the energy consumption while meeting performance and power budgets constraints. We first apply this framework to the CPU then extend it to accommodate the GPU

    Multi-Softcore Architecture on FPGA

    Get PDF
    To meet the high performance demands of embedded multimedia applications, embedded systems are integrating multiple processing units. However, they are mostly based on custom-logic design methodology. Designing parallel multicore systems using available standards intellectual properties yet maintaining high performance is also a challenging issue. Softcore processors and field programmable gate arrays (FPGAs) are a cheap and fast option to develop and test such systems. This paper describes a FPGA-based design methodology to implement a rapid prototype of parametric multicore systems. A study of the viability of making the SoC using the NIOS II soft-processor core from Altera is also presented. The NIOS II features a general-purpose RISC CPU architecture designed to address a wide range of applications. The performance of the implemented architecture is discussed, and also some parallel applications are used for testing speedup and efficiency of the system. Experimental results demonstrate the performance of the proposed multicore system, which achieves better speedup than the GPU (29.5% faster for the FIR filter and 23.6% faster for the matrix-matrix multiplication)

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks
    corecore