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ABSTRACT

As process technology shrinks, the transistor count on CPUs has increased. The

breakdown of Dennard scaling has led to diminishing returns in terms of performance

per power. A trend which promises to impact future CPU designs. This breakdown

is due in part to the increase in transistor leakage driven static power. We, now,

have constrained energy and power budgets. Thus, energy consumption has to be

justified by an increased in performance. Simultaneously, architects have shifted

to chip multiprocessors(CMPs) designs with large shared last level cache(LLC) to

mitigate the cost of long latency off-chip memory access. A primary reason for

that shift is the power efficiency of CMPs. Additionally, technology scaling has

allowed the integration of platform components on the chip; a design referred to

as multiprocessors system on chip(MpSoC). This integration improves the system

performance as the communication latency between the components is reduced.

Memory subsystems are essential to CPUs performance. Larger caches provide

the CPU faster access to a larger data set. Consequently, the size of last level caches

have increased to become a significant leakage power dissipation source. We propose

a technique to facilitate power gating a partition of the LLC by migrating the high

temporal blocks to a live partition; Thus reducing the performance impact. Given

the high latency of memory subsystems, prefetching improves CPU performance by

speculating future memory accesses and requesting the data ahead of the demand. In

the context of CMPs running multiple concurrent processes, prefetching accuracy is

critical to prevent cache pollution effects. Furthermore, given the current constraint

energy environment, there is a need for lightweight prefetchers with high accuracy. To

this end, we present BFetch a lightweight and accurate prefetcher driven by control
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flow predictions and effective address speculation.

MpSoCs have mostly been used in mobile devices. The energy constraint is more

pronounced in MpSoCs-based, battery powered mobile devices. The need to address

the energy consumption in MpSoCs is further accentuated by the proliferation of

mobile devices. This dissertation presents a framework to optimize the energy in

MpSoCs. The proposed framework minimizes the energy consumption while meeting

performance and power budgets constraints. We first apply this framework to the

CPU then extend it to accommodate the GPU.
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1. INTRODUCTION

Power management has become a critical issue for current and future chip-

multiprocessors(CMPs), as Moore’s law continues providing increasing transistor

count. Esmaeilzadeh et al, show that a major driver of unusable or dark silicon

in future many-core CMPs is increasing leakage power consumption [21]. They also

argue that energy consumption must be justified by increased performance to be

practical as VLSI scaling continues. Thus, computer architects have focused on

building efficient systems. An example of such an efficiency has been the design of

better memory subsystems to provide the CPU faster access to larger data sets. To

this end, architects have relied on large a memory hierarchy and data prefetching.

Given the end of the Dennard scaling, growing cache size comes at an increasing high

cost in terms of power/energy consumption. This constraint also impacts the hard-

ware budgets for prefetchers. It becomes necessary to design lightweight prefetchers

with high accuracy.

Another example of the drive for more efficient utilization of transistor in com-

puter designs has been the increased integration of platforms components on chip.

This integration results in performance improvement due to a reduced communica-

tion latencies between components. It also yields better efficiency in terms of power

consumption because of the shorter interconnects [39]. Modern MpSoCs consist of

many different processing elements (PE) including multiple CPU cores, graphical

processing units (GPU), DSP cores and video accelerators. While this rich set of

resources enables mobile devices to be used for a wide range of applications, it also

elevates the platform power and need for energy efficiency [9, 60, 8, 24].

This dissertation addresses efficiency in MpSoCs through architectural and sys-
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tem level approaches. Techniques to increase performance without impacting energy

and to reduce energy without impacting performance are proposed.

1.1 Microarchitectural Techniques

1.1.1 Last Level Cache Static Power Reduction

The leakage power, to a first order, is linearly proportional to the number of tran-

sistors in CMOS circuits. In recent years, architects have dramatically increased the

size of the last level cache (LLC), in an attempt to mitigate the large off-chip memory

access latencies and bandwidth constraints. Since performance degrades significantly

with off-chip memory accesses, the goal in LLC design is to provide enough cache to

contain the worst case application memory footprint. Thus, the LLC has grown to

occupy a large portion of chip die area, as much as 30% in recent Intel CMPs [42]. As

such, the leakage power within the LLC has become a significant factor in the overall

chip power budget. It is therefore imperative to minimize the leakage consumption

within the LLC, without impacting performance. Ideally, one would like the LLC to

be minimally sized to application footprint, however, as application footprints vary

with application and within an application with program phase, it is impossible to

decide at design time the optimum LLC size for all applications at all times. While

prior work exists in resizing caches via power gating, it is either overly conserva-

tive, leaving energy savings on the table, or imposes a heavy performance burden.

We propose a novel LLC power-gating scheme that dramatically reduces energy in

the LLC, while leveraging temporal locality aware block migration to mitigate any

significant performance impact.

Figure 1.1 illustrates how application footprints vary between applications, it

shows the miss rate curve for two applications (bzip2, sjeng) from the SPEC2006

benchmark suite. In the case of bzip2, the miss rate drastically decreases as the
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LLC size increases to 8MB, staying constant beyond that point. Thus, its memory

footprint can be said to be 8MB. Alternately, sjeng ’s miss rate is nearly oblivious

to the cache size; a 32 MB LLC is not large enough to hold the application memory

footprint. A cache of size bigger than an application memory footprint provides little

or no performance benefit. Conversely, it dissipates additional energy that affects the

overall platform energy as cooling mechanisms are activated to keep the temperature

down [4]. When running bzip2 on a CPU with a LLC size of 32MB, 75% of the cache

can be disabled. Because sjeng ’s miss rate is largely unaffected by the LLC size,

nearly all the cache can be disabled.

Previous research ([35, 78, 1]) has proposed methods for reducing the leakage

power in caches, however, these methods are not well applicable to LLCs. They

require time stamp bookkeeping hardware per cache line, leading to a high hardware

overhead due to the low access rate in LLCs. Other methods [58, 2] proposed to

shutdown partitions of the cache. These techniques, either do little to reduce the

leakage power or have a big performance impact. In general, cache blocks are not

ordered by their temporal locality within the sets. Simply shutting down a portion of

the cache often leads to performance degradation. The performance impact results

from increased LLC misses due to locality lost in the partition being shutdown,

exacerbated by the bursts of traffic on the memory bus as the dirty blocks from the

partition being shutdown are written back to the main memory.

1.1.2 Branch Prediction Directed Prefetching

The current energy constrained environment also impacts hardware budgets for

prefetchers. Moreover, in the context of CMPs running multiple concurrent pro-

cesses, prefetching accuracy is critical to prevent cache pollution effects [20, 73].

Thus, there is a clear need for a light-weight prefetcher with very high accuracy.
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Figure 1.1: Last level cache footprints for sjeng and bzip2.

In this work we present a novel, high-accuracy, low-overhead prefetcher for use in

chip multiprocessor designs with shared, last-level caches (LLCs). This prefetcher

leverages control-flow speculation, together with effective address value speculation

to efficiently provide an accurately predicted stream of future memory references.

Prefetching is a well known and deeply studied technique in which a hardware

mechanism attempts to fill the cache with useful data ahead of the actual demand

load request stream coming from the processor. In effect, a perfect prefetcher could

make all memory accesses complete as if they were first level cache hits. Figure 1.2

shows the speedup that might be achieved under such a Perfect L1 D-cache prefetcher

normalized against the same system without prefetching for a set of SPEC CPU2006

benchmarks. The Perfect prefetcher achieves a geometric mean speedup of ∼2X

versus no prefetching. For comparison, we also show two other current, light-weight

prefetchers, Stride [14] and SMS [63]. We see that while these prefetchers can pro-

vide a significant performance gain, there is room for improvement. We note that in
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Figure 1.2: Speedup comparison between the Stride, SMS, and Perfect Prefetchers.

the figure, several benchmarks see no gain from the perfect prefetcher, these bench-

marks are largely L1 cache resident. To focus on the benefit that can be provided

with prefetching, we also show the mean across these prefetch sensitive benchmarks,

denoted as geomean pf. sens..

Many data prefetching techniques have been proposed over the years, however,

most existing prefetchers predict future accesses based on current cache misses. For

example, sequential prefetchers prefetch the lines sequentially following the current

miss [61], stride prefetchers prefetch lines that exhibit a strided pattern with respect

to the current miss [14], and region-based prefetchers prefetch a set of blocks around

the miss [63]. These techniques are light-weight, energy-efficient and work well for

regular memory accesses, however, they tend to be inaccurate for applications with

irregular access patterns. More recent prefetchers attempt to address prefetch accu-

racy for irregular access patterns [62, 31]. While these methods show significantly

improved accuracy, they come at a very high cost in storage overhead, either re-

quiring huge structures to record the memory access patterns or the reservation of
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large amount of off-chip memory for meta-data storage (and the associated, energy

consuming shuttling of large meta-data information on and off chip). Under mod-

ern constraints on energy and power consumption, it is critical to design efficient,

low-overhead prefetching techniques which can address irregular access patterns.

To improve both efficiency and accuracy, we propose to use control flow specula-

tion to feed a prefetch engine. Control flow, i.e., which basic block of instructions is

executed and in what sequence, is determined by the direction of branch instructions

contained in the path. Each basic block contains a particular set of loads and stores;

so, branch instructions directly determine the access patterns of data and can be

used to inform a suitable prefetcher. A challenge with this approach is to deter-

mine the effective address of a speculative future load given that the register values

it is based on are likely to change before the corresponding memory instruction is

executed. Our approach builds on the fact register content varies in a predictable

manner across a set of basic blocks, even in the case of irregular control flow. Thus

it is possible to stitch together the expected transformations of a register across a

sequence of predicted basic blocks leading to a given future load instruction. The

effective address of that load can then be predicted accurately based on the current

architectural state of the register and those predicted transformations. Unlike prior

light-weight prefetchers based on current cache misses, this approach has the added

advantage that prefetches can be issued for future loads without waiting for an ac-

tual miss to occur. Unlike techniques which speculatively continue execution beyond

long latency loads [19, 51], our approach is extremely light-weight, with only a small

prefetch engine active during operation, rather than the entire core.
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1.2 Platform Level Energy Optimization

As mobile platforms have become mainstream, the computational demands on

these devices have reached unprecedented levels. Besides a powerful multiprocessor

system-on-chip (MpSoC), mobile platforms host major hardware components such

as touch screen displays, modems, cameras and GPS modules. The diversity of hard-

ware resources and applications running on mobile devices results in a large variation

in the power consumption profile across different usage scenarios, as illustrated in

Figure 1.3.

1.2.1 A CPU Approach

Recent empirical data indicates that the CPU no longer dominates the platform

power consumption [8, 60]. The major contributors to the power consumption under

a typical use case are the CPU, the display, and the power management IC (PMIC)

with 30%, 33% and 25% share, respectively [8]. Hence, platform level resource man-

agement is necessary to optimize the overall energy consumption. Furthermore, ac-

curate modeling and optimization of platform components is needed due to the non-

trivial relation between performance and energy consumption [74, 5, 72, 6, 17, 76].

Traditionally, CPU cores have been the major focus of power management re-

search. Idle power management [49, 3] and dynamic voltage and frequency scaling

(DVFS) has been extensively used to minimize power [44, 5, 17, 36, 18]. How-

ever, current DVFS policies used in mobile platforms are based on those designed

for CPU centric desktops which are not efficient for system level optimization [52].

As a motivational example, we ran a memory intensive workload on a smartphone

with Intel c© Atom
TM

Clovertrail SoC. Reducing the CPU frequency from 2GHz to

1.2GHz results in 12% reduction in total platform power while merely increasing the

execution time from 44.10 sec to 45.78 sec. Despite this increase in run-time, our
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measurements show a platform energy consumption reduction of 9%, which obviously

translates to a longer battery life. However, when executing the same workload, the

default Android on-demand frequency governor [52], which sets the frequency based

on the CPU utilization, maintains the CPU at 2GHz. In other words, this policy

fails to detect the poor CPU usage due to the frequent cache misses.

True platform-level power management is possible only when all the platform

resources and PEs in the MpSoCs provide hardware support for different sleep and

performance states, and these states are exposed to the OS [30]. To date, the CPU

cores provide by far the richest set of power states and control knobs exposed at the

OS-level. On the other hand, there are very limited number of options to change

power states of the other resources such as, GPU and memory at the OS-level.

Therefore, we present a general architecture for platform-level power management,

but practically illustrate it by focusing on CPU, display and PMIC. We specifically

model the impact of PMIC which supplies power to all the components in the plat-

form [27]. Accounting for PMIC efficiency is important since the power dissipated

in the PMIC due to DC to DC converters and voltage regulators affect the total

platform power.

Multiprocessors systems on chip (MpSoCs) for mobile platforms typically contain

integrated CPU-GPU cores to provide a better 3D graphic experience. On these

platforms, 3D graphic applications are among the most commonly used applications.

Therefore, energy optimization for such applications is important. We extend our

framework to optimize the energy savings in 3D graphics applications while meetings

performance requirements.
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Figure 1.3: Power consumption breakdown for a mobile platform under different
usage scenarios [8].

1.2.2 A CPU-GPU Approach

In typical graphic applications, the GPU works in tandem with the CPU; with

the CPU generating tasks for the GPU to produce frames for the display. The target

Frame Per Second (FPS) is usually constrained (e.g. 60 FPS). At the same time,

applications usually vary in terms of their need for the CPU and GPU computational

resources to meet the target FPS. This indicates that running the CPU and GPU

at their maximum frequency always may unnecessarily burn significant energy for

workloads that do not require aggressive resources to achieve the target FPS. On

the other hand, running the CPU and GPU at their minimum frequency may not

be sufficient to meet the target FPS. Hence, any energy optimization work geared

towards graphic applications needs to correctly understand and model the interaction

between the CPU and GPU and set their frequency intelligently to meet the desired

Quality of Service target (QoS) while burning minimal energy.

Prior techniques for power management on CPU-GPU heterogeneous systems

have mostly focused on discrete GPU cards for high performance computing (HPC) [67,
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41, 15]. These techniques exploit the partitioning of workloads into tasks and sub-

sequently mapping them onto either the CPU or the GPU. Pathania et al., recently,

proposed a technique to reduce the energy in mobile 3D gaming [53]. Their method,

however, relies on an heuristic technique based upon an offline analysis, that deter-

mines the CPU-GPU frequencies combinations that generate the desired QoS.

We propose a technique that models the interaction between the CPU and GPU

as queuing systems. The CPU generates requests for work and insert them into a

request queue. The GPU, then, ejects the requests from the queue and executes the

commands that build up the frames. A request, generally, contains all the rendering

commands for the GPU. The frames are, then, inserted into a frame queue and

sampled by the display controller. The CPU frequency determines the injection rate

into the request queue. While, the GPU frequency controls the ejection rate from the

request queue and the injection rate into the frame queue. Thus, achieving a target

FPS requires the synchronized control of both the GPU and CPU frequencies. This

synchronization maintains a certain occupancy in the queues. A detailed illustration

of the CPU-GPU interaction is presented in Section 4.2.3. Furthermore, we build

run-time power and performance models of both the CPU and GPU based upon the

information collected by the hardware performance counters. These counters provide

insight into the compute engines’ behavior. The power models allow the runtime

estimation of the power consumption for the purpose of energy optimization, while

the performance models allow estimation of the frequency scalability.

