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Abstract

Multimodal sentiment analysis aims to capture diversified sentiment information implied in
data that are of different modalities (e.g., an image that is associated with a textual description or
a set of textual labels). The key challenge is rooted on the “semantic gap” between different low-
level content features and high-level semantic information. Existing approaches generally utilize
a combination of multimodal features in a somehow heuristic way. However, how to employ and
combine multiple information from different sources effectively is still an important yet largely
unsolved problem. To address the problem, in this paper, we propose a Quantum-inspired Multi-
modal Sentiment Analysis (QMSA) framework. The framework consists of a Quantum-inspired
Multimodal Representation (QMR) model (which aims to fill the “semantic gap” and model the
correlations between different modalities via density matrix), and a Multimodal decision Fusion
strategy inspired by Quantum Interference (QIMF) in the double-slit experiment (in which the
sentiment label is analogous to a photon, and the data modalities are analogous to slits). Exten-
sive experiments are conducted on two large scale datasets, which are collected from the Getty
Images and Flickr photo sharing platform. The experimental results show that our approach
significantly outperforms a wide range of baselines and state-of-the-art methods.

Keywords: Multimodal sentiment analysis, Quantum theory, Decision fusion, Information
fusion

1. Introduction

With the rapid development of WWW and social networking services, more and more people
express their opinions and sentiments on social media platforms (e.g., Facebook, Twitter, etc.) by
publishing user generated content and posting comments. Instead of using textual content only,
people nowadays are willing to share opinions through multimodal content (e.g., text+image,5

text+video, audio+image), which are expected to express personal feelings more accurately and
intuitively than the use of mono-modal content, as illustrated in Figure 1. The importance of an-
alyzing the sentiment polarity of online multimodal content has been recognized in a wide range
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of application domains, e.g., to help manufacturers improve their products and to help govern-
ments understand public opinions. Therefore, multimodal sentiment analysis is of a theoretical10

and practical significance, and has attracted an increasing attention from both academia and in-
dustry [1][2][3][4]. In this paper, we focus on identifying the overall sentiment of users implied
in images and texts published on social media platforms.

(a) Sad clown in the rain (b) Sad fly (c) The dog and the music

Figure 1: Examples of Flickr multimodal documents. (a) Both text and image carry a negative sentiment; (b) it is
difficult to identify sentiment from the image, but the text carries a negative sentiment; (c) conversely, it is easier to
identify negative sentiment from the image instead of the text.

There has been a growing literature in multimodal sentiment analysis for social media, such
as YouTube, Twitter, Microblog and Facebook. For instance, Baecchi et al. [5] adopted deep15

neural networks to analyze the sentiment of Twitter documents. Ji et al. [6] proposed to use hy-
pergraph to model the correlations among different modalities on Sina Microblog data. Mihalcea
et al. [7] combined textual, visual and acoustic features to identify the sentiment expressed in
utterance-level visual data streams from YouTube. There is also a large body of work on other
social media platforms, e.g., Getty Images [8], Newscast [9], and Telugu Songs [10].20

Nowadays, most multimodal sentiment analysis methods focus on extracting effective fea-
tures or training a robust classifier. Several studies adopt simple decision fusion strategies (such
as a linear combination or voting strategy) to model the correlation among multi-modalities at
the decision level [11][12]. Despite of the remarkable progress that has been made, how to ef-
fectively employ and combine multiple modalities of information from different sources is still25

an important yet largely unsolved problem.
Moreover, visual sentiment analysis is also a challenging task since it involves a higher level

of abstraction and subjectivity than textual sentiment. The well-known “semantic gap” needs to
be filled. For an image, a basic representation is its pixel matrix. However, the pixel matrix does
not carry higher-level semantic information. Therefore, capturing visual semantic information is30

a basis for effective multimodal sentiment analysis. Furthermore, multimodal sentiment analy-
sis involves a complex decision process, in which different modalities often intertwine together
to carry a common sentiment polarity. The sentiment information of different modalities will
influence the final decision simultaneously. For example, the sentiment polarity of multimodal
document is affected by the sentiment polarities of the text and its accompanying image.35

To tackle these problems, we consider multimodal sentiment analysis within a more general
mathatical framework. In the field of probability theory, both classical probability theory [13]
and quantum probability theory [14] have been investigated. Classical probability, with its ax-
iomatic foundation derived from the Kolmogorov’s theory [15], has developed over centuries
based on classic physics. Quantum probability theory, which is axiomatized by Von Neumann40
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based on quantum physics [16], has recently been shown to provide a more general framework
for modelling a wide range of natural language understanding, information retrieval, user inter-
action and decision making problems [17][18][19][20]. For instance, classical probability theory
obeys the commutative law, which means the order of different events does not matter. Obvi-
ously, this axiom is not sufficient to explain the above examples. Quantum probability theory45

[21][22], on the other hand, does not necessarily obey the commutative law. It thus provides a
fresh conceptual framework for modeling multimodal sentiment analysis.

