2,799 research outputs found

    A rapidly converging domain decomposition method for the Helmholtz equation

    Full text link
    A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D Helmholtz equations. Transmission conditions based on the perfectly matched layer (PML) are derived that avoid artificial reflections and match incoming and outgoing waves at the subdomain interfaces. We focus on a subdivision of the rectangular domain into many thin subdomains along one of the axes, in combination with a certain ordering for solving the subdomain problems and a GMRES outer iteration. When combined with multifrontal methods, the solver has near-linear cost in examples, due to very small iteration numbers that are essentially independent of problem size and number of subdomains. It is to our knowledge only the second method with this property next to the moving PML sweeping method.Comment: 16 pages, 3 figures, 6 tables - v2 accepted for publication in the Journal of Computational Physic

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −Δu−(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter ε∈R\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε≠0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε≠0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if ∣ε∣∼k2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter h∼k−3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with h∼k−1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    Domain Decomposition Method for Maxwell's Equations: Scattering off Periodic Structures

    Full text link
    We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer.Comment: 24 page

    Convergence of HX Preconditioner for Maxwell's Equations with Jump Coefficients (ii): The Main Results

    Full text link
    This paper is the second one of two serial articles, whose goal is to prove convergence of HX Preconditioner (proposed by Hiptmair and Xu, 2007) for Maxwell's equations with jump coefficients. In this paper, based on the auxiliary results developed in the first paper (Hu, 2017), we establish a new regular Helmholtz decomposition for edge finite element functions in three dimensions, which is nearly stable with respect to a weight function. By using this Helmholtz decomposition, we give an analysis of the convergence of the HX preconditioner for the case with strongly discontinuous coefficients. We show that the HX preconditioner possesses fast convergence, which not only is nearly optimal with respect to the finite element mesh size but also is independent of the jumps in the coefficients across the interface between two neighboring subdomains.Comment: with 25 pages, 2 figure
    • …
    corecore