1.3 Thesis Statement

This dissertation explores techniques to reduce the efficiency of modern MpSoCs.

These techniques can be broken into two basic components. First, we examined

micro-architectural technique; We then look at techniques in platform power man-
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agement to improve efficiency and performance.

1.4 Dissertation Contributions

This dissertation makes the following contributions:

Last Level Cache Static Power Reduction: We propose a novel method that

migrates the high temporal locality blocks, data and tag, to the future live partition;

thus mitigating the performance impact of oblivious cache bank shutdown via power

gating. Our contribution is as follows:

• We migrate, at random, the high temporal locality blocks from the partition to

be shutdown to the future live partition, the size of which is estimated based

on the application reuse behavior. The migration is done during a transitional

period and the blocks locality are computed through a predictor.

• We, further, develop a cache management policy to increase the cache efficiency.

This management policy pseudo-partitions the cache with the high locality

blocks residing in the future live partition and the low locality blocks in the

partition being shutdown. Thus facilitating the cache resizing via power gating.

Our proposed method is independent of the underlying LLC replacement policy.

We show that our approach of intelligent block migration provides significant per-

formance improvement when compared to no blocks migration. We found the LLC

leakage power to be of orders of magnitude greater than that of the on-die intercon-

nect therefore the LLC leakage is the focus of our work. We evaluate our technique

on sets of PARSEC and SPEC2006 benchmarks.

Branch Directed Prefetching: We propose B-Fetch, a combined control-flow

and effective address speculating prefetching scheme. B-Fetch leverages the high

prediction accuracy of current-generation branch predictors, combined with a novel

effective address speculation technique to identify prefetch candidates.
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• We demonstrate that future memory instruction effective addresses are pre-

dictable based on a speculative control flow path from a simple branch pre-

dictor. This speculative control flow path is used to feed our B-Fetch prefetch

engine.

• We propose an effective address value speculation technique based on the cur-

rent architectural state with learned, per-basic-block variations, to generate

effective addresses for the B-Fetch prefetch engine.

• We introduce a per-load filtering mechanism to reduce the cache pollution. This

technique builds up a confidence estimation for load instructions to determine

whether a prefetch candidate is useful or not.

• We show that B-Fetch outperforms the best-in-class light-weight prefetcher,

Spatial Memory Streaming (SMS ) [63] by 3.5% for single-threaded workloads

(8.5% among prefetch sensitive), and up to 8.9% for multi-application work-

loads, with 65% less storage overhead than SMS.

We evaluate our technique on a set of SPEC CPU2006 benchmarks for both sin-

gle threaded and multiprogrammed workloads and show performance improvement

versus baseline.

Platform Level Power Management: We present a general platform power

management framework that minimizes the energy consumption while meeting per-

formance and power budgets constraints. We illustrates it using two concrete DVFS

algorithms. The first one minimizes the CPU and platform energy while achieving

performance guarantees. The performance target is set by a user level application,

and expressed as a fraction of the maximum achievable performance which is mea-

sured in the number of instructions executed per sampled period. The second one
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dynamically, adjusts the CPU and GPU frequencies to maintain queue reference

occupancy and achieve a QoS target while optimizing for the energy. Both tech-

niques account for the PMIC’s energy inefficiency and provide a closed loop control

by comparing the achieved power and performance against a reference target. The

contributions are as follows:

• We develop closed loop controllers that maximize performance with a power

constraint and minimize power with a performance constraint, respectively.

• We develop analytical models to predict power consumption and performance

at run-time and use them in closed loop controllers.

• We present a queuing model to represent the interaction between the CPU,

GPU, and the display.

We implemented the proposed approaches on an Android mobile tablet based on

a Atom processor and show platform energy savings over a series of workloads.

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents our technique to

reduce the power consumption of the last level cache in CMPs. A data prefetcher to

increase the performance of CMPs is proposed in Chapter 3. Chapter 4 presents our

approach to increase the platform energy efficiency and performance. the background

in memory subsystems and their effect on CPU performance. Chapter 5 reviews

previous techniques in cache power reduction and prefetching. It, also, reviews prior

work dedicated to energy optimization in SoCs. Finally, chapter 6 concludes our

dissertation.

13



2. LAST LEVEL CACHE POWER REDUCTION*

This chapter presents our method to reduce the leakage power in last level cache

for CMPs.∗We first introduce a background of cache memories. Then, we outline the

design of our proposed design. The evaluation along with the analysis of our results

are also presented.

2.1 Background

Current memory access latencies are of the order of hundreds of processor cycles.

To be effective at masking such high latencies, computer architects have leverage

larger caches and data prefetchers.

Caches are SRAM memory structures designed to exploit the locality of reference

exhibited in programs. They are the temporal and spatial locality. Temporal locality

speculates that a referenced memory address will likely be referenced again in the

near future. While the spatial locality states that if a memory address is referenced,

nearby memory addresses will likely be referenced in the near future. Caches are

designed to contain the application working set. In general, an application miss

rate decreases with increasing cache capacity; until a point at which the working set

fits within the cache. This is illustrated in Figure 1.1. Bzip2 miss rate decreases

until the cache size is 8MB; then remains constant. At that point, increasing the

cache size doesn’t affect the application miss rate, hence the performance. Of course

this trend is dependent on the application; as we observe that Sjeng miss rate is

nearly oblivious to the cache size. Ideally, one would want the cache size to fit the

∗Part of this chapter is reprinted with permission from Power Gating with Block Migration in Chip-
Multiprocessor Last-Level Caches by David Kadjo, Hyungjun Kim, Paul V. Gratz, Jiang Hu and
Raid Ayoub, 2013, The 31st IEEE International Conference on Computer Design, IEEE Computer
Society Washington DC, Copyright [2013] by IEEE Computer Society.
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application working set. Caches store lines of data or blocks. A typical size is 64

bytes. The blocks are organized into sets. The number of blocks per set is referred

to as the cache associativity. A memory request into the cache is split into tag,

index and byte offset (shown in Figure 2.1). The index selects the set, the tag is

checked for match against the selected set and the block offset specifies the position

of the requested data. A cache hit occurs when a valid block matches the tag of the

memory request otherwise it is a cache miss. A cache block also contains addition

flags bits to indicate whether the block is ”valid” and ”dirty”. Caches are organized

as direct mapped, set associative or fully associative. A direct mapped cache has one

block per set (1-way associative); that is a memory address occupies one and only

one block. A k-way set associative cache is organized in set of k blocks; a memory

address can occupy any of the blocks within the set. A fully associative cache a only

one set. As a result, a memory address can occupy any of the blocks.

Given the limited size of the cache, a management policy is used to insure the

cache its optimum utilization. A cache management policy can be broken into three

policies that are: an insertion policy, a promotion policy and a replacement policy.

The insertion policy indicates whether an incoming block is placed within the cache.

If so, where it is placed. The promotion policy indicates the status of the hit block.

The replacement policy indicates the victim block when an incoming block is placed

in the cache. The Least Recently Used (LRU) policy is a common policy used for

cache management. The LRU policy maintains a ”time stamp” of blocks references

within a set. Using the LRU policy, an incoming block is placed within the cache,

replacing the block that was accessed the furthest in time. When a hit occurs, the

block accessed is promoted to the Most Recently Used (MRU). The least recently

used block is selected as a victim block when an incoming block is inserted in the

cache.
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Figure 2.1: Accessing a direct mapped cache.

Cache misses can be classified into four groups that are compulsory, conflict

capacity and coherence misses. Compulsory misses occur due to the cache being

empty. Every first reference to a memory location results in a miss. Conflict misses

occur when multiple memory locations map to the same blocks. Capacity misses

occur due the small capacity of the cache; i.e the application working set is larger

than the cache size. Coherence misses occur, mainly in CMP contexts, due to the

invalidation based coherence protocol when multiple processors write to the same

memory location.

2.2 Design

Our proposed technique monitors the application cache footprint and periodically

resizes the LLC accordingly. We outline in the following sections the cache size

estimation technique and the cache resizing procedures.
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2.2.1 Cache Size Estimation

A key problem with dynamically resizing the LLC is quickly identifying the ef-

fective cache size for the running application memory footprint. In general, the

existence of temporal locality leads to a non-uniform access pattern for the cache’s

blocks. The LRU (Least Recently Used) algorithm takes advantage of this prop-

erty to reduce the miss rate. If we construct a histogram that corresponds to the

frequency of accessing the different elements in the LRU stack, we observe a mono-

tonic decrease in the frequency distribution where the highest frequency maps to the

recently accessed elements. When the cache is underutilized, there is a large vari-

ation in the frequency distribution. Hence, the frequency distribution can be used

as an indication of the cache utilization by the application [48]. We implement a

sampling-based reuse behavior analysis, which decouples from the underlying LLC

replacement policy. A set sampler to the LLC is implemented and managed using

the LRU replacement policy. This sampler is co-located with the LLC and monitors

the LLC traffic to update its sampled tags. The sampler is augmented with counters

to keep track of per way hits and total misses as shown in Figure 2.2. These counters

allow the construction of the frequency access distribution. A hit to way i causes

the corresponding lruth ranked counter, Clru, to be incremented, while a miss to the

sampler increments the counter C32. For example, if a block in way 1 is hit and that

block is ranked 7th on the LRU stack within its set, the counter C7 is incremented.

Its LRU stack rank is then updated to 0 (Most Recently Used). Equation 2.1 shows

the miss rate of a k-way associative partition of the sampler. It is the ratio of the

misses to the k-way partition over the total numbers of accesses to the sampler.

missk =

∑32
i=k Ci∑32
j=0Cj

1 ≤ k ≤ 32 (2.1)
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Figure 2.2: High-level block diagram of the set sampler.

We empirically determined the set sampling rate to be 1/32th of the LLC as the

lowest sampling rate that captures the reuse behavior of the running application

with an error less than 10%. As such, the effective cache size can be estimated using

the sampler. The sampler associativity is identical to the LLC’s. As a result, we

estimate the effective cache size for the memory footprint to be the k-way with less

than ε impact on the miss rate as shown in Equation 2.2.

missk ≤ (1 + ε)×miss32 0 ≤ ε ≤ 1 (2.2)

When multiple programs are running, the sampler evaluates the super set of

the applications footprints. Since its primary purpose is to estimate runtime cache

footprint, it is unnecessary for the sampler to remain coherent with the actual cache

set contents. Furthermore, the sampler has a dual purpose serving as a temporal

locality predictor.

2.2.2 Cache Resizing

The application execution time is divided into epochs, the anatomy of which is

shown in Figure 2.3. Between time t and t + Tc, the LLC operates using its default

replacement policy. At t + Tc, the effective cache is estimated as per Equation 2.2
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Figure 2.3: Anatomy of an epoch.

Figure 2.4: Shrinking the LLC size.

using the information gathered by the sampler counters. At time t+Tepoch, the LLC

is resized via power-gating. A transitional phase (t+Tc, t+Tepoch) is used to mitigate

the performance impact of shutting down the LLC partition by migrating the useful

data from the partition to be shutdown to the partition which will remain live when

the LLC shrinks.

2.2.2.1 Temporal Locality Prediction

During a cache block’s lifetime, it typically sees one or more bursts of accesses,

then it is idle until evicted [71]. We implement a trace based predictor, inspired by
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the work of Khan et al [37], to determine the blocks temporal locality. The intuition

behind this prediction is that if a sequence of instructions leads to the last access of

a cache block, the same sequence on another block will likely have a similar effect

on that block. The block diagram of the temporal locality prediction is shown in

Figure 2.5. The prediction consists of the sampler and a set of 3 saturating counter

arrays or locality counters (f, g and h). Each array consists of 4096 2-bit counters;

the arrays are indexed with a different hash function(f(PC), g(PC), h(PC)). A

sampler entry encodes the instruction signature (PC) of the instruction that touches

a block. When a block is being evicted from the sampler, the indexed counters within

the arrays using the corresponding PC are accessed and incremented. Otherwise, the

counters are decremented. This phase is referred to as the update process. When a

request for a block in the LLC is made, the prediction is evaluated and the decision

is stored (query process). As such, each block in the LLC is augmented with a

bit (PredictionBit). This bit is set if the block is predicted not useful and cleared

otherwise. The predictor is access in parallel with the LLC, thus it does not incur

any performance penalty. We define the usefulness of the block as the sum of the

indexed counters:

U(blk) = f(PCblk) + g(PCblk) + h(PCblk) (2.3)

The usefulness is compared to a threshold τ to predict the block temporal locality.

blk =


useful if U(blk) ≥ τ,

not useful if U(blk) < τ

(2.4)

A block is predicted useful if its temporal locality is greater or equal to the

threshold; otherwise it is predicted not useful. The blocks predicted not useful are
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Figure 2.5: Block diagram of temporal locality prediction.

used as victims during the block migration in the transitional phase.

2.2.2.2 Procedure and Cache Management

To increase cache efficiency, the amount of time the blocks contain useful data, we

develop a cache management policy to be used during the transitional phase. When

the LLC size is being reduced (Figure 2.4), the useful blocks from the partition to be

shutdown are migrated to the live partition as follows: Upon a hit in the partition

to be shutdown; the data is accessed. At the same time, a prediction for the block

is made; if the block is predicted to be useful, it is migrated to the live partition,

thereby replacing a not useful block (with its PredictionBit set). If no such block

is found, the victim block is selected using the default cache replacement policy.

If the hit block is predicted not useful, its prediction bit is set. On a hit in the

live partition, the data is accessed; if the block is predicted not to be useful, the

prediction bit is set. On a miss, if the incoming block is predicted to be useful it is

placed in the live block; otherwise it is placed in the partition to be shutdown, this

done as remediation in the case of false negatives. At the end of the transitional

phase, the cache is pseudo-partitioned with the high temporal locality blocks mostly
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in the live partition and the blocks with low temporal locality in the partition to be

shutdown. The cache is then resized at the end of the transitional phase. When the

LLC is computed to be expanded, the blocks with the PredictionBit set are used

as victim blocks to increase the cache efficiency. If no such blocks are found, the

default LLC replacement policy is used. The LLC shrinking procedure is outlined in

Algorithm 1.

Algorithm 1: LLC management during the transitional phase when the cache
is being shrunk.

On access to the LLC;
if access is a hit then

Access data;
if hit in live partition then

if blk predicted to be not useful then
PredictionBit←− 1;

end

else
if blk predicted to be useful then

Migrate blk to live partition, replacing victim blk;
else

PredictionBit←− 1;
end

end

else
if incoming blk is predicted useful then

placed in live part;
else

placed in part being shutdown;
end

end

When writing back the dirty blocks from the partition to be shutdown, we avoid

bursts of writebacks at the end of the epoch by utilizing a writeback policy similar
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to that proposed by Lee et al [43]. We spread the writebacks during the transitional

phase, speculatively writing back dirty blocks when the memory bus is idle. No inval-

idation is sent to higher level caches because our memory hierarchy is non inclusive.

The switching latency of the power gate transistor is 2 cycles. It does not impact

the application performance. When an additional cache partition is powered up, it

is accessed at the end of the transitional period, thousands of cycles later; which

is much greater than the switching latency. At the end of the epoch, the sampler

counters Ci are halved to keep track of the program phase.

2.2.3 Hardware Implementation

Our design consists of three main hardware components:

• A sampler, co-located with the LLC, encodes the PC of the last instruction

that touches a block. A set of counters that captures the application temporal

reuse behavior.