In this paper, we explore the use of Quantum Theory (QT) to model the multimodal sentiment
analysis task, due to the following reasons: (a) as a theoretical framework that unifies probabilis-
tic, logic and geometric formalisms, QT allows to consider the uncertainty in the process of50

decision making (such as combining decision information) [23]. (b) QT has been successfully
applied to model various user-oriented aspects in ad-hoc information retrieval [24][25][26] and
session search [27]. The intrinsic connections between QT and multimodal sentiment analysis as
discussed above indicate that the insights and formalisms of quantum mechanics can be adopted
to model multimodal sentiment analysis from a novel perspective [20][28][29].55

Specifically, we propose a Quantum-inspired Multimodal Sentiment Analysis (QMSA) frame-
work. Our framework consists of two parts, including a representation learning model and a
multimodal decision fusion strategy. These two parts can either integrate with each other as a
whole for multimodal sentiment analysis or deal with the semantic gap and the decision fusion
problems separately.60

In the first part, we propose a Quantum-inspired Multimodal Representation (QMR) model,
which represents the multimodal content as density matrices. For images, individual pixels are
meaningless for human understanding of an image unless they construct abstract visual seman-
tics. In the proposed QMR model, the pixels of an image are firstly used to construct visual
words. Then these visual words are mathematically modeled as projectors onto a vector space,65

which can be seen as a process of higher-level abstraction. Finally, these projectors are encap-
sulated in a density matrix that describes a probability distribution of visual words of the image.
For text, all words are modeled as projectors and are encapsulated in a density matrix in the
similar way. Compared with the traditional vector-based representation model, the QMR model
encodes more semantic information and naturally captures the inter-modal correlations.70

In the second part, we investigate the information conflicting phenomenon that takes place in
the process of multimodal information fusion. The ultimate goal of sentiment analysis is to en-
able the machine to correctly identify the sentiment polarity of information. As shown in Figure
1, Identifying final sentiment polarity produces information conflicting effect when it combines
two sentiment decision information (which are image and text in our study). Therefore, this ef-75

fect can be elaborated as an analogy to motivate our work. To address this challenge, drawing
upon the double-slit experiment in quantum physics that demonstrate the quantum interference
phenomenon, we propose a Quantum Interference inspired Multimodal decision Fusion (QIMF)
strategy. It is important to note that, we aim at developing a novel multimodal sentiment analysis
model with the inspiration of QT, instead of explaining or modeling the state of mind of humans.80

The main contributions of this paper can be summarized as follows:
• To our best knowledge, we are the first to apply Quantum Theory (QT) to sentiment anal-

ysis.
• We propose a Quantum-inspired Multimodal Representation (QMR) model to extract the

semantic information of individual modalities, which are encapsulated in density matrices.85
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• We elaborate an analogy between multimodal sentiment analysis with a well-known double-
slit experiment, and propose a Quantum Interference inspired Multimodal decision Fusion
(QIMF) strategy.
• We propose an integrated Quantum-inspired Multimodal Sentiment Analysis (QMSA)90

framework, which contains the QMR model to fill the semantic gap and the QIMF strategy
to fuse different decision results.

The rest of this paper is organized as follows. Section 2 gives a brief review of the related
work. Section 3 presents the proposed Quantum-inspired Multimodal Representation (QMR)
model. In Section 4, we elaborate an analogy in multimodal sentiment analysis with the double-95

slit interference experiment, and describe the proposed Quantum Interference inspired Multi-
modal decision Fusion (QIMF) strategy. In Section 5, we present our Quantum-inspired Mul-
timodal Sentiment Analysis (QMSA) framework that integrates the QMR model and the QIMF
strategy. In Section 6, we report the empirical experiments. Section 7 concludes the paper and
points out a number of future research directions.100

2. Related Work

Generally speaking, there exist two categories of approaches in the current lierature of sen-
timent analysis (SA): lexicon-based (knowledge-based) approaches and machine learning based
(statistical) approaches.

2.1. Lexicon-based Sentiment Analysis105

The lexicon-based approaches infer the overall sentiment polarity of a piece of text based
on the polarity of the words that compose it. These approaches depend on the sentiment dic-
tionary and sentiment rules, which do not require storing a large data corpus and training algo-
rithms. Early representatives in this category are Hatzivassiloglou [30] and Turney [31]. Later
researchers have focused on using adjectives, adverbs or nouns as sentiment indicators of the text110

[32, 33]. Further research has involved building good dictionaries and judging the sentiment po-
larity of the text through the dictionaries. Some well-known dictionaries include SentiWordNet
[34], MPQA [35] and GI [36].

Recent studies have been extended to sentiment analysis of online social media data. Musto et
al. [37] proposed a lexicon-based approach for sentiment classification of Twitter posts. Moreno-115

Ortiz et al. [38] performed an evaluation using Sentitext, a lexicon-based SA tool for Spanish
Twitter. Trinh et al. [39] built a Vietnamese emotional dictionary (VED) for sentiment analysis
with Facebook data. Cui et al. [40] constructed a Weibo lexicon and used a propagation algorithm
to automatically assign sentiment polarity scores to Chinese microblog messages. Saif et al. [41]
proposed a semantic sentiment representation of words called SentiCircle, and performed entity-120

and tweet-level level sentiment analysis on Twitter data.
More recently, there are studies that combine natural language processing (NLP) and se-

mantic web approaches for sentiment analysis [42, 43, 44, 45]. Semantic web based sentiment
analysis can take advantage from linked data, ontologies, controlled vocabularies to deal with the
domain-dependent problem. For example, Recupero et al. [44] developed a semantic SA system125

that is able to recognize the holder of an opinion to detect the sentiment of a sentence.
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As the Lexicon-based methods largely depend on dictionaries, they are mainly focused on
text sentiment analysis and difficult to be extended to other modalities. Moreover, the classifica-
tion accuracy is generally lower than machine learning approaches, which are described next.

2.2. Statistical Approaches to Sentiment Analysis130

The statistical approaches make use of machine learning methods, such as random forest,
support vector machines, and neural networks. They involve building classifiers from labeled
data, essentially a supervised classification task. Pang et al. [46] employed three machine learn-
ing methods to classify overall sentiment of documents. Pak [47] collected a Twitter corpus and
build a sentiment classifier to determine sentiments of documents. There were also attempts in135

combining machine learning and lexicon based approaches to analyze sentiment, which achieved
an improved accuracy [48, 49].

