1,285 research outputs found

    A Quantum-Inspired Multimodal Sentiment Analysis Framework

    Get PDF
    Multimodal sentiment analysis aims to capture diversified sentiment information implied in data that are of different modalities (e.g., an image that is associated with a textual description or a set of textual labels). The key challenge is rooted on the “semantic gap” between different low-level content features and high-level semantic information. Existing approaches generally utilize a combination of multimodal features in a somehow heuristic way. However, how to employ and combine multiple information from different sources effectively is still an important yet largely unsolved problem. To address the problem, in this paper, we propose a Quantum-inspired Multimodal Sentiment Analysis (QMSA) framework. The framework consists of a Quantum-inspired Multimodal Representation (QMR) model (which aims to fill the “semantic gap” and model the correlations between different modalities via density matrix), and a Multimodal decision Fusion strategy inspired by Quantum Interference (QIMF) in the double-slit experiment (in which the sentiment label is analogous to a photon, and the data modalities are analogous to slits). Extensive experiments are conducted on two large scale datasets, which are collected from the Getty Images and Flickr photo sharing platform. The experimental results show that our approach significantly outperforms a wide range of baselines and state-of-the-art methods

    A Survey of Quantum-Cognitively Inspired Sentiment Analysis Models

    Full text link
    Quantum theory, originally proposed as a physical theory to describe the motions of microscopic particles, has been applied to various non-physics domains involving human cognition and decision-making that are inherently uncertain and exhibit certain non-classical, quantum-like characteristics. Sentiment analysis is a typical example of such domains. In the last few years, by leveraging the modeling power of quantum probability (a non-classical probability stemming from quantum mechanics methodology) and deep neural networks, a range of novel quantum-cognitively inspired models for sentiment analysis have emerged and performed well. This survey presents a timely overview of the latest developments in this fascinating cross-disciplinary area. We first provide a background of quantum probability and quantum cognition at a theoretical level, analyzing their advantages over classical theories in modeling the cognitive aspects of sentiment analysis. Then, recent quantum-cognitively inspired models are introduced and discussed in detail, focusing on how they approach the key challenges of the sentiment analysis task. Finally, we discuss the limitations of the current research and highlight future research directions

    Quantum Cognitively Motivated Decision Fusion for Video Sentiment Analysis

    Full text link
    Video sentiment analysis as a decision-making process is inherently complex, involving the fusion of decisions from multiple modalities and the so-caused cognitive biases. Inspired by recent advances in quantum cognition, we show that the sentiment judgment from one modality could be incompatible with the judgment from another, i.e., the order matters and they cannot be jointly measured to produce a final decision. Thus the cognitive process exhibits "quantum-like" biases that cannot be captured by classical probability theories. Accordingly, we propose a fundamentally new, quantum cognitively motivated fusion strategy for predicting sentiment judgments. In particular, we formulate utterances as quantum superposition states of positive and negative sentiment judgments, and uni-modal classifiers as mutually incompatible observables, on a complex-valued Hilbert space with positive-operator valued measures. Experiments on two benchmarking datasets illustrate that our model significantly outperforms various existing decision level and a range of state-of-the-art content-level fusion approaches. The results also show that the concept of incompatibility allows effective handling of all combination patterns, including those extreme cases that are wrongly predicted by all uni-modal classifiers.Comment: The uploaded version is a preprint of the accepted AAAI-21 pape

    Emotion Quantification Using Variational Quantum State Fidelity Estimation

    Get PDF
    Sentiment analysis has been instrumental in developing artificial intelligence when applied to various domains. However, most sentiments and emotions are temporal and often exist in a complex manner. Several emotions can be experienced at the same time. Instead of recognizing only categorical information about emotions, there is a need to understand and quantify the intensity of emotions. The proposed research intends to investigate a quantum-inspired approach for quantifying emotional intensities in runtime. The inspiration comes from manifesting human cognition and decision-making capabilities, which may adopt a brief explanation through quantum theory. Quantum state fidelity was used to characterize states and estimate emotion intensities rendered by subjects from the Amsterdam Dynamic Facial Expression Set (ADFES) dataset. The Quantum variational classifier technique was used to perform this experiment on the IBM Quantum Experience platform. The proposed method successfully quantifies the intensities of joy, sadness, contempt, anger, surprise, and fear emotions of labelled subjects from the ADFES dataset

    A Survey of Quantum Theory Inspired Approaches to Information Retrieval

    Get PDF
    Since 2004, researchers have been using the mathematical framework of Quantum Theory (QT) in Information Retrieval (IR). QT offers a generalized probability and logic framework. Such a framework has been shown capable of unifying the representation, ranking and user cognitive aspects of IR, and helpful in developing more dynamic, adaptive and context-aware IR systems. Although Quantum-inspired IR is still a growing area, a wide array of work in different aspects of IR has been done and produced promising results. This paper presents a survey of the research done in this area, aiming to show the landscape of the field and draw a road-map of future directions

    A Quantum Probability Driven Framework for Joint Multi-Modal Sarcasm, Sentiment and Emotion Analysis

    Full text link
    Sarcasm, sentiment, and emotion are three typical kinds of spontaneous affective responses of humans to external events and they are tightly intertwined with each other. Such events may be expressed in multiple modalities (e.g., linguistic, visual and acoustic), e.g., multi-modal conversations. Joint analysis of humans' multi-modal sarcasm, sentiment, and emotion is an important yet challenging topic, as it is a complex cognitive process involving both cross-modality interaction and cross-affection correlation. From the probability theory perspective, cross-affection correlation also means that the judgments on sarcasm, sentiment, and emotion are incompatible. However, this exposed phenomenon cannot be sufficiently modelled by classical probability theory due to its assumption of compatibility. Neither do the existing approaches take it into consideration. In view of the recent success of quantum probability (QP) in modeling human cognition, particularly contextual incompatible decision making, we take the first step towards introducing QP into joint multi-modal sarcasm, sentiment, and emotion analysis. Specifically, we propose a QUantum probabIlity driven multi-modal sarcasm, sEntiment and emoTion analysis framework, termed QUIET. Extensive experiments on two datasets and the results show that the effectiveness and advantages of QUIET in comparison with a wide range of the state-of-the-art baselines. We also show the great potential of QP in multi-affect analysis
    corecore