• An array of counters to determine the temporal locality of the cache blocks.

• The power gating, gated-Vdd, circuitry used to turn on/off the cache partitions.

The hardware storage overhead cost relative to the LLC is shown in Table 2.1. We

assume that the hardware storage is proportional to the area. As such, the area

overhead is estimated to be 3.64% of the LLC.

2.3 Evaluation

In this section, we discuss the methodology used to evaluate our technique, the

energy cost associated and our experimental results.
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Structure Per Entry Per Set Total Overhead

Sampler 52 bits 1664 bits 6.5KB 0.3071%
Counters 32 bits 1024 bits 1024 bits 0.0059%
Locality counters 2 bits 6 bits 3KB 0.1417%
Prediction bits 1 bit 32 bits 4KB 0.1890%
Gated-Vdd circuitry 3%
Total overhead percentage 3.6437%

Table 2.1: Hardware storage overhead.

Figure 2.6: Conceptual system overview.

2.3.1 Methodology

We modified gem5 [7], a cycle accurate simulator, to accommodate the additional

hardware. Our CPU baseline model is a 16-core (4x4) CMP. Each tile consists of a

processor, private L1/L2 caches. The LLC is shared among all the cores, with each

one having a 2MB slice as shown in Figure 2.6. Our LLC baseline mirrors the Intel

Core 7 with 2MB of last level cache per core. We scale up the LLC configuration

with cores count. Addresses are interleaved among the slices. Our simulator has a

non-inclusive cache hierarchy; its configuration is shown in Table 2.2. We explored

a range of configuration parameters and the ones shown in Table 2.2 represent the

best setting. These parameters are, Tepoch = 10 millions cycles, Tc = 0.7 × Tepoch, ε
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= 0.1 and the usefulness threshold τ = 8. The default replacement policy for the

LLC is LRU.

Core 8-issue out of order, 2GHZ
L1 I-cache 32KB, 64B line, 8-way, 2 cycles

latency
L1 D-cache 32KB, 64B line, 8-way, 2 cycles

latency
L2 Private cache 256KB, 64B line, 8-way, 10 cycles

latency
Last level cache 2MB/core, 64B size, 32-way, 40

cycles latency
Cache Coherence MOESI
Main Memory 200 cycles
Tepoch 10 million cycles
Tc 7 million cycles
ε 0.1
τ 8

Table 2.2: System configuration.

We use a set of SPEC CPU2006 benchmarks for both single-threaded and multi-

programmed workloads and the PARSEC benchmarks for multithreaded workloads.

For the SPEC benchmarks, we fast-forward 10 billion instructions, warm up for an

additional 1 billion instructions then run in detailed mode for the next 2 billion

instructions. For fair comparison, when running a single-threaded benchmark, we

assume only one slice (2MB) of the LLC is available for the workload use. Thus, the

results for a single-threaded workload are compared to a CPU baseline of one core

and a 2MB LLC. For multiprogrammed workloads, we use the frequency of access

(FOA) inter-threads contention model outlined by Chandra et al [10] to select the 20

mixes (mix1 - mix20 ) of workloads with the highest cache contention. The statistics
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are gathered when all of the benchmarks have executed 2 billion instructions. In the

case of PARSEC, we run the benchmarks for 2 billion instructions starting from the

Region of Interest (ROI), warming up the cache for 1/3 of the ROI. The simulations

are performed using the “simlarge” input set with the LLC size of 32MB. We present

the performance as the normalized IPC against the IPC achieved with the baseline

configuration. In the case of multiprogrammed workloads, we use the normalized

system throughput (
∑
IPCi/

∑
IPCiconv). In the case of multithreaded workloads,

the runtime speedup over the baseline is computed.

Structure Energy Cost (nJ per access)

Main memory 11.99
Sampler 0.009
Locality counters 0.00293
2MB slice cache 0.408

Table 2.3: Dynamic energy cost of the hardware structures.

2.3.2 Energy Computation

The proposed technique reduces the leakage energy while incurring minimal extra

energy consumption as follows:

• Leakage and dynamic energy due to the sampler and array of counters.

• Leakage energy due to the gated-Vdd circuitry.

• Dynamic energy due to the migration of blocks, data and tag, from the partition

being shutdown to the live partition.

• Dynamic energy due to main memory accesses resulting from the writebacks
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Figure 2.7: Energy dissipation for way partitioning “wp” and blocks migration “bm”
normalized to the baseline.

of dirty blocks from the partition being shutdown and the extra misses to the

LLC.

In our evaluation, the total energy consumption is computed to be the sum of the

leakage energy of the live LLC fraction and the sum of the extra energies listed

above. The energy is normalized to the total leakage energy of the LLC in the

baseline configuration. The extra dynamic energy due to functional units is ignored

because the additional workload execution time is negligible, it less than 2% on

average in our experiments. The dynamic energy of the overhead hardware structure

is computed as the product of the number of accesses, found through the simulation,

and the per-access energy cost, found using CACTI 6.0 [50] configured for 32nm

process technology (Table 2.3). The leakage energy of the baseline LLC is estimated

to 8.26nJ per cycle per 2MB slice. The leakage energy of the additional hardware is

estimated to be 3.64% of the conventional cache as per the discussion in Section 2.2.3.
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Figure 2.8: IPC comparison for blocks migration and way partitioning normalized
to the baseline.

2.3.3 Results and Analysis

We present the power and performance results of our “block-migration” method

(bm). For comparison, we also evaluate the technique presented by Sato et al [58],

referred to as way-partitioning (wp).

2.3.3.1 Single-threaded Workloads

The normalized energy consumption is presented in Figure 2.7. It is broken down

into “LLC footprint energy” (the static energy of the active LLC fraction), “static

energy overhead” (the leakage overhead due to the additional hardware), and “dy-

namic energy overhead” (the sum of the dynamic energy due to the extra accesses

to the main memory and accesses to the additional hardware and blocks migration).

Because Sato et al do not estimate the hardware overhead of their “way-partitioning”

method, we only present its “LLC footprint energy” thus the comparison is some-

what adverse to “block-migration”. The normalized “static energy overhead” is

28



 0

 20

 40

 60

 80

 100

 120

a
sta

r
b
zip

2
ca

ctu
sA

D
M

ca
lcu

lix
g
a
m

e
ss

g
ro

m
a
cs

h
2
6
4
re

f
h
m

m
e
r

le
slie

3
d

sje
n
g

so
p
le

x
sp

h
in

x
ze

u
sm

p
P

e
rc

e
n
ta

g
e
 o

f 
m

ig
ra

te
d
 b

lo
c
k
s
 U

s
e
d

SPEC Benchmarks

blocks used

Figure 2.9: Percentage of migrated blocks accessed in the next epoch when the cache
is shrunk.

constant across benchmarks at 3.64% while the normalized “dynamic energy over-

head” is negligible at 0.032% on average, almost not visible on the charts. Our

“block-migration” method achieves an average energy reduction of 66%, versus “way-

partitioning” which achieves 30%. bwaves, cactusADM, lbm, libquantum, milc either

have their memory footprint small enough to fit into the L2 cache or too big to fit into

the LLC. As such, our proposed technique shuts down a significant amount of the

LLC, 95% for bwaves, without performance impact. Not much block migration is per-

formed in those cases; consequently, the performance impact is on par with when no

migration is performed (Figure 2.8).“way-partitioning” fails to identify these cases,

it allocates 93% of the LLC for bwaves. “way-partitioning” locality computation fails

to take into account the application overall reuse behavior. Our method shuts down

twice as much cache compare to “way-partitioning” with lower performance impact

2.16% versus 2.88% respectively. The energy savings must be examined in conjunc-

tion with the performance impact to determine the best trade-off. In cases, such
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as astar and hmmer, “way-partitioning” saves more energy than “block-migration”

but significantly overshoots our performance loss allowance. This is due to the fact

that the “way-partitioning” fails to take into account the applications entire reuse

behavior when estimating their locality. The performance impact without blocks

migration (“no-block-migration”) degrades significantly, by 5.69% on average. Some

benchmarks such as soplex and zeusmp suffer a large performance degradation of

30% and 17% respectively without block migration. This is due to the lost of high

temporal locality blocks when no migration is performed. The “way-partitioning” al-

locates a much bigger cache size and therefore has a lower performance performance

impact. However, at the cost of a higher energy dissipation.

Benchmarks Error (%)

astar 5.47
bwaves 0
bzip2 4.29
cactusADM 0
calculix 8.19
gromacs 8.46
h264ref 10.91
hmmer 5.11
lbm 0
leslie3d 5.7
libquatum 0
mcf 0
milc 0
sjeng 0
soplex 18.09
sphinx 10.03
zeusmp 8.2

Table 2.4: Cache size estimation error.
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Figure 2.10: Energy dissipation for 2-mix benchmarks using way partitioning “wp”
and blocks migrations “bm” normalized to the baseline.

2.3.3.2 Impact of Block Migration

We explore the impact of blocks migration for the “cache friendly” workloads, the

ones which footprint occupy a significant amount of the LLC. Figure 2.9 shows the

percentage of the migrated blocks which are accessed at least once within the next

epoch when the cache is shrunk. We observe that indeed, useful data is migrated to

the live partition. astar, bzip2, gromacs and soplex have a higher temporal locality

and therefore have a higher percentage of migrated blocks used within the next epoch.

These benchmarks show a higher performance degradation when no block migration

is performed. soplex suffers a performance degradation of 30%.

2.3.3.3 Effective Cache Size Prediction

Table 2.4 shows the error of our sampling based cache size computation compared

to the exact LLC footprint calculated using a stack distance profiling for each set

in the LLC. The results show that our sampling methodology is a reasonably good

fit for these benchmarks, though the higher error for soplex is also correlated with a

higher than average IPC loss on that workload.
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Figure 2.11: IPC for 2-mix benchmarks normalized to the baseline.

2.3.3.4 Multiprogrammed Workloads

Figure 2.10 shows the energy dissipation for with mixes of two single-threaded

workloads (2-mix ). To level the playing field, we scale hardware resources with

workload count. Hence, we use 2 cores and 2 slices of 2MB LLC (4MB total). The

“way-partitioning” shows inferior power savings compared to our technique (23%

vs 65%). We observe comparable system throughput across the workload mixtures.

On average, “block-migration” achieves 0.95 normalized throughput versus 0.92 for

“way-partitioning”(Figure 2.11). We also experimented with 4- and 8-simultaneous

single-threaded workloads, these results not included for brevity, and find the lead

of “block-migration” increases versus “way-partitioning” with increasing numbers of

simultaneous applications.
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Figure 2.12: Speedup over baseline and energy dissipation for multithreaded bench-
marks using blocks migrations.

2.3.3.5 Multithreaded Workloads

The evaluation of our proposed method on multithreaded workloads is illustrated

by Figure 2.12. Each multithreaded workload is compiled to generate 16 threads on a

4×4 CMP. Our technique shows leakage energy savings of 50% on average at the cost

of 2.79% performance impact. Blackscholes has a small input set (2MB) therefore a

small portion of the LLC remains turned on (6.89%) with almost no performance im-

pact. Alternately, freqmine and facesim have much larger working sets size (128MB)

compared the LLC size (32MB), thus, our technique allocates a small fraction of

the LLC (3.5% and 11.93% respectively). Our technique achieves substantial energy

savings at yet affordable performance loss. The “way-partitioning” scheme, confining

threads to cache partitions, is not applicable to multithreaded workloads.
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2.4 Summary

This section presented a technique to reduce the static power consumption in last

level cache for chip multiprocessor. The proposed technique facilitates power gating

in cache by migration the blocks with high temporal locality from the partition to

be turned off to the partition to be left powered on. We observed energy saving

savings up to 66% with low performance impact of 2.16%. The hardware overhead

is estimated to be 3.64%.
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3. BFETCH FOR CHIP MULTIPROCESSORS*

This chapter presents a branch directed, lightweight data prefetcher to improve

performance in CMPs.∗A background on prefecthing is provided. The architecture

of the prefetcher and details of the proposed design are also presented. In addition,

we show evaluation results of our prefetcher compare to current state of the art

prefetchers.

3.1 Background

A prefetcher must anticipate misses and issue prefetches far ahead of actual ex-

ecution. This requires accurate prediction of a) the likely memory instructions to

be executed, and b) the likely effective addresses of these instructions. The program

execution path (i.e. which basic blocks are executed and in what sequence) is de-

termined by the direction taken by the relevant control instructions. Memory access

behavior can therefore be linked to prior control flow behavior. For example, consider

the assembly code in Figure 3.1, consisting of a set of basic blocks and control flow

instructions (branches). The basic block executed following each control instruction

depends on the direction taken by that control instruction. Data requested in fu-

ture execution phases and its access patterns are dependent on the branch outcomes

encountered along the path and the per-block register transformations along that

path. We therefore propose a lookahead mechanism that predicts the likely path of

execution starting from the current non-speculative branch and issues prefetches for

the memory references down that path.

∗Part of this chapter is reprinted with permission from B-Fetch: Branch Prediction Directed
Prefetching for Chip-Multiprocessors by David Kadjo, Jinchun Kim, Prabal Sharma, Reena Panda,
Paul V. Gratz, Daniel A. Jimenez, 2014, The 47th Annual IEEE/ACM International Symposium
on Microarchitecture, IEEE Computer Society Washington DC, Copyright [2014] by IEEE Com-
puter Society
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Figure 3.1: An assembly code fragment and its control flow graph equivalent.

To accurately predict effective addresses down the predicted path, we leverage the

observation that each memory reference always uses a particular register for effec-

tive address computation. Unlike previously proposed prefetching approaches that

use history based effective address computation techniques, we propose to associate

register indices being used by the memory instructions with their preceding control

instructions (the entry points of the basic block) and use this correlation to identify

prefetch candidate addresses. For example, consider the Path C illustrated in Fig-

ure 3.1. Relevant memory instructions and their source registers are highlighted in

the figure. In Path C, both register r7 and r9 do not change their contents. Thus,

if we look ahead along the execution path, the effective memory addresses for load

instructions can be predicted by adding up static offsets and register values. The

lookahead process can be easily performed leveraging support from the branch pre-

dictor in the main pipeline. Meanwhile, if the branch is predicted to take Path A,

the register content of r9 gets changed by the addi r9, r8, 0xC8 instruction along this

path. In this case, if we record the variation of r9 from preceding branch instructions,
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(a) Variation of registers content across execution basic
block (BB) expressed in granularity of cache block (64B)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 

Delta (cache block) 

1BB 3BB 12BB all ≥ 33 

(b) Variation of effective addresses across execution ba-
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Figure 3.2: Cumulative distribution of variation in registers content and effective
addresses across execution basic blocks.

the effective address can be calculated by adding up current register value, register

variation captured in the previous branches, and static offset value. The novelty

of B-Fetch lies in exploiting branch prediction and predictable register variation to

generate the effective memory address.

B-Fetch is based on the premise that register values at the time of effective

address generation are correlated in a predictable way from a) their corresponding
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values at a time when their preceding branch instructions were executed, and b)

the transformations that occur to them over the course of the blocks to that point.