The statistical approaches have been applied to other modalities. The work in [50] used
machine learning algorithms to predict the sentiment of images based on SIFT features. Asghar
et al. [51] presented a brief survey on analysing sentiment of YouTube users, showing that140

there is still a long way to go to solve this problem. Recently, multimodal sentiment analysis
has been emerging [52, 53, 54]. Morency and Mihalcea [55] integrated visual, audio and textual
features to address the task of tri-modal sentiment analysis for the first time. They also conducted
experiments on Spanish videos and utterance-level visual datasets using the similar idea [3].
Maynard et al. [56] suggested considering contextual information to help resolve ambiguity in145

multimodal sentiment analysis. Poria et al. [1] used both feature- and decision-level fusion
methods to merge audio, visual and textual clues for YouTube. You et al. [8] proposed a cross-
modality consistent regression (CCR) model to analyze Getty Images and Twitter multimedia
content. Similar approaches have also been developed for the analysis of Sina microblog data
[57, 58, 6].150

The statistical approaches for sentiment analysis have benefited from the popularity and fast
development of machine learning methods. In general, they can achieve a better performance
than the lexicon-based approaches. However, they rely heavily on the labeled datasets and intro-
duce higher computational-complexity.

To sum up, the afore-described two categories of approaches have made a good progress in155

sentiment analysis and motivated our work. However, the existing approaches mostly focus on
on extracting effective features and constructing robust classifiers or studying refined sentimental
rules. They lack a principled theoretical framework to fill the semantic gap and have rarely
considered the multi-source information fusion problem in multimodal sentiment analysis. In
this paper, we propose a novel quantum-inspired framework to address the above two challenges.160

3. A Quantum-inspired Multimodal Representation Model for Representation Learning

In multimodal sentiment analysis, textual and visual words can be seen as events, and the
texts and the images can be seen as systems (probability distributions over the events). In quan-
tum probability theory, events are defined as projectors, systems are represented by density ma-
trices on the probability space. This motivates us to propose a Quantum-inspired Multimodal165

Representation (QMR) model via density matrix.
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3.1. Preliminaries of Quantum Theory

In QT, the quantum probability space is naturally encapsulated in an infinite Hilbert space,
noted as Hn. With the Dirac’s notation, a state vector or a wave function, ϕ, can be expressed as
a Ket |ϕ〉, and its transpose can be expressed as a Bra 〈ϕ|. In Hilbert space, any n-dimensional170

vector can be represented in terms of a set of basis vectors, |ϕ〉 = ∑n
i=1 ai|ei〉, so does the wave

function. Given two state vectors |ϕ1〉 and |ϕ2〉, the inner product between them is represented
as 〈ϕ1|ϕ2〉. Similarly, the Hilbert space representation of the wavefunction is recovered from the
inner product ϕ (x) = 〈x|ϕ〉.

In QT, assuming |u〉 is a unit vector, the projectorΠ on the direction u is writen as |u〉〈u|. |u〉〈u|175

can also represent a density matrix of pure state. A real density matrix ρ is symmetric, ρ = ρT ,
positive semi-definite, ρ ≥ 0, and of trace 1, i.e., tr (ρ) = 1. The quantum probability measure
μ is associated with the density matrix. It satisfies two conditions: (1) for each projector |u〉〈u|,
μ (|u〉〈u|) ∈ [0, 1], and (2) for any orthonormal basis {|ei〉}, ∑n

i=1 μ (|ei〉〈ei|) = 1. The Gleason’s
Theorem has proven the existence of a mapping function μ (|u〉〈u|) = tr (ρ|u〉〈u|) for any vector180

|u〉.
The wave function and the density matrix to quantum theory are formally equivalent, each of

which has its advantages in different applications. The wave function is good at describing the
quantum mechanics of a particle through a wave-like description [59, 60]. The density matrix
can more intuitively display the data distribution. In this paper, we employ the density matrix to185

extract the semantic information of multimodal data, and choose the wave function to formalize
a decision fusion strategy.

3.2. the Quantum-inspired Multimodal Representation (QMR) Model

We propose a unified Quantum-inspired Multimodal Representation (QMR) model to repre-
sent the text and the image through density matrices. Aiming at an effective representation learn-190

ing model, we base our computational framework on the Quantum Language Model (QLM) [61].
QLM is a novel application of quantum probability to information retrieval (IR), and achieves
significant improvements over the classical probabilistic language model. In QLM, both single
terms and compound term dependencies are modeled as projectors in a vector space. Docu-
ments and queries are represented as a sequence of projectors, encapsulated in density matrices.195

Although QLM is an effective text IR model, it is not suitable for multimodal sentiment analy-
sis, especially for visual sentiment analysis. Moreover, the estimation of QLM may not always
ensure a good convergence.

Different from classical probability theory, the events in QT are defined as subspaces, which
are represented by any orthogonal projectors. All textual and visual words can be seen as events.200

Therefore, all single textual and visual words in a multimodal document are modeled as projec-
torsΠ. The projectorsΠ are used to estimate density matrices ρ of the corresponding multimodal
document, which are probability distributions, corresponding to the probabilities of all events.
Theoretically, compared with vector-based representation, density matrices can better encode the
semantic dependencies and their probabilistic distribution information.205

Specifically, for text, suppose |wi〉 is a normalized word vector. The projector Πi for a single
word wi is formulated in Eq. (1). One-hot representation of words over other words is known to
suffer from the curse of dimensionality and difficulty in representing ambiguous words. We use
word embeddings instead of one-hot representation to construct projectors in semantic space. In
this paper, we employ the Glove tool [62] to find each word’s embedding.210

Πi = |wi〉〈wi| (1)
6



For an image, we consider it as a document of visual words, in which each visual word is
equivalent to a word in document. Therefore, we use these words |si〉 to represent projectors.
This process is as described in the following procedure: (a) extracting SIFT features from all
images in the training set; (b) clustering these extracted SIFT features to get k cluster centers
through a k-means algorithm. Each cluster center is a visual word, and all k visual words form215

a visual dictionary; (c) using these visual words |si〉 to construct projectors Πi = |si〉〈si| using
Equation 1.