Figure 3.2a shows a cumulative distribution of the register variation (delta) across

execution basic blocks (BB), for 1 BB, 3 BB and 12 BB. The variation is expressed at

the granularity of a cache block (64B). We observe that for a high percentage (92%

in case of 1BB) of registers, the variation falls within 64B. Though that percentage

decreases for high number of basic blocks, it remains high (89% for 3BB and 82% for

12BB). By contrast, Figure 3.2b shows the variation of the effective addresses across

1 to 12 BB. Unlike the register content, the effective address varies considerably,

particularly as the depth increases to 12 BB. Hence prefetchers which rely upon

stable or predictable changes in effective address are less likely to be accurate than

those that can incorporate current register values into the prefetch effective address

calculation.

3.1.1 Overview

B-Fetch is a data cache prefetcher that employs two speculative components.

It speculates on a) the expected path through at future BBs, and b) the effective

addresses of load instructions along that path. The first speculation is directed by a

lookahead mechanism that relies on branch prediction to predict the future execution

path. For the second, B-Fetch records the variation of register contents at earlier

branch instructions and exploits this knowledge to predict the effective address. By

making use of the variation of register values rather than the effective address history,

B-Fetch can issue useful prefetches even for instructions that exhibit irregular control

flow and data access patterns.

Figure 3.3 illustrates the overall system architecture of a B-Fetch enabled out-

of-order processor. It shows the main CPU execution pipeline and the additional
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Figure 3.3: Overall B-Fetch microarchitecture.

hardware for the B-Fetch prefetcher. In our baseline design, the main processor has

an out-of-order pipeline with a 4-wide issue width. The B-Fetch hardware forms a

separate, 3-stage prefetch pipeline parallel to the main pipeline. The B-Fetch pipeline

is connected to the core’s Fetch stage via the Decoded Branch Register (DBR). As

branch instructions are decoded in the main execution pipeline, the corresponding

PCs are placed into the DBR to initiate the prefetching process. After branch PCs

and target addresses are fed into the prefetch pipeline, the B-Fetch engine starts

to predict future execution path, memory instructions, and their effective addresses.

The B-Fetch pipeline consists of the following stages:

• Branch Lookahead: This stage is responsible for generating the predicted

path of program execution starting from the currently decoded branch. This

stage also estimates the confidence along that path, stopping when the confi-

dence falls below a given threshold.
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• Register Lookup: This stage is responsible for capturing and providing infor-

mation about the registers used to generate effective addresses within a given

block.

• Prefetch Calculate: This stage is responsible for generating the prefetch

addresses that are issued to the prefetch queue, after suitable filtering by a

per-load confidence estimator.

3.1.2 B-Fetch Microarchitecture

In this section, we outline the detailed description of B-Fetch architecture.

3.1.2.1 Branch Lookahead Stage

The first stage of the B-Fetch pipeline, the branch lookahead is responsible for

accurately predicting the future execution path. Two primary components reside in

the Branch Lookahead Stage. First, the predicted future branches and their target

addresses are stored in a small cache called Branch Trace Cache (BrTC). Second,

a confidence estimator is used to measure the reliability of the lookahead path and

throttle the degree of lookahead when confidence falls below a given threshold.

Starting with a given branch in DBR, each cycle a branch prediction is made

and used to look up the PC of the next branch in the BrTC. The confidence of the

path to this point is calculated in parallel with the next branch look up. When

the confidence falls below a given threshold, the stage will stop predicting further

branches.

Figure 3.4: Single branch trace cache (BrTC) entry.
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Branch Trace Cache (BrTC): The BrTC captures the dynamic control flow se-

quence of a program and constructs future lookahead paths across multiple BBs. The

intent is to enable jumps from one BB to another, skipping all the non-control-flow

changing instructions in between. Figure 3.4 shows a single BrTC entry, containing

the branch address and direction to get to a given BB as well as the branch at the

end of that BB. The BrTC is indexed using a hash of the current branch PC, pre-

dicted branch direction, and the target address. Thus, a given branch and direction

are connected to the next branch in a direct sequential fashion. Each hash used to

index the BrTC, containing branch and predicted direction, is also passed on to the

Register Lookup stage. To save space, the lower 32 bits of the 43 bit address are

used. We found PC branch aliasing in the BrTC to be highly unlikely.

To cover indirect branches, we include a target address to generate a hashed

index. In doing so, we allow BrTC to have more flexibility for assigning entries with

different targets. The B-Fetch pipeline simply borrows the signal from commit stage

and uses it to update BrTC. Thus, the BrTC table is dynamically filled in during

runtime and only commit-time updates of the entries are allowed.

Path Confidence Estimator: The path confidence estimator controls the depth

of lookahead across BBs by keeping track of the cumulative confidence of the pre-

dicted paths. Whenever the cumulative path confidence falls below a threshold value,

indicating a likelihood of wrong path prediction, the lookahead process is terminated.

This technique avoids prefetching useless data by preventing lookahead down a likely

mispredicted path. Note that the prefetch control mechanism based on the path con-

fidence has not been explored in any similar prior work. B-Fetch calculates the path

confidence using a mechanism similar to that proposed by Malik et al. [47]. Addi-

tionally, we adopt a composite confidence estimator by combining the JRS, up-down

and self-counters proposed by Jiménez [32], to estimate individual branch confidence
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values.

3.1.2.2 Register Lookup Stage

The Register Lookup stage tracks the memory instructions in a given BB and

the per-BB transformations to their source register values. A pseudo-architectural

state copy of the register file contents is maintained in the Alternate Register File

(ARF). Register transformations over BBs are tracked in the Memory History Table

(MHT), largest structure in the B-Fetch pipeline.

Alternate Register File (ARF): The ARF maintains a copy of the register file

contents for use in generating predicted prefetch effective addresses. As illustrated

in Figure 3.3, the ARF is updated with a sampling-latch delayed copy of execution

stage generated register values. This approach insures that B-Fetch receives timely

updates to its ARF, while not being on the critical path of the execution units in

main pipeline. Given that the main pipeline is out-of-order, we maintained ARF

consistency by only allowing a register to be updated by an instruction younger than

the previous instruction that modified it. In the ARF, each register is augmented with

an instruction sequence field to keep track of the modifying instruction order. Despite

the possibility of speculative, wrong-path updates to the ARF, we found that this

approach provided sufficient accuracy for the purpose of generating prefetch effective

addresses, with significant improvement in performance versus a retire-stage, purely

architectural-state, register file copy.

Memory History Table (MHT): The MHT maintains source register indices,

current register values, and offset values to calculate effective addresses for prefetch

candidates. Each entry in the table corresponds to a given BB, and is indexed by the

hash of the current branch PC, predicted branch direction, and the target address

generated in the Branch Lookahead Stage. Figure 3.5 shows a single MHT entry.
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Figure 3.5: Single memory history table (MHT) entry.

Each MHT entry contains a field for the previous Branch PC, this is used as a tag

to ensure that the hash used to index the entry corresponds to the correct branch.

Following, the Branch field there are a set of three Register History Entries, each

of which containing the following fields: RegIdx, RegVal, Offset, negPatt, posPatt,

Valid, LoopCnt and LoopDelta. A single one of these sets is allocated for each unique

register used in generating effective addresses within that basic block. We empirically

determined that three Register History Entries was generally sufficient to cover the

typical number of registers used in load address computation. More entries consumed

more space without significantly improving performance. Each of these fields within

these entries is discussed in the remainder of this section along with their function.

The RegIdx holds the source register index used for memory address generation

in the corresponding BB, linking source registers to the branch that led to the BB.

This linkage is learned as control instructions and memory instructions commit in

program order in the main execution pipeline. Figure 3.2a indicates that the variation

of effective addresses across multiple BBs fluctuates more than an offset of the register

value. We observe that even if register values and effective addresses do not match

exactly, in terms of variation, they still lie within a fixed offset from each other.

The Offset field retains these fixed-offset relationships between source register values

at a given prior branch and the actual effective address generated at the memory
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Figure 3.6: An ALPHA assembly fragment with a loop.

instruction. The offset value is learned by monitoring the addresses generated by

memory instructions in the main pipeline, compared against the stored RegVal field.

B-Fetch generates the effective prefetching address based on the current value of the

linked register (RegVal) added with the Offset value (see Equation 3.2). The RegVal

is read into the MHT from the ARF.

Whenever a memory instruction executes in the main pipeline, the MHT is in-

dexed using the prior branch PC and the Offset is updated. It is computed as the

difference between the effective address and RegVal. Note that the Offset value in-

cludes not only the static offset from memory instruction but also the variation of

register value itself over the course of that BB. The Valid bit indicates whether the

entry is valid.

Offset = [∆RegisterV alue] + StaticOffset (3.1)

PrefetchAddress = [RegisterV alue] +Offset (3.2)

Loops: In order to efficiently and accurately prefetch for loops, our prefetching algo-

rithm identifies loops and generates prefetch addresses for their future iterations. We

make use of our ability to lookahead across future BBs to allow runtime identification

of loops. As an example, consider the code fragment given in Figure 3.6.
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Assuming that the estimated path confidence is high, the lookahead procedure

should yield the following sequence of branch addresses: Br1(Taken) −→ Br1(Taken)

−→ Br1(Taken), the lookahead depth is determined by the path confidence estimator

in the previous stage.

The runtime loop-detection algorithm capitalizes on the idea that if during one

complete lookahead process, the same branch is visited more than once, it implies

a likely loop in the dynamic instruction stream. The MHT table contains entries

to allow the detection and prefetching for loop-based program sequences, allowing

dynamic identification of loop based code. The LoopDelta field holds the difference

between the generated effective addresses over consecutive execution instances of the

same instruction. The LoopCnt field monitors the iteration count of the loop in

the lookahead mode. Equation 3.3 shows the prefetch effective address generation

formula as it is implemented to cover loops.

PrefetchAddress = [RegisterV alue] +Offset

+(LoopCnt× LoopDelta) (3.3)

Multiple Loads With The Same Index: The negpatt and pospatt fields capture the

cases when there are, within the same BB, consecutive load instructions off the same

source register as a bit vector. Consider a BB with an excerpt snippet of code in

Figure 3.7, both load instructions have the same source register and without any

modification. The pospatt in this case holds the difference between the static offsets.

These fields record, at a granularity of cache block, the difference between the static

offset of the load instructions whether negative or positive. This approach avoids

duplicating entries in the sets of RegIdx for loads off the same source register within

the same BB.
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Figure 3.7: Consecutive loads off the same source register.

3.1.2.3 Prefetch Calculate

In this stage, the prefetch effective address is calculated according to Equation 3.3,

using the data pulled out of the MHT and ARF in the previous stage. B-Fetch also

examines if the associated load address has in the past generated reliable prefetches.

If not a filtering mechanism is then used to avoid cache pollution using the Per-load

Filter.

Per-load Filter: To avoid cache pollution, wasted bandwidth and energy, it is

crucial to reduce the number of useless prefetches. Filtering prefetch requests be-

comes even more important for systems that prefetch directly into the L1 cache, and

those that share an LLC with multiple applications. Conceptually, in B-Fetch, the

branch confidence mechanism might be thought of as a prefetch filtering mechanism,

however in practice we found that even when the branch confidence is high, some

loads have effective addresses that are difficult to predict (often within the same BB

as others that are predictable). To deal with difficult to predict loads, we imple-

ment a per-load PC filtering technique. Our per-load filter measures the confidence

of prefetches launched from a given load PC. The filter is inspired by the skewed

sampling predictor used in prior work to detect cache dead blocks [38].

The per-load filter consists of three different tables which contain 3-bit up-down

saturating counters for corresponding prefetch loads. Each table is indexed, using
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the PC of the load instruction, by different hash function and the counter is incre-

mented when the prefetch address turns out to be accurate. If the prefetch address

is inaccurate, the counter is decremented. Each access to the filter yields the sum of

three counters and constructs a per-load confidence value. The per-load confidence

has precedence over the branch confidence. That is, regardless of current branch con-

fidence, if a per-load confidence falls below to a certain threshold, we stop prefetching

for that load PC. In order to implement the per load filtering mechanism, each cache

block in the L1D cache is augmented with a 10-bit hash of the load PC for the

prefetch address and a 1-bit vector to indicate whether the prefetch is useful. These

additional bits are accounted for in our storage overhead.

3.1.3 Hardware Cost

The additional hardware storage requirements for B-Fetch, as well as SMS are

summarized in Table 3.1. To optimize SMS hardware, we have tested different sizes

of spatial regions, accumulation tables, and pattern history tables with the SPEC

CPU2006 benchmarks. We observe that the practical SMS configuration reported

by Somogyi, et al. [63] shows the best performance improvement. Unless otherwise

specified, we use 2KB spatial regions, a 64-entry accumulation table, and a 16K-

entry pattern history table. The filtering table originally proposed by Somogyi, et

al. is removed because the filtering process can be done by comparing bit vectors

in the accumulation table [64]. To optimize storage overhead of B-Fetch, we reduce

the number of entries in MHT, the largest structure in B-Fetch. A sensitivity study

for B-Fetch with different storage overhead is discussed in the Evaluation section.

Because programs typically have more memory instructions than control instructions,

a branch-based prefetcher captures the same prefetch candidates at much reduced

table sizes.
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Prefetcher Component # Entries Size (KB)

B-Fetch

Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156

Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37

Prefetch Queue 100 0.51
Path Confidence Estimator 2048 2

TOTAL SIZE 12.84

SMS
Active Generation Table 64 0.57
Pattern History Table 16K 36

TOTAL SIZE 36.57

Table 3.1: Hardware storage overhead in KB.

We assume that the tournament branch predictor in the main pipeline can main-

tain a limited number of access per cycle equal to the fetch width (4-wide in the

baseline design). Seznec et al. present a four-way interleaved ALPHA EV8 branch

predictor which supports up to 16 branches per cycle, for a branch predictor mi-

croarchitecture similar to the one used here [59]. Figure 3.8 shows the breakdown

of the number of branch instructions (both conditional and unconditional) fetched

each cycle across 18 SPEC CPU2006 benchmarks. We find that, on average, for

more than 99.95% of fetch cycles, a maximum of two branches are fetched per cycle.

We observe that fetching four consecutive branch instructions occurs only once per

billion instructions. Thus, Figure 3.8 proves that, most of the time, the branch pre-

dictor is available to provide data to B-Fetch engine without additional hardware.

Should this be deemed prohibitive, it would be trivial to include a copy of the branch

prediction hardware for use in prefetching, at the cost of some additional state. In

addition to the state elements listed in Table 3.1, a number of small adders and con-

trol logic is required, however, these components together are insignificant in area

and power consumption relative to the arrays enumerated in the Table.
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Figure 3.8: A breakdown of the number of branch instructions fetched per cycle.

3.2 BFetch

In this section, we discuss the experimental methodology used to evaluate B-

Fetch. We compare the results obtained versus previous techniques. A sensitivity

analysis of our technique is also presented.

3.2.1 Methodology

We use gem5 [7], a cycle accurate simulator, to evaluate B-Fetch. The baseline

configuration is summarized in Table 4.1. We use the set of 18 SPEC CPU2006

benchmarks our simulation infrastructure currently supports for single-threaded and

multiprogrammed workloads simulations. These benchmarks are compiled for the

ALPHA ISA. We fast-forward 10 billions instructions, warmup for an additional 1

billion instructions then run in detailed mode for the next 1 billion instructions. For

single-threaded workloads, we assume a 2MB LLC. Thus, our result is compared

to a baseline with one core and a 2MB LLC. The memory controller bandwidth is

limited to 12.8GB/s which is representative of a memory controller of a x64 DDR3.
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We present the performance as the speedup compared to the baseline configuration

(IPCB-Fetch/IPCbaseline). For multiprogrammed workloads simulations, we use the

frequency of access (FOA) inter-threads contention model proposed by Chandra et

al [10] to select 29 mixes of workloads with the highest cache contention. The

simulation is stopped when all applications have executed 1 billion instructions. The

performance is expressed as the normalized weighted speedup. The weighted speedup

is computed as (
∑

(IPCmulti/IPCsingle)) , where IPCmulti is a workload IPC when

executing in the multiprogrammed environment and IPCsingle the one measured from

a single application simulation.

B-Fetch results are compared against two light-weight prefetcher designs, the

Stride prefetcher and the SMS prefetcher, configured as described in Section 3.1.3.

We found that prefetching the next 8 strided addresses to provide the most speedup

for a Stride prefetcher. We, therefore use such a configuration in our analysis.

3.2.2 Results and Analysis

We first present results for B-Fetch versus the competing light-weight prefetchers

on single-threaded and multiprogrammed workloads. We then present a sensitivity

analysis to explore B-Fetch’s performance in more detail.

3.2.2.1 Single-threaded Workloads

The speedup for single-threaded workloads is presented in Figure 3.9. The results

are ordered in alphabetical order. We observe that Stride performs poorly, compared

to other prefetchers, across all the workloads. Therefore, we focus on comparing B-

Fetch and SMS. The Geomean column refers to the geometric mean across the entire

set of workloads. B-Fetch achieves a geometric average speedup of 23.2% compared

to 19.7% for SMS. Geomean pf. sens. refers to the average performance for the

prefetch sensitive workloads (i.e. those which showed some benefit from the “Perfect
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Stride SMS Bfetch

Figure 3.9: Single-threaded workload speedups.

Prefetcher” in Figure 1.2). The results show the B-Fetch prefetcher provides a mean

speedup of 50.0% across prefetch sensitive benchmarks, compared to 41.5% for SMS.

B-Fetch outperforms SMS in all but four workloads cactusADM , lbm, milc, and

zeusmp. Among them, only milc shows significant performance difference. milc is a

corner case in that a single miss reference in milc tends to be a very strong predictor

for a pattern of references within a large spatial region. As a single pattern history

table entry in SMS covers 2KB spatial region while a comparable entry in B-Fetch’s

MHT neg/posPatt field covers only 256 bytes. To verify, we evaluated milc with

smaller spatial regions. With smaller spatial regions, SMS ’s the performance drops

significantly. When the spatial region is set equivalent to the 256 Bytes neg/posPatt

size in B-Fetch, the performance gain drops to less than 49.23%, less than B-Fetch’s

52.15%. For all other memory intensive benchmarks B-Fetch shows same or signif-

icantly better performance (lbm, leslie3d, libquantum, mcf, and sphinx ). The larger

spatial regions are more likely to span unrelated data structures and require more

storage overhead to be implemented. Taking the speedup and the cost of storage
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Figure 3.10: Normalized weighted speedup for mixes of 2 workloads.

overhead together, we believe B-Fetch presents a better solution for overall data

prefetching in single-threaded workloads. We observe that the average lookahead

depth is 8 BB with 0.75 branch path confidence.

3.2.2.2 Multiprogrammed Workloads

Figures 3.10 and 3.11 show the performance for mixes of 2 workloads (mix-2 )

and mixes of 4 workloads (mix-4 ) respectively. Note that the performance displayed

on Figures 3.10 and 3.11 is ordered by increasing speedup for B-Fetch. In both

mix-2 and mix-4 configurations, B-Fetch achieves a greater speedup as compared to

SMS. For mix-2, B-Fetch achieves a speedup of 31.2% compared to 25.5% for SMS.

Similarly, for mix-4 B-Fetch achieves a performance speedup of 28.5% compared to

19.6% for SMS. Preliminary results with mixes of 8 workloads continue this trend.

The improved performance under multiprogrammed workloads, versus single-

threaded workloads, is a direct consequence of B-Fetch’s improved prefetching ac-

curacy. Jerger, et. al, emphasize the harmful effects of prefetching in CMP envi-
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Figure 3.11: Normalized weighted speedup for mixes of 4 workloads.
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Figure 3.12: Number of useful and useless prefetches issued.

ronments, primarily due to cache and memory bandwidth contention [20]. Since

B-Fetch provides confidence based control mechanisms (path confidence and per-

load confidence), it generates less useless prefetch requests. As a result, it causes

less pollution in shared LLC than SMS. Figure 3.12 shows the number of useful and

useless prefetch issues by SMS and B-Fetch for all the workloads. We observe that

on average B-Fetch issues about 4% more useful prefetches while issuing around 50%

less useless prefetches compared to SMS.
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Conf = 0.4 Conf = 0.75 Conf = 0.9

Figure 3.13: Branch confidence sensitivity.

3.2.3 Sensitivity Analysis

This section provides a sensitivity analysis of B-Fetch. We explore the impact of

different parameters and structures on the performance.

3.2.3.1 Branch Confidence

As discussed in Section 3.1.2, the depth of the lookahead process is controlled by

the branch confidence estimation. Figure 3.13 shows the performance speedup as the

branch confidence threshold is varied. The average performance speedup is 20.6%,

23.2% and 23.0% for confidence threshold of 0.45, 0.75 and 0.90 respectively. We

observe that the best performance is seen at 0.75. With a lower threshold the in-

creased number of low confidence, potentially wrong-path, prefetches issued, leads to

higher cache pollution. We note, however, the speedup difference between confidence

0.45 and 0.75 is not large. Hence, the performance is fairly stable across a range of

lookahead confidence depths. This is due in part to the per-load filtering mechanism

that is capable of filtering out useless prefetch requests. For the threshold values
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Figure 3.14: Branch predictor size sensitivity.

higher than 0.90, we observe that the lookahead depth decreases. Consequently, the

B-Fetch engine becomes conservative and prefetches less often.

3.2.3.2 Branch Predictor Size

A branch predictor used in B-Fetch is a classic tournament predictor of which final

prediction is determined by a simple voting schemes. Thus, we think there might be

still room for improvement with more accurate branch predictor. Figure 3.14 shows

the performance variation of baseline and B-Fetch enabled processors. To emulate a

more accurate branch predictor, we simply increase the size of the tournament branch

predictor. The figure also plots the branch miss rate as an arithmetic mean across all

benchmark sets. Because the default tournament predictor already provides a very

low miss rate for these applications, B-Fetch does not show a significant additional

performance gain from a larger branch predictor. In the future work, we plan to

evaluate B-Fetch with the state-of-art branch predictors.
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Figure 3.15: CPU pipeline width sensitivity.

3.2.3.3 CPU Pipeline Width

Figure 3.15 shows the performance speed up for a 2-wide, 4-wide, and 8-wide

out-of-order pipeline. In general, the performance gradually increases as the pipeline

width grows. The most considerable performance improvement with wide machine is

observed from leslie3d and mcf. Conversely, the speedup of libquantum and milc gets

saturated at 4-wide machine. The average speedup found was 22.6%, 23.21% and

26.71% for 2-wide, 4-wide, and 8-wide machines respectively, generally indicating

that B-Fetch provides reasonable speedups across the spectrum from light-weight to

heavy-weight cores.

3.2.3.4 B-Fetch Size

Since B-Fetch lies within the class of light-weight prefetchers, it is important

to analyze the effects of its storage size on performance. Figure 3.16 compares the

performance improvement for different sizes of B-Fetch. The storage overhead is

changed to 8.01KB, 9.65KB, 12.94KB and 19.46KB by modifying the number of
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8.01KB 9.65KB 12.94KB 19.46KB

Figure 3.16: B-Fetch storage sensitivity.

entries in both the BrTC and the MHT to 64, 128, 256 and 512 respectively. The

geometric average speed achieved is 17.0%, 18.9%, 23.21% and 23.1%. We observe

the maximum performance speedup is obtained for a size of 12.94KB. Hence the size

used for our B-Fetch implementation.

3.3 Summary

We proposed a prefetcher that leverages the high accuracy in branch prediction

and a novel effective address speculation to identify prefetches candidates. Our

proposed technique, B-Fetch, outperforms the best in class lightweight prefetcher.

B-Fetch achieves 23% speedup over baseline with a low hardware impact.
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4. PLATFORM POWER MANAGEMENT*

This chapter presents our framework to improve the efficiency in MpSoCs. We

first present a CPU oriented approach.∗We, later, extend our framework to accom-

modate for the GPU. ∗An overview of the framework is discussed. We present details

of the implementation and the evaluation of a mobile platform. We show that our

framework optimizes the energy consumption while meeting performance constraints.

4.1 A CPU Power Management

4.1.1 Overview

In the proposed framework, the power and performance targets are given by

the user applications similar to the approach in [24]. These inputs are converted

into power target and QoS bounds by the OS power manager (OSPM) as shown

in Figure 4.1. Finally, the proposed Power Budget and QoS controllers shown in

shaded boxes generate the frequency at which the resource under control should run.

In what follows, we first introduce the analytical performance and power models,

and then present the power budget and QoS controllers.

4.1.2 Power Models

A power model allows our framework to make informed power prediction at all

frequencies. The details of the formulation of the CPU power and the platform

∗Part of this chapter is reprinted with permission from Towards Platform Level Power Management
in Mobile Systems by David Kadjo. Umit Ogras, Raid Ayoub, Michael Kishinevsky, Paul V. Gratz,
2014, The 27th IEEE International SOC Conference, IEEE Computer Society Washington DC,
Copyright [2014] by IEEE Computer Society

∗Part of this chapter is reprinted with permission from A Control-Theoretic Approach for En-
ergy Efficient CPU-GPU Subsystem in Mobile Platforms by David Kadjo, Raid Ayoub, Michael
Kishinevsky, and Paul V. Gratz, 2015, The 52th ACM/EDAC/IEEE The Design Automation Con-
ference, IEEE Computer Society Washington DC, Copyright [2015] by IEEE Computer Society
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Figure 4.1: Overview of the proposed system (added implementation in shaded
blocks).

models is discussed in the subsections below.

4.1.2.1 CPU Power Model

The total power consumption in CMOS circuits consists of a dynamic and a

static components. Let us consider a CPU with m power states referred to as

C0, C1, .., Cn, .., Cm, as defined in the Advanced Configuration and Power Inter-

face (ACPI) specifications [30]. C0 is state in which the CPU executes instructions

while the rest are different sleep states. We assume that all the internal CPU clocks

are stopped beyond power state Cn. We express the CPU dynamic power, Pcpu dyn,

as:

Pcpu dyn = rCiCiV
2f i = {0, 1, ..., n} (4.1)

where rCi
is ratio of time spent in power state Ci relative to the sample period

duration, Ci is the switching capacitance, V the supply voltage and f the frequency.

Since the clocks are gated in power states greater than Cn, those states have no

dynamic energy consumption. We express the switching capacitance during the

active state (C0) as a linear function of the CPU activity expressed as the ipc; that

is C0 = a∗ ipc + b. On the other hand, the switching capacitance for power states C1

through Cn is constant Ci = Ai since no instructions are executed in these states.
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Then, the weighted average dynamic CPU power, Pcpu dyn, over the sample period is

expressed as the sum of the dynamic power in states C0 through Cn as:

Pcpu dyn = rC0(a ∗ ipc + b)V 2f +
n∑
i=1

rCiAiV
2f (4.2)

Similarly, the static power Pcpu static can be expressed as:

Pcpu static =
m∑
j=0

rCjBj j = {0, 1, ..,m} (4.3)

where rCj is the ratio of time spent in the j power state relative to the sample period

duration and Bj is the leakage power of the corresponding state. Since the frequency

is the only controlled parameter, we express the voltage as a function of the frequency

as:

V = cf + d (4.4)

The coefficients c and d are found through a regression analysis using actual volt-

age and frequency values used by the target platform. The total CPU power then

becomes:

Pcpu = Pcpu dyn + Pcpu static

4.1.2.2 PMIC, Display and other Components Power Model

The PMIC is a highly integrated solution that provides power to the platform

components and the processor. Hence, it is important to have high efficiency PMIC.

However, typical PMIC’s efficiency is within 60-85% leading to significant power

losses [27]. While the efficiency in PMIC is function of the load current, it is relatively

flat over the active operating range, as shown in Figure 4.2. Therefore, it can be

approximated to a fixed value (80% in our model). Given a PMIC with efficiency ξ,
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Figure 4.2: PMIC efficiency [27].

we express the power dissipation across the PMIC as a function of the total platform

power as:

PPMIC = (1− ξ)(Pcpu + Pdisplay + ψ) 0 < ξ < 1 (4.5)

where Pcpu is the total power dissipated by the CPU, Pdisplay is the display power,

ψ is defined as the power consumption of the rest of the platform components. The

LCD display power can be expressed as a linear function of the display brightness as

Pdisplay = mθ + pbase

where m is the display power change per unit of change in the brightness and pbase

is the baseline display power.

4.1.2.3 Platform Power Model

The total platform power consumption Pplat can be expressed as:

Pplat = Pcpu + (1− ξ)(Pcpu + Pdisplay + ψ) + Pdisplay + ψ (4.6)
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Figure 4.3: Design of the power budget controller.

By substituting Equation 4.4 into Equation 4.2, the platform power can be written

in terms of the CPU frequency f as:

Pplat = Gf 3 +Hf 2 +Kf + L (4.7)

We found the coefficients G,H,K,L using an offline regression analysis using the

performance counters listed in Section 4.3.1. To find these coefficients, we swept the

CPU frequency and measured the power of individual components (CPU, PMIC,

display, etc.) under representative set of workloads.

4.1.3 Power Controller Implementation

The desired power target is computed by the OSPM based on the user inputs and

the available temperature headroom as illustrated in Figure 4.3. Then, the computed

power target, Ptgt, is fed through a Power to Frequency module, which computes the

largest frequency, ftgt, at which power budget constraint is not violated. That is:

Gf 3
tgt +Hf 2

tgt +Kftgt + L = Ptgt (4.8)

Then, we use a proportional integral (PI ) controller to find the reference frequency

fref by comparing the power consumption predicted by Equation 4.7 against the

power target, as show in Figure 4.3. Note that solving for ftgt using the cubic relation
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given in Equation 4.8 would incur a high computational overhead. Therefore, we

leverage the fact that the CPU frequency can take a finite set of discrete values in

practice. To this end, we implement two controller modes. The first mode finds the

CPU frequency that provides the closest power consumption to Ptgt. That is, fref is

set such that:

|P (fref)− Ptgt| = min|Ptgt − P (fi)|

where fi is the set of frequencies at which the CPU can be set to. Hence, the actual

power consumption can be larger than the target under this mode. On the other had,

the second controller mode sets the CPU frequency such that the power consumption

is always maintained below the target power. Hence, fref is set such that

Ptgt − P (fref) = min{Ptgt − P (fi)} & Ptgt − P (fi) ≥ 0

4.1.4 QoS Controller

4.1.4.1 Performance Model

The runtime of an application A can be divided into frequency scalable and non-

scalable phases. The duration of the scalable phases (Tscalable), observed during CPU

intensive periods, is inversely proportional to the CPU frequency. The runtime of

the non-scalable phases (Tnon-scalable), characterized by off-core memory accesses, is

oblivious to the CPU frequency. We define the scalability factor SA of the application

A as:

SA = Tscalable/(Tscalable + Tnon-scalable) 0 < SA ≤ 1

SA defines how much the application performance scales with the CPU frequency.