After defining projectors for each textual word and each visual word, we can represent a doc-
ument with a sequence of projectors temporarily, PU = {Π1,Π2, ...,Πn}, where n is the number
of terms in the document. Then we use the Maximum Likelihood Estimation (MLE) to train220

density matrices ρ of documents and images as in the QLM. The likelihood function ζ (ρ) is the
probability of getting the observed data given the density matrix:

ζ (ρ) ∝
∏

i

tr (Πiρ) (2)

Since the log function is monotonic, the objective function F (ρ) can be formulated as:

F (ρ) ≡ max
ρ

∑

i

log (tr (Πiρ)) ,

sub ject to tr (ρ) = 1,
ρ ≥ 0

(3)

In the original QLM approach, an algorithm called RρR is used to estimate the maximum
likelihood value. However, there is no theoretical guarantee of convergence, regardless the
dataset and the initial value [63]. This algorithm may also suffer overshooting problem. To225

solve these problems, we employ a globally convergent algorithm [64], which extends the RρR
algorithm. The ascent direction of likelihood is determined by two ascent directions controlled
by the step size t. It is able to find a value which ensures a sufficient improvement in the likeli-
hood function. It has been shown that an inexact line search method to determine t is enough for
finding a value to guarantee the global convergence.230

Specifically, based on the gradient of the objective function F (ρ), this algorithm defines that
�F (ρ) =

∑
i

fi
tr(Πiρ)

Πi, where fi is the term frequency. It also determines a definition that a

direction Dk is an ascent direction at the kth iteration if tr
(
�F
(
ρk
)

Dk
)
> 0, and this definition

ensures that the function value increases.
The search direction Dk is a combination of the direction D̄k and D̃k, where D̄k and D̃k are235

also ascent directions for any ρk. Using the Armijo condition and a backtracking procedure, the
search direction Dk at the kth iteration is given by:

Dk =
2

q (tk)
D̄k +

tktr
(
�F
(
ρk
)
ρk�F

(
ρk
))

q (tk)
D̃k (4)

where q (tk), D̄k, D̃k are defined as follows:

D̄k =
�F
(
ρk
)
ρk + ρk�F

(
ρk
)

2
− ρk (5)

D̃k =
�F
(
ρk
)
ρk�F

(
ρk
)

tr
(�F
(
ρk
)
ρk�F

(
ρk
)) − ρk (6)
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q (tk) = 1 + 2tk + t2
k tr
(
�F
(
ρk
)
ρk�F

(
ρk
))

(7)

where tk ∈ [0, 1], q (tk) ≥ 1. To show this algorithm’s robustness, we randomly initialize the
diagonal matrix ρ0 while it satisfies ρ0 > 0 and tr

(
ρ0
)
= 1.

At the k-th iteration, after generating an ascent direction Dk, ρ is updated as follows:

ρk+1 = ρk + tkDk (8)

where tk is the step length. This process will stop when the change in the objective function240

F (ρ) is less than a threshold ε. We set ε = 10−5 empirically in this paper. We observed that the
convergence speed is slowing down and the value of objective function is beginning to stabilize
when the change in the objective function is less than the threshold. The complete procedure of
density matrix estimation is described in Algorithm 1.

Algorithm 1 Algorithm of estimating density matrix for text and image

Require: Each (visual) word vector (si) wi, the initial density matrix ρ0 and each document d

Ensure: Density matrix of each document ρ
1: // Constructing the projector
2: PU ⇐ φ; // PU is the projector sequence
3: for each d ∈ D do
4: for each w ∈ d do
5: //w is a single term or a visual word
6: for i = 1; i ≤ #(w, d); i + + do
7: Πi = |wi〉〈wi|;
8: PU ⇐ PU

⊕
Πi; //add the projector to the sequence

9: end for
10: end for
11: end for
12: // Train density matices ρ
13: for each PU of d do
14: Maximize F (ρ) ≡ ∑i log (tr (Πiρ));
15: for k = 1; F

(
ρk+1
)
− F
(
ρk
)
≤ ε = 10−5; k + + do

16: ρk+1 = ρk + tkDk;
17: end for
18: end for
19: return ρ

Finally, the Dirichlet smoothing method is applied to smooth the density matrices. Let ρdoc

be a document QMR obtained by MLE, it is then smoothed by interpolation with the collection
QMR ρcol:

ρd = (1 − γ) ρdoc + γρcol (9)

where γ ∈ [0, 1] controls the amount of smoothing. γ = μ
μ+M

is a commonly used form of the245

parameter for Dirichlet smoothing [65]. In our work, μ is a parameter. M is the number of
quantum events occuring in the collection.