Let T1 be the total runtime at frequency f1, and T2 the total runtime at frequency
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f2. The scalability factor of application A can be expressed as:

SA =
T2 − T1
T1(

f1
f2
− 1)

f1 > f2 > 0 (4.9)

Computation of Scalability Factor: Many mobile CPUs such as the one in our

platform do not provide hardware monitors that directly give the scalability factor.

Therefore, we estimate it using the hardware performance counters that measure the

application number of page walks (PW ) and its last level cache misses (LLCmisses),

which characterize the CPU off-core activities. We express the scalability as a linear

combination of those counters:

SA = c1PW + c2LLCmisses + c3 (4.10)

In order to find the coefficients c1, c2 and c3, we first ran a set of benchmarks

with varying characteristics at different frequencies and empirically computed the

scalability factor using Equation 4.9. Subsequently, we applied linear regression to

determine these coefficients. The coefficients c1 and c2 are negative, as the scalability

decreases with increased number of page walks and cache misses. They represent the

change in the scalability per change of the page walks and cache misses respectively.

Finally, the constant term c3 represents the relative weight of the scalability for

purely CPU intensive workloads.

Setting the Performance QoS Target: The target performance, Iref, is spec-

ified relative to Imax the maximum number of instructions that can be executed per

control interval.

Iref = βImax 0 ≤ β ≤ 1 (4.11)

Note that a fixed performance target β cannot deliver optimal energy efficiency
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Figure 4.4: QoS as a function of the scalability factor.

across different types of applications. For instance, a CPU-bound application with a

scalability factor close to 1, should have a QoS performance target close to 100% since

any reduction in frequency results in a sizable increase in runtime. Hence, any power

savings is likely to be compromised by a longer execution time. On the other hand,

the CPU frequency could be safely reduced for a memory bound application without

a significant increase in runtime. Consequently, we expressed the performance target

as a function of the scalability factor:

β = qSA + k q > 0 & k > 0 (4.12)

The constant k represents the minimum performance target which will be used for

workloads entirely dominated by off core memory accesses. It is set to 90% as shown

in Figure 4.4. On the other hand, q determines the increase in the performance

target as SA increases from 0 to 1, as illustrated in Figure 4.4.

4.1.4.2 Instruction Slack Controller

The number of instructions (I) executed by the CPU in a sample period may

differ from the target performance for two reasons. First, the CPU can only be
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Figure 4.5: Design of the QoS controller.

set to specific frequencies which in some cases might differ from the controller re-

quested frequency. Second, it is not possible to precisely predict the scalability

factor which changes dynamically. Therefore, the actual workload execution can be

faster or slower than the performance target. Suppose that performance target can

be achieved by a reference frequency fref . We define the instruction slack as the

discrepancy between the number of instructions executed by the CPU and the num-

ber of instructions that would have been executed at the reference frequency. The

instruction slack can be expressed as follows:

L(t) = L(t− 1) +
SA(t)If(t)

fref(t)
− SA(t)I (4.13)

L(t) is the cumulative instruction slack until time t, L(t− 1) is the previous cumu-

lative instruction slack, SA(t) is the running application scalability factor a time t,

f(t) is the CPU frequency at time t, I is the number of instruction executed and

fref(t) is the reference frequency. A positive slack means the workload has been ex-

ecuting faster than the performance target. A negative slack means the workload
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has been executing slower to maintain the target performance. We implement a

closed loop controller to regulate the CPU frequency and the instruction slack. The

output frequency from the controller depends on the amount of slack accumulated.

The purpose of the controller is to drive the slack to zero and achieve the desired

performance target. The output frequency that will stabilize the system given in

Equation 4.13 by placing its pole within the unit circle can be found as

f(t+ 1) = −G(t)L(t) + fref(t) (4.14)

where the feedback gain G(t) as a function of desired pole λ is

G(t) =
(1− λ)fref(t)

SA(t)I
0 ≤ λ ≤ 1 (4.15)

4.1.4.3 QoS Controller Implementation

Figure 4.5 shows the block diagram describing the operation of the QoS controller.

First, the reference frequency required to reach the target performance is computed.

Then, the scalability factor and the instruction slack are computed periodically every

control interval, as described in sections 4.1.4.1 and 4.1.4.2. Next, the reference

frequency and instruction from the previous control interval is used to update the

slack and compute next frequency, as explained in Section 4.1.4.2. Finally, the CPU

frequency for the next epoch is computed using Equation 4.14. Since the CPU

allows to be set to a few specific frequencies, we set the CPU to the highest available

frequency below the controller output frequency when the slack is positive. For a

negative slack, we set the CPU at the lowest frequency above the output frequency.
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Figure 4.6: Closed system control overview.

4.2 CPU-GPU Power Management

4.2.1 Overview

In this section, we discuss the details of our approach. The goal of our work is

to minimize the energy of the CPU and GPU subsystems while delivering a desired

Frame Per Second (FPS) for a set of different graphic applications. FPS is a standard

metric in the domain of graphic processing. Conceptually, the amount of compute

resources (GPU and CPU) required to achieve a given FPS on these applications

varies widely over time and from application to application. Thus, it is possible to

achieve energy savings by using power management techniques to reduce the compute

resources to just sufficient to achieve the desired FPS. To achieve this behavior, we

propose a dynamic control system that intelligently adjusts the computing resources

to optimize for energy. We modeled this problem as a control theoretic Multi-Input-

Multi-Output (MIMO) state-space system to ensure control robustness. The control

variables in this problem are the dynamic frequency and voltages of the CPU and

the GPU components. Figure 4.6 shows the high-level overview of this design. Since
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voltage frequency relation for a given design is known apriory, it is sufficient to control

the frequency and let the firmware select the lowest possible voltage for CPU and

GPU corresponding to the selected frequency.

Our proposed control subsystem is implemented at the software level, partitioned

between the Android Linux kernel and user space. It takes two primary inputs, the

desired FPS target and the feedback from the system. The default target FPS is

available within the kernel but it can also be provided by the applications. The feed-

back input includes performance and power information collected from the system.

This input is captured through OS kernel instrumentation (e.g. frame execution

time) and via light-weight run-time models that use hardware performance coun-

ters as input (e.g. CPU/GPU power models). More details on these inputs are

given in the subsequent subsections. The control system periodically samples the

parameters of the system and computes the controlled values. It is assumed that the

controller sets the frequency once at the beginning of the control interval and keeps

it unchanged during the control interval.

4.2.2 Frequency Scalability

Changing the frequency of the device, e.g. CPU or GPU, affects the execution

time of an application or a portion of the application between two sampling points

e.g., a time to compute one or multiple frames of the graphic application. We will

call the execution time of interest, active time, and denoted as Ta. The time when

the device enters one of the sleep states and hence is not executing instructions is

called a sleep time, which is denoted as Ts. The active time on a device can be

divided into frequency scalable and non-scalable portions: Ta(f) = Tscalable(f) +

Tnon-scalable, where f is the operating frequency. The duration of the scalable phases

(Tscalable) is inversely proportional to the operating frequency, i.e. Tscalable(f2) =
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f1
f2
·Tscalable(f1) . The duration of the non-scalable phases (Tnon-scalable), characterized

by resource constraints such as off-core memory accesses, is oblivious to the CPU

or GPU frequency. While off-core memory accesses may depend upon the frequency

of the device execution due to different dynamics of cache and memory accesses at

different frequencies, these second order dependencies are small and can be tolerated

by the closed loop control. We now define the frequency scalability factor S(f) of

the application as:

S(f) = Tscalable(f)/(Tscalable(f) + Tnon-scalable) (4.16)

S(f) defines which portion of the application performance scales with the device

frequency. Its values are bounded between 0 (no portion of the execution is affected

by the frequency) and 1 (the execution is fully scalable). We leverage the frequency

scalability factor to predict the value of the active time at a next frequency. Assume

the frequency changes from f1 to f2. Using the above equations, one can express the

active time at f2 using the scalability factor as follows:

Ta(f2) = Ta(f1) + S(f1) · Ta(f1) · (
f1
f2
− 1) (4.17)

As an application goes through different phases of the execution, its scalability

factor changes. Therefore, the runtime control should estimate S during each control

period. We denote a frequency scalability factor prediction computed for the k-th

control interval as Skf . The runtime estimator is computed as a function of selected

device performance counters. The specific function is learned off-line via machine

learning techniques. We ran a set of training applications with different characteris-

tics and then applied a linear regression analysis to select the performance counters
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Figure 4.7: CPU-GPU-Display queuing system.

of interest along with the coefficients.

4.2.3 CPU-GPU-Display Queuing Model

The interaction between the CPU, GPU, and Display is illustrated in Figure 4.7.

For a graphic application, the CPU generates batches of commands. A pointer to

each batch is stored into a slot of the command batch queue, q1. The batches are

read and processed by the GPU which generates a display frame. The pointer to

the frame is stored into the frame buffer, another queue denoted as q2. In some

cases, multiple batches may contribute to a single display frame. On the Figure, the

rate of injection into q1 and q2 are denoted as λ1 and λ2, respectively. The rate of

ejection from the two queues are denoted µ1 and µ2. These rates are computed over

the sampling interval T k (the time interval between two consecutive sampling points

tk and tk+1 is denoted as T k = [tk, tk+1), where k ≥ 1). We introduce a job ratio

parameter rk, which is the average number of batches per frame within the sampling

interval T k. The relation between µ1 and λ2 can then be expressed as:

µk1 = rkλk2 (4.18)

Let us denote the ratio of injection rates into queue qi during two consecutive

sampling intervals λki and λk−1
i as Θk

i , k ≥ 2. Assuming continuous flow of jobs

without sleep periods, the injection rate is reciprocal to the active execution time
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(during the frame period): λk = 1/T ka . Using equation 4.17 the injection ratios Θk
i

for the CPU and GPU can be expressed via the scalability coefficient, Sf , as follows:

Θk
i = λki /λ

k−1
i =

1

1− Sk−1
f,i (1− fk−1

i

fki
)

(4.19)

Using equation 4.18, the occupancy of the queue, qk+1, at the sampling point tk+1

can be described using queue flow equations as follows:

qk+1
1 = qk1 + Tλk1 − Trkλk2

qk+1
2 = qk2 + Tλk2 − Tµk2

(4.20)

The values of the injection rates, λk1 and λk2, during the next control period, are

not known at sample point tk. Using the injection ratio definition (Equation 4.19),

however, the above queue equations can be rewritten in terms of the injection rates

during the previous period. Assuming that the display ejection rate is fixed we can

also use the previous period ejection rate µk2 = µk−1
2 :

qk+1
1 = qk1 + Tλk−1

1 Θk
1 − Trk−1λk−1

2 Θk
2

qk+1
2 = qk2 + Tλk−1

2 Θk
2 − Tµk−1

2

(4.21)

Rewriting in the matrix form, one gets the following recurrent state equation

describing behavior of the CPU-GPU-Display system:

QQQk+1 = QQQk + ΓΓΓkΘΘΘk +CCCk (4.22)

where QQQk+1 and QQQk are vectors of the queues state (queues occupancies) at sam-

pling points tk+1 and tk, input vector ΘΘΘk of injection ratios Θk
1 and Θk

2 for the two
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queues q1 and q2, that depend on the control decision on the next frequencies fki for

the CPU and the GPU correspondingly, as shown by equation 4.19. The matrix ΓΓΓk

and the vector CCCk are defined as:

ΓΓΓk = T

λk−1
1 −rk−1λk−1

2

0 λk−1
2



CCCk = T

 0

−µk−1
2


4.2.4 State-space Controller Regulating QoS

We, next, designed a feedback controller that dynamically manages the control-

lable frequencies of the components, CPU and GPU, to achieve the desired perfor-

mance (QoS) constraints. The proposed controller stabilizes the state of the queues

around a target utilization as measured by the occupancy of the queues. Equation

(4.22) represents the linearized dynamics of the CPU-GPU-Display system around

an operating point. Maintaining sufficiently large utilization of queue q1 guarantees

that the GPU never stalls due to a lack of batches dispatched by the CPU even in

presence of fluctuations in injection and ejection rates. Maintaining sufficiently large

utilization of q2 guarantees that the display has always a new frame to draw at the

required display rate and hence the visual quality of service is not suffering.

Let QQQk
ref be the vector of reference utilizations for the system queues. We apply

the control feedback for a system with input reference [28], to the state equation in

Equation 4.22, to compute the input vector ΘΘΘk as follows:

ΘΘΘk = −GGGk(QQQk −QQQk
ref )− (ΓΓΓk)−1CCCk (4.23)
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where GkGkGk is the state feedback gain matrix. The last term in the above equation is

used to compensate for the term CCCk in the state equation, which is not controllable

by the input ΘΘΘ of the system. The selection of the gain GkGkGk should ensure that the

queues utilization is asymptotically converging to the reference values.

Substituting equation (4.23) into the state equation (4.22) we can express the

state equation of the closed-loop system as follows:

QQQk+1 = (III −ΓΓΓkGGG)QQQk + ΓΓΓkGGGQQQk
ref (4.24)

The state feedback matrix GGGk must be selected such that the closed-loop system

described by Equation 4.24 is stable. This can be achieved by placing the eigenvalues

of the matrix (III −ΓΓΓkGGGk) within the unit circle.

(III −ΓΓΓkGGGk) =

ρ1 0

0 ρ2


where ρ1 and ρ2 are the Eigen values corresponding to the poles that should be

within the unit circle [28]. The feedback gain matrix can, then, be calculated as:

GGGk = −(ΓΓΓk)−1

ρ1 − 1 0

0 ρ2 − 1

 (4.25)

Finally, the intermediate output of the controller, the injection ratio, can be written

as:

ΘΘΘk =
1

T

ρ1−1

λk−1
1

rk−1
2 (ρ2−1)

λk−1
1

0 ρ2−1

λk−1
2

 (QQQk −QQQk
ref ) +

 rk−1
2 µ2

λk−1
1

µ2
λk−1
2

 (4.26)
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4.2.5 Energy Optimal Frequencies

We expressed the power consumption of each device i (CPU, GPU) as a function

of the frequency that is the only controllable parameter as Pi = ai3f
3
i + ai2f

2
i + ai1fi +

ai0 [34]. Using this formula and Equation 4.17, the energy dissipation is computed

as follows:

Ei(fi) = (
∑

i
P i
a(fi)T

i
a(fi) +

∑
i,j
P i
jT

i
j )(1 + ξi) (4.27)

where fi ≥ fmin (fmin is the frequency at which the predicted active time of the

frame, T ia(fmin), is less than a required time constraint), P i
a(fi) is the power of device

i in active state, T ia(fi) is the duration of the active execution, for example time to

process one frame of the graphic workload, for a device i. P i
j is power during sleep

in the Ci
j state and T ij its sleep time duration. Each of the above power components

adds a penalty ξ corresponding to the inefficiency of the power regulator .

Finding an analytical solution for the frequency, f ie, that minimizes energy in

Equation 4.27 is not trivial during runtime since it would require solving a 4th order

polynomial under the constraint of fi ≥ fmin. As each device has a small set of

frequency values, finding f ie at runtime is done via sweeping the possible frequency

values and finding the minimal value of Equation 4.27.