For a clearer illustration, we give an example to interpret the whole process of calculating the
density matrices, as follows.
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Example: Consider a textual document: “the dog and the music”.250

1. We pre-process the text by removing stop words, resulting in the pre-processed text “dog
and music”.

2. We use the glove tool to find each word’s embedding, with the dimensionality 3. For
example, we have w(dog) = (-0.15, -0.24, 0.31), w(and) = (0.36, 0.86, -0.61), and similarily,
w(music) = (-0.92, 0.59, 0.43).255

3. Performing vector normalization: w(dog) = w(dog)
|w(dog)| = (-0.36, -0.57, 0.74), w(and) = w(and)

|w(and)|
= (0.32, 0.77, -0.55), w(music) = w(music)

|w(music)| = (-0.78, 0.50, 0.37).
3. After normalization, we can construct each word’s projector using Eq.1. Specifically,

we have: Πdog = w (dog)T · w (dog) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.13 0.21 −0.27
0.21 0.32 −0.42
−0.27 −0.42 0.55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Πand = w (and)T · w (and) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.10 0.25 −0.18
0.25 0.59 −0.42
−0.18 −0.42 0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, Πmusic = w (music)T · w (music) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.61 −0.39 −0.29
−0.39 0.25 0.19
−0.29 0.19 0.14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.260

4. Then each projector is a 3*3 matrix. The textual document is now be represented as a
sequence of projectors. In this example, the document is comprised of three projectors: PU ={
Πdog,Πand,Πmusic

}
.

5. Based on quantum probability theory, the probability of each word is p (word) = tr (|wi〉〈wi|ρ).

We can calculate each word’s probability, given a random initial ρ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.46 0 0

0 0.49 0
0 0 0.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.265

Hence, p (dog)= 0.24, p (and)= 0.35, p (music)= 0.41. The probability of the document is the
product of probabilities of all words, i.e., p (doc) = p (dog) · p (and) · p (music) = 0.03.

6. We use the Maximum Likelihood Estimation to train the final density matrix. In our work,
we employ the globally convergent algorithm to maximize the objective function F (ρ). Giving
the ρ0, we can calculate F

(
ρ0
)
= -5.47. Then we will update the density matrix using the Eq.8270

(i.e., ρ1 = ρ0 + t0D0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.32 0.09 −0.16
0.09 0.51 −0.21
−0.16 −0.21 0.17

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦), and check if F
(
ρk+1
)
− F
(
ρk
)
≥ 10−5 at each

iteration. If F
(
ρk+1
)
− F
(
ρk
)
< 10−5, we will tune t dynamically to get a new D, and then

calculate the objective function again.

7. Finally, we get the 3*3 density matrix representation of this document:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.41 0.03 −0.07
0.03 0.52 −0.08
−0.07 −0.08 0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

In this way, we have obtained density matrices that represent text and images respectively.275

We will identify the overall sentiment of multimodal data using these matrices and a multimodal
decision fusion strategy, which will be detailed in the next section.

4. A Quantum Interference-inspired Multimodal Decision Fusion (QIMF) Strategy

In this section, we first introduce the double-slit experiment and the Quantum Interference
effect (QI). We then elaborate its analogy to multimodal sentiment analysis. Finally, we propose280

a Quantum Interference inspired Multimodal decision Fusion (QIMF) strategy.
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Figure 2: The double-slit experiment. f1 (or f2) is the curve observed by closing slit 2 (or slit 1). f12 is the curve observed
by opening both slit 1 and slit 2. Clearly, f12 � f1 + f2 because of the interference effect.

4.1. The Double-slit Experiment

The double-slit interference experiment [66], as shown in Figure 2, is a demonstration that a
single photon initially emitted as a particle goes through two slits simultaneously and interferes
with itself as a wave. If the photon passes through just one slit, then it cannot pass through285

the other slit to create an interference pattern. This strange behavior of microscopic particles
demonstrating such a quantum interference effect cannot be explained sufficiently with any clas-
sical theory. Hence, it is necessary to introduce QT to interpret the behavior.

In QT, the wave function ϕ (x) [67] is a probability amplitude function of position x, which is
a complex number. It is a good description of the quantum state of a particle and can be used to
interpret this experiment. The state of the photon is a superposition of the state of slit 1 and slit
2, which can be formulated as:

ϕp (x) = αϕ1 (x) + βϕ2 (x) (10)

where ϕ1 (x) is the wave function of slit 1, ϕ2 (x) is the wave function of slit 2, and α, β are
arbitrary complex numbers satisfying |α|2 + |β|2 = 1.290

P (x) = |ϕ (x)|2 determines the probability (density) that a particle in the state ϕ (x) will
be found at position x. Pα = |α|2 is the probability of the photon passing through slit 1, and
Pβ = |β|2 is the probability of the photon passing through slit 2. Therefore, the curves f1 and f2
are measured as:

f1 = |α|2 |ϕ1 (x)|2 (11)

f2 = |β|2 |ϕ2 (x)|2 (12)

10



We have that the probability distribution f12:

f12 (x) =
∣∣∣ϕp (x)

∣∣∣2 = |αϕ1 (x) + βϕ2 (x)|2
= (αϕ1 (x) + βϕ2 (x)) · (αϕ1 (x) + βϕ2 (x))†

= αϕ1 (x) · (αϕ1 (x))† + βϕ2 (x) · (βϕ2 (x))†

+ αϕ1 (x) · (βϕ2 (x))† + βϕ2 (x) · (αϕ1 (x))†

= αϕ1 (x) · (αϕ1 (x))† + βϕ2 (x) · (βϕ2 (x))†

+ αϕ1 (x) · (βϕ2 (x))† +
(
αϕ1 (x) · (βϕ2 (x))†

)†

= |αϕ1 (x)|2 + |βϕ2 (x)|2 + 2Re
(
αϕ1 (x) · (βϕ2 (x))†

)

= |αϕ1 (x)|2 + |βϕ2 (x)|2 + 2 |αϕ1 (x) βϕ2 (x)| cosθ

= f1 + f2 + 2
√

f1 f2cosθ

(13)

where θ is the angle of the complex number αϕ1 (x) βϕ2 (x). I = 2 |αϕ1 (x) βϕ2 (x)| cosθ is called
interference term. I is a necessary component of the quantum probabilistic model describing the
distribution of frequency of the photon detected by the detectors when both slits are open.