4.2.6 Adding Energy Optimization

The algorithm presented in previous subsection selects the energy optimal fre-

quency that satisfies the performance constraints as seen by the performance pre-

dictor that uses runtime frequency scalability estimates. Unlike the performance

controller output described by the Equations 4.23 and 4.30, this algorithm does

not take into account any performance jitter (burstiness) since it does not use the

reference constraint on the number of packets in the system queues. In addition,
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it considers individual devices, such as a GPU and a CPU, in isolation and does

not guarantee selection of the frequency for the producer (CPU) that would enable

sufficient performance to the consumer (GPU).

When the CPU or the GPU enters sleep states, we can then leverage the sleep

time as a slack to optimize for energy. We define βi as a metric to measure how

far the active time of recent frames is from the energy efficient target of device i.

βk−1
i = Ta(f

k−1
ei

)/Ta(f
k−1
i ). The target value for βk−1

i is 1. When βk−1
i > 1 then

we need to reduce fki in the subsequent control interval and vice versa. We define

the matrix EEEk as a diagonal matrix in which the (i, i) element is equal to βk−1
i . We

use the matrix EEEk as a linear transformation on the injection rate vector ΘΘΘk and

apply it as part of the state equation of the queuing system to enable energy efficient

decisions when possible:

QQQk+1 = QQQk + ΓΓΓkEEEkΘΘΘk +CCCk
e (4.28)

where CCCk
e = ΓΓΓkEEEk(ΓΓΓk)−1CCCk, applies this linear algebraic transformation to the

vector CCCk to ensure convergence to the target FPS during steady-state. We can now

derive the energy efficient, ΘΘΘk, vector using Equation 4.28 and the control related

derivation steps from Section 4.2.4.

ΘΘΘk =
1

T

 ρ1−1

βk−1
1 λk−1

1

rk−1
2 (ρ2−1)

βk−1
1 λk−1

1

0 ρ2−1

βk−1
2 λk−1

2

 (QQQk −QQQk
ref ) +

 rk−1
2 µ2

λk−1
1

µ2
λk−1
2

 (4.29)

Given ΘΘΘk, we compute the final output of the controller, the next frequencies for

the CPU and the GPU:

fki =
Θk
i S

k
f,if

k−1
i

1−Θk
i (1− Skf,i)

(4.30)

where index i is equal to 1 for the CPU, and 2 for the GPU.
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Figure 4.8: Implementation overview.

4.2.7 Implementation

Our proposed implementation is partitioned into user and kernel space, as shown

in Figure 4.8. At the control sampling rate, the states of the CPU and GPU are fed

into the controller which sets the target frequencies. The inputs to the controller are

the CPU and GPU runtime frequency scalability and the power estimated through

the user-space analytic models. The models take as input the information from

the hardware counters and output the power and performance estimation to the

controller. Additional inputs are the frame processing time (frametime) and the

queues states (the injection and ejection rate, the occupancy) which are relayed by

the kernel layer. The requested frequencies are communicated to the kernel layer.

The kernel space implementation is partitioned into CPU and GPU modules. The

CPU module is implemented as a frequency governor driver. This module periodi-

cally, at the rate of the control period, samples the CPU hardware counters and the

cores frequencies then reports them to the models in user space. The requested CPU
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frequency from the controller is communicated to the CPU module. The communi-

cation between the CPU module and the user space layer is done through the sysfs,

the filesystem interface for exporting kernel objects. The GPU module is written

within the graphic driver. This module computes and collects the queue properties

and reports them to the controller. The GPU module also communicates to the

user space through the sysfs interface. The GPU hardware performance counters are

queried using the DRM library [26]. Likewise, the requested GPU frequency by the

controller is communicated to the GPU using the DRM library.

4.3 CPU Optimization

4.3.1 Methodology

Since the analytical power models are based on data collected on an experimental

platform, we begin with describing the data measurement setup and methodology.

4.3.1.1 Host Platform

We performed data collection, model validation and experimental evaluation us-

ing a mobile platform based in the Intel c© Atom
TM

Clovertrail processor and running

Android Jelly Bean based on the Linux kernel version 3.0.34. The Atom core in the

target processor has four power states referred to as C0, C2, C4 and C6. We imple-

mented the proposed technique as modules within the Linux kernel and compared

them against the default frequency governor.

4.3.1.2 Power Measurement and Validation

The mobile device under test is hooked up to a data acquisition system, NI-

DAQ-6070E, that allows fine granular voltage and current readings across the entire

platform. Using this setup, we measure the power consumption at a rate of 3000

samples per second. As a result, we obtain a very accurate power consumption
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decomposition as a function of time. We use the execution time as the primary

performance metric.

4.3.1.3 Runtime Monitoring

The proposed controllers rely on analytical power and performance models, which

rely on hardware performance counters, since run-time data acquisition is not feasi-

ble for end users. We use the low level assembly functions available within the kernel

to read these counters. In particular, we monitor the number of instructions retired

(Instruction Retired), the numbers of clock cycles (UnHalted Core Cycles), the

page walks (PAGE_WALKS.WALKS) and the last level cache misses (L2_LINES_IN). The

power states residencies are determined by reading the corresponding residency coun-

ters (MSR_PKG_C2_RESID., MSR_PKG_C4_RESID., MSR_PKG_C6_RESID.). Power and

performance predictions are computed using these monitors in a control interval of

50ms. The overhead of this process is measured as 0.1%.

4.3.2 Results and Analysis

In this section, we compare the proposed techniques against the default onde-

mand frequency governor in the Linux kernel. The on-demand policy sets the CPU

frequency to the highest available frequency when the CPU utilization rises above a

threshold. When the utilization falls below the threshold, the policy decreases the

CPU frequency in steps [52].

We used two classes of workloads. The first class includes cpu-bound and memory-

bound C/C++ benchmarks which are compiled using the Android standalone com-

piler provided by the Android Native Development Kit (NDK) and run from the

adb command shell. The second class consists of Android workloads Caffeine and

Quadrant, which are widely used for mobile device characterization. We implement

three QoS performance target functions (equation 4.12) with different minimum per-
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Figure 4.9: Energy consumption normalized to the ondemand frequency governor.
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Figure 4.10: Application performance relative to max performance.

formance targets (90%, 95% and 97%). These functions are referred to on the figures

as QoS-90%, QoS-95% and QoS-97%.

4.3.3 Performance

The goal of the performance controller is to meet the performance requirement

while minimizing the energy consumption. This is achieved by decreasing CPU volt-

age and frequency to save power whenever that results in no or negligible loss in

performance. The normalized energy consumption obtained using the proposed con-

troller under each QoS setting is shown in Figure 4.9. CPU energy consumption
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Figure 4.11: QoS controller behavior for the cpu-bound workload.

under memory bound application is decreased by more than 15% under 90% QoS

setting, since the proposed controller recognizes that this workload is dominated by

off-core activities. Thus, the CPU frequency is reduced to save energy at negligible

performance degradation. The corresponding reduction in platform energy is 8%.

Considering that the platform power including all resources can reach ∼5W, 8% en-

ergy savings at platform level is significant. For instance, 10hour of baseline battery

operation could be extended by almost 50min by simply using this approach.

We also observe that CPU and platform energy savings for QoS-95% and QoS-

97% settings are lower than the saving observed at QoS-90%. This is expected since

the controller is less aggressive in reducing the power as the QoS requirement in-

creases. The proposed approach is also more energy efficient than the on-demand

governor for other workloads. In particular, the Cpu-bound workload shows an en-
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ergy saving of ∼2% at the platform level for QoS-90%. The same scenario is observed

for Caffeine and Quadrant. This is because these workloads have a scalability factor

close to 1. Therefore, any attempt to reduce the voltage and frequency increases the

runtime and undermines any potential savings in platform energy consumption de-

spite the reduction in power consumption. Overall, the proposed policy consistently

outperforms the default on-demand policy across all the workloads.

Figure 4.17 shows that the proposed QoS controller achieves the desired objec-

tives. More precisely, there is no performance degradation for the workloads (Caf-

feine, cpu-bound and Quadrant) with scalability close to 1. For all cases, the achieved

performance is greater than the minimum QoS target. Detailed operation of the

controller when executing the cpu-bound workload at QoS of 95% is illustrated in

Figure 4.11. The controller tries to drive the instructions slack to zero and maintain

the target performance, as expected (Figure 4.11a). Since the CPU allows only a

discrete set of specific frequencies, the exact output frequency requested by the con-

troller cannot be always selected. Therefore, the controller oscillates between closest

available CPU frequencies as shown in Figure 4.11b such that the average coincides

with the ideal frequency.

4.3.4 Power Budgeting

In this experiment, we set the power target to 50%, 70% and 90% of the maxi-

mum power consumption. Figure 4.12 shows the result for the controller mode that

maintains the CPU power around the target power. On average, the CPU power is

maintained at 89.75%, 72.03% and 51.48% when the knob is set to 90%, 70% and

50% respectively. Overall, the CPU power consumption is maintained within less

than 1% of the specified power target. Figure 4.13 shows the results when the CPU

power is maintained below a target power. It is observed that the power is success-
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Figure 4.12: Normalized CPU power for the mode that maintains the power at
around the target power.

fully maintained below the target across all the workloads. On average, the power is

maintained at 84.52%, 67.25% and 44.16% of the maximal power when the knob is

set to 90%, 70% and 50% respectively. These results show that the power model in-

troduced in Section 4.1.3 is an accurate representation of the CPU power. Therefore,

it can be used as a soft power budget constraint. We note that the on-demand policy

has no power limiting feature. The CPU frequency depends only on its utilization.

Therefore, the proposed power budget controller adds a new functionality which is

not possible with the on-demand governor and keeps the power consumption within

the target power budget.

4.4 CPU-GPU Optimization

4.4.1 Methodology

We implemented our technique on a platform based on the Intel Baytrail SoC

running Android Jelly Bean. The results are compared against the default Android

power management policy. The default policy implements the common interactive

frequency governor for selecting the CPU frequency, and the default GPU power

management policy for controlling the GPU frequency. The platform under test was

83



CPU
4-wide O3 processor
192-entry ROB

L1I & L1D cache
64KB 8-way
2-cycle latency

L2 cache
Unified 256KB 8-way
10-cycle latency

Shared L3 cache
2MB/Core 16-way
20-cycle latency

Off-chip DRAM 200-cycle latency

Branch predictor
6.55KB Tournament predictor
2.76% branch prediction miss rate

Branch Path Confidence Threshold 0.75
Per-Load Filter Threshold 3

Table 4.1: Baseline configuration.

connected to a data acquisition system, the NI-USB6289, which we used for reading

the CPU and GPU power data. The DAQ was configured to measure the CPU and

GPU power and energy at a rate of 3000 samples per second. We use FPS as a QoS

metric in our results.

To evaluate our approach we selected a set of representative applications which

can be partitioned into two groups. The first group consists of graphic intensive

or performance test benchmarks (GLBench, 3DMark, and Citadel). The second set

targets common graphic applications (Angry Birds, Fruit Ninja, Candy Crush, Drag

Racing, and Hill Climb). All the applications used in our experiments are available

in the Android Market. The sampling period of our control is empirically set to 50ms

as a good trade-off between accuracy and run-time overhead. The components of

the occupancy reference vector QQQref are the frame buffer queue reference occupancy

(Qref gpu) and the command batch queue occupancy (Qref cpu). We set Qref gpu to

1 and Qref cpu to the number of batches corresponding to a frame. These references

were set empirically as a good trade-off between performance and energy.
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Figure 4.13: Normalized CPU power for the mode that maintains the power below
target power.
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Figure 4.14: Energy saving per-frame.

4.4.2 Results and Analysis

Figure 4.14 shows the total (CPU+GPU) energy savings per frame compared

to the default policy. The results show a significant combined GPU+CPU average

energy savings of 17.4% across all the benchmarks. Our technique outperforms the

default policy on all workloads. On average, the GPU’s contribution to the energy

savings is 13.3% while the CPU’s contribution is 4.1%. A larger savings came from

the GPU because it typically consumes more energy than the CPU during graphic
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Figure 4.15: Frame-rate over time normalized to the target rate.

applications. The savings are more pronounced on the realistic applications; ranges

from 20.7% on Angry Birds to 28.3% on Drag Racing. As expected, the graphic

intensive tests show less energy savings: the highest being 9% for 3DMark and the

lowest 4% for GLBench.

With the GPU frequency set to the maximum, the frame-time of graphic inten-

sive benchmarks is close to, and in some cases larger than, the target frame-time.

Consequently, our controller has no room for energy optimization as it tries to satisfy

the QoS. As a result, the opportunity for energy saving running the performance test

applications is minimal. Our controller tries to find the energy optimal frequencies

for the CPU and GPU without violating the target frame-time. The energy savings

observed in the performance test benchmarks come from the exploitation of the few

available less intensive graphic phases. Our controller reacts to those phases by lower-

ing the GPU frequency toward the optimal point. Figure 4.15a shows the normalized
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Figure 4.16: CPU and GPU power savings.

instantaneous frame-rate for GLBench, one of the graphic intensive workloads. Even

though the default policy maintains the GPU at the maximum, the frame-rate is just

slightly lower than the target frame-rate. Hence, our controller does not have room

for performance slack. The small savings observed for GLBench is due to pockets of

low graphic intensive phases, mostly at the beginning of the benchmark. Alternately,

the realistic workloads allow for greater energy savings. Although the default policy

set the CPU and GPU frequencies lower than the maximum, the frame processing

time is still shorter than the target. As such, our controller utilizes the available

slack to select a more energy efficient operating frequencies for the CPU and GPU

without violating the QoS target. Figure 4.15b shows the FPS over time for Angry

Birds. The frame-rate with both the default policy and our proposed technique are

identical. The energy saving observed in Angry Birds comes from the fact that our

technique requested a much lower GPU frequency than the default policy. The re-

sults in Figures 4.15a and 4.15b also show that the FPS over time is stable, reflecting

the stability of the control despite its aggressive energy optimization decisions.

The average CPU and GPU power savings are depicted in Figure 4.16. The re-

alistic applications exhibit the most GPU power savings; mostly because the GPU
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Figure 4.17: Performance overhead.

frequency (and hence voltage) is set lower than the default policy for these applica-

tions. On the other hand, graphic intensive benchmarks exhibit less power savings,

compared to the default policy, since the frequency must be maintained at the max-

imum value to achieve the target QoS. We observe an average GPU power saving of

17% and CPU power saving of 20% across all benchmarks. Unlike the GPU case,

the most saving for CPU power is observed in graphic intensive benchmarks. Since

the GPU is on the critical path of these application performance, the CPU frequency

can be reduced without impact to the performance.