4.2. An Analogy in Multimodal Sentiment Analysis

We draw an analogy to the double-slit experiment in multimodal sentiment analysis. The295

sentiment label of multimodal document is uncertain, which can be analogized as the photon.
The sentiment of the text and the image can be seen as two slits and each sentiment score is a
position on the detection screen, as shown in Figure 3. In our analogy, the sentiment information
of each modality will influence the final decision simultaneously. If the sentiment of the text
and the image both are +1 (or -1), then the final sentiment score most certainly is +2 (very300

positive) (or -2, very negative). This phenomenon can be viewed as the constructive interference.
Note that we elaborate this analogy for developing a new multimodal fusion strategy, instead of
modeling the psychological process. In this paper, we believe that the mathematical equations
used to describe quantum interference also serve as handy information fusion rules.

We use the wave function ϕ (x) to formalize our analogy. The sentiment polarity of multi-
modal documents can be analogized as a combination of the sentiment of the text and the image,
as shown below:

ϕu (x) = αϕt (x) + βϕi (x) (14)

where ϕt (x) is the wave function of the sentiment of the text, ϕi (x) is the wave function of the
sentiment of the image. Therefore, the probability distribution of the sentiment polarity of the
text or the image can be respectively formulated as:

ft = |α|2 |ϕt (x)|2 (15)

fi = |β|2 |ϕi (x)|2 (16)

The probability distribution of the final sentiment score can be measured as:

fu (x) = |ϕu (x)|2 = |αϕt (x) + βϕi (x)|2
= |αϕt (x)|2 + |βϕi (x)|2 + 2 |αϕt (x) βϕi (x)| cosθ

= ft + fi + 2
√

ft ficosθ

(17)
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Figure 3: Our analogy with multimodal sentiment analysis and the double-slit experiment.

Note that in this paper we do not explicitly use complex numbers, but the framework is305

general. Indeed, the complex number is real if its imaginary part is zero, and thus the set of
real numbers is a proper subset of the set of complex numbers. Busemeyer and Bruza [23] have
mentioned that the beauty of complex numbers is that the formulation retains their simplicity
and elegance no matter whether they are based on real or complex numbers. Therefore, quantum
interference theory can be used to help develop a novel multimodal sentiment analysis model.310

4.3. Developing the QIMF Strategy

Based on the above analogy, we can explore the correlation among multi-modalities at the
decision level, and propose a Quantum Interference inspired Multimodal decision Fusion (QIMF)
strategy. Compared with the previous decision fusion strategies, QIMF adds an interference term.

P (x) = |ϕ (x)|2 describes the probability of position x. At the decision level, we can refer
to P (x) as the probability of the sentiment score x (x=+1,+2,-1,-2). Similarly, we interpret
Pt (x) = |ϕt (x)|2 as the probability that the sentiment score of the text is x, denoted as Pt. We
interpret Pi (x) = |ϕi (x)|2 as the probability that the sentiment score of the image is x, denoted as
Pi. The final decision Pu can be written as:

Pu = α
2Pt + β

2Pi + 2αβ
√

PtPicosθ (18)

where α2 and β2 are the normalized weights assigned to the text and the image decision. I =315

2αβ
√

PtPicosθ is the interference term, which represents the degree of conflicting local deci-
sions.

5. Our Quantum-inspired Multimodal Sentiment Analysis (QMSA) Framework

We have described the Quantum-inspired Multimodal Representation (QMR) model (in Sec-
tion 3.2) and the Quantum Interference inspired Multimodal decision Fusion (QIMF) strategy320

(in Section 4.3), respectively. Now we introduce our Quantum-inspired Multimodal Sentiment
Analysis (QMSA) framework.
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Algorithm 2 Framework for Quantum-inspired Multimodal Sentiment Analysis (QMSA)
Input: Multimodal documents (the text dtext and the image dimage)
Output: Positive or negative sentiment labels (+1, -1)

1: Map each term of the text dtext to vector wi using word embedding; Map each visual word of
the image dimage to vector si using bag of features model.

2: Input wi and si, and utilize the QMR model to train density matrices ρtext and ρimage. Use
these density matrices ρtext and ρimage to represent the text and the image, refer to Algo-
rithm 1.

3: Employ density matrices ρtext and ρimage as input data, train their own classifiers Ctext and
Cimage, and get the decision results Ptext and Pimage, respectively.

4: Perform the QIMF strategy to fuse the decisions Ptext, Pimage, tune the weights α, β and cos θ.
We define that the weights of cos θ can range from -1 to 0 to +1, with a default interval of
0.1. The weights of α, βmust satisfy |α|2+ |β|2 = 1. Then get the final decision of multimodal
sentiment analysis Pu.

The QMSA framework adopts the QMR model to represent the text and the image, which are
encapsulated in density matrices ρtext and ρimage. Using density matrices as input data and choos-
ing appropriate classifiers (denoted Ctext, Cimage) would lead to their own decisions, denoted Ptext,325

Pimage. The QMSA framework then applies the QIMF strategy (Equation 20) to fuse the deci-
sions. Finally, the QMSA framework produces a final decision of multimodal sentiment analysis
Pu through tuning the weights α, β and cos θ . This framework is described in Algorithm 2.

6. Experiments

In this section, we conduct extensive experiments to evaluate the performance of our QMSA330

framework, including the performance of the QMR model and QIMF strategy individually and
as a whole.

6.1. Experimental Settings

As a matter of fact, currently there is a lack of large scale, open-access and well labeled
datasets for multimodal sentiment analysis. We create two large datasets to support our experi-335

ment. As what other researchers did in [50, 56, 8, 68], first, we set a list of keywords with strongly
positive and negative sentiment using SentiWordNet (which is a well-known dictionary)[34].
Then, we query Flickr and Getty Images with these words, and use the labels of these words to
label the retrieved images of the first ten pages.

As a result, we have gathered 99,351 multimodal documents from Flickr and 171,793 from340

Getty Images respectively, using 127 keywords. We have made our datasets freely downloadable
1. Table 1 shows some statistics of our collected multimodal datasets. In our work, we mainly
use two software: Matlab 2014 a/b and Python 2.7, which are installed on Windows 8.1 and
Windows server 2012, to support our implementation.

The multimodal data are pre-processed as follows. The overly large images (i.e., size exceed-345

ing 1000 pixel*1000 pixel) are re-sized. For text, we remove the stop words and punctuations

1Both datasets can be accessed on the web page: http://www.tjucs.win/faculty/dsong/yazhouzhang.html,
https://pan.baidu.com/s/1bqoscfP
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Table 1: Our dataset from GI and Flickr

Sentiment Num of keywords Num of GI Num of Flickr

Positive 62 91,419 49,728
Negative 65 80,374 49,623

Sum 127 171,793 99,351

using a standard stopword list. We employ the 10-fold cross-validation method to evaluate all
models in this paper.

In this paper, we use the Glove tool to produce word embeddings. It is worth mentioning that
we also train our embeddings using the Gensim API [69], and we find that it makes no difference350

from the Glove. The dimensionality is set to 100 instead of 300, considering the computation
cost for classification. We believe that a 100-dimensional vector has embodied sufficiently rich
semantic information. Similarly, we set the dimensionality of visual words to 128, which is the
default setting of the SIFT algorithm. Under these settings, the QMR model is implemented.

In order to demonstrate the robustness of our proposed QMSA framework and show the355

impact of different classification algorithms, we choose two representative classifiers, Random
Forest (RF) and Support Vector Machines (SVM) [70], which have been considered as the state
of the art when dealing with the sentiment analysis problems [46][71]. For RF, we set the number
of trees in the forest to 500 and other weights of RF as the default values, e.g., “bootstrap” as
“True”, “criterion” as “gini”, etc. For SVM, we set the kernel function to “linear” because of360

the large scale data and features, and “probability” to “True”. Other weights in SVM are set as
the default values, e.g., “coef0 ” as zero, “gamma” as “auto”, etc. Therefore, the experimental
results can be easily replicated.

Then, we perform our QIMF strategy by using the prediction probability of the sentiment
scores (+1, -1) for each sample data. For example, assume that the prediction probability of +1365

for a text document is 0.6, i.e., pt (x = +1) = 0.6, and that the prediction probability of +1 for an
image document is 0.4, i.e., pi (x = +1) = 0.4. We can get the multimodal fusion decision result
pu (x = ±1) by tuning the parameters α, β and cos θ (Equation 20).

We compare the performance of our proposed models with a wide range of baseline algo-
rithms as follows. We adopt Precision, Recall, F1 score, Accuracy and ROC curve as evalua-370

tion metrics to measure the classification performance of each method with two classes, positive
and negative. We employ t-test to perform the significance test in this experiment.

Single visual model: we use bag of visual words method (bovw) [72] to generate histograms
of visual word occurrences that represent images, and train a Random Forest (RF) classifier or
an SVM classifier (whose parameters use the same settings as above) to analyze the polarity of375

the images in the testing set.
Single textual model: we use word embeddings, for which the dimensionality is set to 100

[73], to represent all textual documents, and train a RF classifier or an SVM classifier (whose
parameters use the same settings as above) to analyze the polarity of the text.

Bag of words model: we use the classical bag of words method (bow) to generate histograms380

of word frequencies that represent texts, and train a RF classifier or an SVM classifier (whose
parameters use the same settings as above) to analyze the polarity of the texts in the testing set.
To limit the size of the feature vectors, we use the 3000 most frequent words. We filter out the
stop words using a standard english stop word list, which is encapsulated in the NLTK tool [74].
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Table 2: One example of the mass function and the joint mass function on GI dataset

Hypothesis Masstext Massimage K Massmultimodal

+1 0.5251 0.3598 0.4930 0.3832
-1 0.4749 0.6402 0.4930 0.6167

Feature-level Multimodal Fusion model (FMF): we concatenate 128-dimensional visual385

vector and 100-dimensional textual vector at the feature level, and then train a RF classifier or
an SVM classifier (whose parameters use the same settings as above) to identify the overall
sentimental polarity of multimodal documents in the testing set.

Majority Voting Fusion model (MVF): based on visual vector (which is extracted by bag
of visual word method) and textual vector (which is extracted by the Gensim API), we train two390

RF models or two SVM models to get the local decisions, respectively. We combine the local
decisions using the popular rule-based decision fusion strategy: majority voting [75].

Linear Weighted Fusion model (LWF): based on visual vector (which is extracted by bag
of visual words method) and textual vector (which is extracted by the Gensim API), we train
two RF models or two SVM models to get the local decisions, respectively. We combine the395

local decisions using a linear weighted fusion strategy. We assign different weights to different
modalities, which refers to Pu = ω1Ptext+ω2Pimage+ω3PtextPimage, whereω1 ∈ [0, 1], ω2 ∈ [0, 1],
ω3 ∈ [−1, 1]. Note that we make a relaxation that ω1 plus ω2 does not necessarily equal to one.

Dempster-Shafer Evidence Fusion model (DSEF): as a mathematical theory of evidence,
the Dempster-Shafer (D-S) evidence theory allows one to combine evidence from different sources400

and arrive at a degree of belief that takes into account all the available evidence [76]. In this pa-
per, each visual vector (which is extracted by bag of visual words method) and textual vector
(which is extracted by the Gensim API) are issued to the classifiers, returning two result lists
with different probability scores. Hence, two sentiment scores (which are +1,-1) construct the
power set. We use the probability scores, which are offered by the classifiers, to specify the405

mass function. According to the D-S theory, the combination (called the joint mass) is calcu-
lated from the two sets of masses mtext and mimage in the following manner: mmultimodal (A) =(
mtext ⊕ mimage

)
(A) = 1

1−k

∑
B∩C=A mtext(B)mimage (C), where K =

∑
B∩C=∅ mtext (B) mimage (C) .