The performance overhead of our solution is depicted in Figure 4.17. We observe

an insignificant FPS degradation of a 0.9% on average across all benchmarks. Our

analysis indicates that more than 50% of this overhead is a consequence of our im-

plementation and mostly related to the query mechanism of the GPU performance

counters; a performance request command is inserted into the GPU ring-buffer, dis-

rupting the rendering commands flow. A more efficient implementation which would

minimize this overhead is part of our future work. As expected, The results also

indicate that graphic intensive workloads exhibit a higher performance degradation

than the realistic applications.
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4.5 Summary

A platform level framework for power management targeted as mobile devices is

presented. The proposed approach reduces the energy consumption while meeting

performance constraints. The technique is first applied to the CPU then extend to

the CPU and GPU for systems on chips. We observed energy savings of 17.4% while

incurring a low performance impact of 0.9%.
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5. PRIOR WORK

5.1 Cache Power Reduction

Two circuit-level approaches to leakage power reduction in caches have been

previously proposed. The first, gated-Vdd or power-gating, introduced by Powell et

al [55], and employed in much of prior work [58, 35, 78], exploits the stacking effect

of placing a high-Vt transistor between the memory cell and GND. This method

typically incurs a performance penalty as the memory cell loses its data. Power-

gating is the underlying method to disable cache in our technique. A second circuit

technique, drowsy cache, proposed by Flautner et al [25], uses dynamic voltage

scaling to put the memory cell into “drowsy mode” by reducing its voltage enough

to maintain its state. This technique incurs a latency to wake up the drowsy line

when being accessed. To date most prior work in microarchitectural cache power

management leverages one of these two techniques.

Previous techniques use per-block time based assessments of temporal locality to

determine dead blocks in the cache [35, 78]. Energy efficiency in these techniques is

achieved by shutting down these blocks. These schemes, however, are not adequate

for shared LLCs because their temporal locality speculation does not account for

evictions due to coherence protocols, and they require large counters due to the low

access rates seen in LLCs. Abella et al proposed a temporal locality predictor to turn-

off individual L2 cache lines. Such an approach, however, incurs a very high hardware

overhead due to the per-line cache statistics book-keeping hardware [1]. Yang et al

present a technique to reduce the leakage power in the instruction cache [75]. Their

method, DRi Dynamically Resizable icache, which resizes the instruction cache to fit

the application working set by changing the number of active sets, is not applicable
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to data caches because the instruction locality estimation used does not map well

to data working sets. Cache partitioning mechanisms that control the number of

active ways in a set associative cache to adjust its effective size and, in turn, to

find a good trade-off between performance and power have been proposed. Albonesi

et al examine the impact of such a technique on performance and power [2]. This

technique, however, requires software support to find the necessary cache capacity.

Most recently, Sato et al [58] proposed a LLC leakage power management technique

by partitioning the cache among active threads and activate or deactivate individual

ways according to the estimated threads locality. Their technique constructs a stack

distance profiling on the LLC and compute the application locality as the ratio

of the first and last stack. The drawback of this technique is that a partition of

the cache may be underutilized while the other partition is thrashed since threads

exhibit different phases at different times. It, further, fails to take into account the

application overall reuse behavior.

In this work, we propose an intelligent runtime migration of temporal locality

blocks to facilitate power gating while minimizing the performance impact. We

evaluate our technique against the state of the art technique proposed by Sato et al

for energy and performance.

5.2 Cache Prefetching

This section describes the related work in cache prefetching as well as other

control-flow speculative techniques. We classify data prefetchers into two classes,

light-weight and heavy-weight. The light-weight prefetchers have low hardware over-

head in terms of state required by the prefetcher. They often suffer from relatively

low accuracy and performance. On the other hand, the heavy-weight prefetchers pro-

vide high accuracy with substantial performance improvement, at the cost of large
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amounts of off-chip meta-data memory or additional OS and compiler support.

5.2.1 Light Weight Prefetchers

Data Prefetching techniques have been explored extensively as a means to tolerate

the growing gap between processor and memory access speeds. Two widely used

prefetchers are “Next-n Lines” [61] and Stride [14], both of which capture regular

memory access patterns with very low hardware overhead. The “Next-n Lines”

prefetcher simply queues prefetches for the next n lines after any given miss, under

the expectation that the principle of spatial locality will hold and those cache lines

after a missed line are likely to be used in the future. The stride prefetcher is

slightly more sophisticated; it attempts to identify simple stride reference patterns

in programs based upon the past behavior of missing loads. Similar to the “Next-

n Lines” technique, when a given load misses, cache lines ahead of that miss are

fetched in the pattern following the previous behavior in the hope of avoiding future

misses. Both prefetchers have been widely used due to the simple design and low

hardware overhead. However, without further knowledge about temporal locality

and application characteristics, these prefetchers cannot do more than detecting and

prefetching regular memory access patterns with limited spatial locality.

Somogyi et al. proposed one of the current top-performing, practical, low-overhead

prefetchers, the Spatial Memory Streaming (SMS ) prefetcher [63]. SMS leverages

code-based correlation to take advantage of spatial locality in the applications over

larger regions of memory (called spatial regions). It predicts the future access pattern

within a spatial region around a miss, based on a history of access patterns initiated

by that missing instruction in the past. While the SMS prefetcher is effective, it is

indirectly inferring future program control-flow when it speculates on the misses in

a spatial region. As a result, the state overheads of this predictor can be higher than
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the others in this class.

Generally, while these light-weight prefetching techniques are quite efficient in

terms of storage state versus the performance improvement they provide, they have

some disadvantages. In all cases they cannot predict the first misses to a region, and

further, they achieve relatively low accuracy for irregular accesses. In the context

of chip-multiprocessors with shared LLCs, this low accuracy can even cause perfor-

mance loss, as inaccurate prefetch streams from one application knock out useful

data from another, the “friendly fire” scenario outlined by Jerger, et al. [20] and Wu,

et al. [73].

5.2.2 Heavy Weight Prefetchers

To overcome the disadvantages of SMS, Somogyi et al. proposed an extension

called Spatio-Temporal Memory Streaming (STeMS) [62]. STeMS exploits temporal

access characteristics over larger spatial regions and finer access patterns within

each spatial region to re-create a temporally ordered sequence of expected misses

to prefetch. Exploiting both temporal and spatial characteristics, it improves the

performance by 3% over the SMS scheme. This performance benefit is achieved

at the expense of a large storage overhead (on the order of several megabytes). To

manage this overhead, STeMS keeps most of the meta-data off-chip at any given time,

shuttling it on- and off-chip as the program goes through its execution phases [70].

Roth et al. proposed a novel prefetching technique for pointer based data struc-

tures which extracts a simplified kernel of the data’s pointer reference structure and

executes it without the intervening instructions [57]. While this is effective for these

types of data structures and uneven memory accesses, it provides no benefit for other

types of code. The recently proposed Irregular Stream Buffer (ISB) prefetcher intro-

duced by Jain and Lin [31] also attempts to capture irregular memory access patterns.
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The key idea of the ISB prefetcher is to use an extra level of indirection to create

a new structural address space in which correlated physical addresses are assigned

consecutive structural addresses. In doing so, streams of correlated memory ad-

dresses are both temporally and spatially ordered in this structural addresses space.

Thus, the problem of irregular prefetching is converted to sequential prefetching in

structural address space. Although the ISB prefetcher shows reasonable performance

improvement with less overhead than STeMS, it still requires 8MB of off-chip storage

for off-chip meta-data. In addition to that, ISB sees 8.4% memory traffic overhead

due to meta-data accesses which does not occur in light-weight prefetchers.

Generally these heavy-weight prefetching techniques show very high accuracy.

However, these advantages come at a high cost in terms of meta-data overheads. In

energy/power constrained environments it may not be feasible to implement such

prefetchers.

5.2.3 Branch Directed and Related Techniques

Prior branch-prediction directed prefetching have focused on simple augmenta-

tions to the stride based prefetchers [54, 46], with significantly lower performance

than current best of class, light-weight prefetchers (e.i. SMS ). Although these tech-

niques often accurately speculate on which loads will occur, their performance tends

to be poor because they do not accurately speculate on the effective address of those

loads. In Tango [54], effective addresses from the last execution of a load are com-

bined with offsets to produce the new expected value, using a technique similar to

the traditional value speculation techniques. A key insight and novelty of our tech-

nique is, for prefetching, effective address values can be predicted more accurately

based upon their variance from the current architectural state at an earlier BBs, as

opposed to an offset off the previously generated effective address, determined by the
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last execution of that instruction.

Some early work exists in branch-directed, instruction cache prefetching [66, 56,

11, 65]. Recent work by Ferdman, et al., focusing on server and commercial work-

loads, shows quite significant gains for instruction cache prefetching [23, 22]. We

view these approaches as mostly orthogonal, and potentially complimentary to our

data cache prefetching design. In our future work we plan to examine how our path

confidence estimation scheme might be used to further improve instruction prefetch-

ing.

Our technique bears a passing similarity to Runahead execution-based tech-

niques [51, 19]. Runahead execution effectively functions as a prefetcher by spec-

ulatively executing past stalls incurred by long-latency memory instructions. While

this approach can be effective at producing a prefetch address stream, it incurs a huge

cost in terms of energy. In the presence of a long-latency load, a typical core would

idle, once the ROB is full, saving energy. In runahead approaches, the processor

continues execution a full speed, potentially wasting significant energy. The B-Fetch

prefetch pipeline is much smaller and lower complexity than the main pipeline, thus

it incurs a much lower energy cost in operation. Furthermore, the prefetch pipeline

acts independently and simultaneously with the right-path instructions and need not

wait for miss-induced stalls to become active. We are aware of no existing prefetcher

design which uses a branch predictor to speculate on control-flow, combined with

effective address speculation based upon current architectural state in a light-weight

prefetcher design.

Among the numerous existing prefetchers, we compare B-fetch with Stride and

SMS prefetchers, two other prefetchers in the light-weight class. Both Stride and SMS

prefetchers are considered light-weight because they show substantial performance

improvement with reasonable hardware complexity. SMS has a more sophisticated
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design than that of the Stride, but its additional hardware cost (approximately 37KB)

is low enough to be implemented entirely on-chip.

5.3 Platform Power Management

Power management policies in traditional computers have been extensively stud-

ied; from the earlier work presented by Flautner and Mudge [24] to more recent

studies [52, 40, 29]. Ayoub et al [5] presented a DVFS policy for power minimiza-

tion and performance optimization on servers. Current DVFS policies used in mobile

devices are direct port from the ones designed for traditional desktops. These poli-

cies, in general, do not address system level energy optimization since desktops do

not have a strict power limitation. Thus, desktop oriented DVFS policies are ill appli-

cable to battery powered mobile platforms. With the proliferation of mobile devices,

there have been considerable effort towards designing energy aware DVFS policies.

However, a number of these policies are applications specific [16, 36, 18]. Wu and

Li [72] proposed a policy to reduce power while maintaining maximum performance.

However, their technique requires an offline profiling of applications. Wu et al [74]

presented a dynamic compilation DVFS framework. They intercept the application

execution and insert DVFS instructions into the program binary at runtime to change

the CPU frequency and voltage. Their method requires a dynamic compiler layer

which introduces additional performance overhead. Another limitation of their tech-

nique is that it is specific to a particular Instruction Set Architecture (ISA). Porting

such a technique to other processors requires the existence of a just in time (JIT)

compiler software layer for the target ISA. Carta et al [9] presented a control the-

oretic approach to minimizing the energy on MPSoCs with throughput guarantees.

However, their implementation requires micro-architecture changes to the processor

since their technique exploit the presence of buffers within the pipeline stages. Lee
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et al [44] presented a combination of both DVFS and clock gating to reduce power

in muliticore systems in desktops and mobile devices. Choi et al [17] proposed a

DVFS policy to reduce the power dissipation in low power devices through work-

loads decomposition with the available hardware performance counters. However,

their method presents no guarantee to maintaining a performance QoS target.

We present a technique to optimize the platform energy consumption in mo-

bile systems. Our technique accounts for the inefficiency in the power management

IC. We construct power and performance models using the information from the

hardware performance counters. In addition, we minimize the platform energy con-

sumption while achieving performance and power guarantees.

5.3.1 CPU-GPU Optimization

Most of the research on CPU-GPU heterogeneous systems has been geared to-

wards the acceleration and improvement of specific GPGPU algorithms. These stud-

ies advocate distributing tasks among the CPU and GPU [13, 68, 12, 33, 77, 45].

Some work has been oriented towards energy optimization. Suda and Ran [67] pro-

posed a method to estimate the power consumption of CUDA kernels in discrete

GPU systems for the purpose of energy optimization. Wang and Ran [69] proposed

a power efficient work distribution for CPU-GPU heterogeneous systems. They asso-

ciate tasks distribution with frequency scaling. The tasks are distributed among the

CPU and GPU to reduce applications execution time. Komoda et al. [41] presented

a DVFS technique that embodies a coordinated DVFS, a task mapping technique

and a load balance distribution. They mapped tasks to either CPU or GPU, hence

controlling the load balance, and set the frequencies accordingly. Chiesi et al. [15]

also proposed a similar scheduling technique while maintaining the power under con-

straints. All of the work cited above focuses on general purpose computing workloads.
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These workloads allow the partition of applications into tasks; Hence facilitating the

mapping of these tasks to either the CPU or GPU. These techniques, however, cannot

be applied to 3D graphic applications where the tasks mapping cannot be altered. In

these applications, typically, the GPU renders the images while the CPU processes

the scene, handles physics emulation.

Most recently, Pathania et al. proposed a power management scheme in CPU-

GPU systems for 3D graphic applications on mobile devices [53]. They performed an

offline analysis on the impact of the different CPU-GPU frequencies combinations on

applications performance and the system power. They, then, implement a heuristic

method that tries to find the correct CPU-GPU frequencies combination to meet

the target QoS. Their technique is reactive; that is, it cannot predict the GPU-

CPU performance nor the power at specific frequencies. Furthermore, the set of

frequency combinations grows exponentially with increasing number of CPU and

GPU frequencies steps.

Our technique models the interaction between CPU and GPU in order to achieve a

good synchronization of both compute engines. We construct power and performance

models using the information from the hardware performance counters. These models

allow us to make informed decisions on frequencies for both the CPU and GPU to

achieve the target QoS.
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6. CONCLUSIONS

We proposed a solution to reduce the LLC leakage energy dissipation in CMPs

while mitigating performance impact. We compute the program’s memory footprint

and migrate the useful data to facilitate cache resizing. Using a cycle accurate simu-

lator, we evaluate our proposed solution for single-threaded, multiprogrammed and

multithreaded workloads and observe significant energy savings ranging from 66% to

50%, experiencing a low performance degradation of 2.16% average, while requiring

a small 3.64% hardware overhead. We also proposed B-Fetch, a data prefetcher that

takes advantage of control flow speculation in the branch predictor to accurately gen-

erate data prefetches. B-Fetch utilizes the strong correlation between the effective ad-

dresses generated by memory instructions and the values of the corresponding source

registers at prior branch locations. B-Fetch leverages a copy of architectural state of

registers at the time of the prefetch together with learned knowledge of the register

transformations which occur over BBs to generate accurate and timely prefetches for

data exhibiting both regular and irregular access patterns. B-Fetch achieves a mean

speedup of 23.0% over a baseline and outperforms the state-of-the-art prefetcher,

while incurring a minimal additional hardware cost. A power management policy for

mobile platforms is presented. The proposed approach reduces the energy consump-

tion while maintaining a QoS performance and satisfy power budget constraints. We

extend our platform to include the GPU and optimize energy consumption for 3D

graphic applications. The interaction between the CPU and GPU and reduces the

energy consumption by synchronously managing the CPU and GPU frequency. The

implementation of the proposed techniques on an Atom based Android tablet shows

platform energy savings of up to 8% and CPU energy savings of up to 15%. When
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accommodating for the GPU the energy saving increases to 17.4%; while incurring

a low performance impact of 0.9%.
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