Table 2 shows an example of the mass function and the joint mass function.
Multimodal Deep Learning model (MDL): considering the popularity of deep learning,410

we can learn a joint representation for various features extracted in different modalities, which is
similar to [77]. In [77], the authors used Restricted Boltzmann Machine (RBM) to learn the joint
distribution over image and text inputs. We choose to replace RBM with Convolutional Neural
Networks (CNN) to learn the joint distribution over image and text inputs through constructing a
shared hidden layer based on the similar framework. The MDL model uses a feature-level fusion415

strategy.
Deep Convolutional Neural Networks (DCNN): we also compare our framework with vi-

sual and textual sentiment analysis model using Deep Convolutional Neural Networks [57]. We
first train a CNN on top of word vectors for textual sentiment analysis and employe a CNN for vi-
sual sentiment analysis, then use Logistic Regression to perform sentiment prediction of the text420

and the image individually. Finally, we fuse the probabilistic results using the average strategy.
We set the dimensionality of word embeddings to 100 and resize the images to 64×64, for consis-
tency with the work reported in the original paper [57]. The DCNN model uses a decision-level
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fusion strategy.
QLM: in order to validate the effectiveness of the globally convergent algorithm, we compare425

our framework with the QLM, which uses the original RρR algorithm to estimate the maximum
likelihood value.

Our proposed models are listed below:
QIMF model: since we get the local decisions from Single visual model and Single text model,

respectively, we can use the QIMF strategy (in Section 4.3) to make the final decision through430

tuning different α, β parameters.
QMR model: we use the QMR model (in Section 3.2) to represent the image and the text

separately, and concatenate both visual and textual features as the multimodal feature. Then, we
perform the sentiment recognition using a RF or an SVM classifier, whose parameters use the
same settings as above. This model aims at validating whether the QMR model could fill the435

“semantic gap” between low-level features and high-level semantic labels.
Q-LWF framework (QMR+LWF): we first adopt the QMR mdoel to represent the image

and the text separately, and get their own local decisions using a RF or an SVM classifier. Second,
we perform a linear weighted fusion strategy to obtain the final results through tuning ω1, ω2, ω3
parameters. We construct this framework to compare with the QMSA framework, aiming to440

demonstrate the effectiveness of our quantum-interference inspired decision fusion strategy.
Q-DSEF framework (QMR+DSEF): we first adopt the QMR mdoel to represent the image

and the text separately, and get their own local decisions, i.e., the probability scores from a RF
or an SVM classifier. Second, we perform the Dempster-Shafer evidence theory to fuse the
final results. We define the mass function similar to the work in [78]: m ({mdi}) = mtext ({mdi}) ×445

mimage ({mdi})+mtext ({Θ})×mimage ({mdi})+mtext ({mdi})×mimage ({Θ}), where mk ({mdi}) (which k
= text, image) can be considered as the probability that the sentiment of the multimodal document
mdi is +1 or -1. Θ denotes the whole dataset, and m (Θ) represents the uncertainty in those
sources of evidence. In this paper, m (Θ) is defined as: mk(Θ) = 1−

∑N
i=1 mk({mdi})∑N

i=1 mtext({mdi})+∑N
i=1 mimage({mdi}) . N

is the number of the multimodal documents. We construct this framework to compare with the450

QMSA framework, aiming to demonstrate the effectiveness of our quantum-interference inspired
decision fusion strategy.

QMSA framework (QMR+QIMF): we first adopt the QMR mdoel to represent the im-
age and the text separately, and get their own local decisions using a RF or an SVM classifier.
Secondly, we perform the QIMF strategy to obtain the final result through tuning different α, β455

parameters. This framework validate whether our framework could deal with the multimodal
sentiment analysis task. We have made our codes of QMSA framework open-source for free
download2.

6.2. Results on Getty Images (GI) Dataset

The first set of experiments are conducted on the Getty Images dataset, where the text de-460

scription of multimodal documents is generally more formal than that in other social applications.
Table 4 shows the performance of different approaches using two classifiers on Getty Images
datasets.

First, we analyze the experimental results of using RF classifier. From Table 4, it is
observed that single visual model performs poorly. This result indicates that it is insufficient465

2The source codes of our QMSA framework including text and image sentiment analysis can be accessed on the web
page: http://www.tjucs.win/faculty/dsong/yazhouzhang.html.
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to only utilize low-level visual features to analyze the sentiment polarity of images. Compared
with single visual model, single textual model improves the performance as we expected. As
a widely used model, the bag of words model gets the highest precision and accuracy results
among all baselines. This implies that the bag of words model can extract textual feature better
than single textual model. However, we find that the bag of words model relies on the classifiers470

through comparing the results of using RF and SVM. Through concatenating textual features
and visual features, the FMF model produces lower performances than single visual model and
single textual model. This shows that simple concatenation strategy is not able to capture the
correlation between multi-modalities, and may also bring noise in feature representation. One
should be careful to adopt this strategy for multimodal sentiment analysis.475

A comparison with three baseline decision fusion strategies: the MVF model uses the
majority voting strategy to fuse the local decisions from Single visual model and Single textual
model, and gets good results. As one of the most popular decision-level fusion algorithms, the
majority voting strategy chooses to trust in the highest decision score. The LWF model uses
a weighted fusion strategy, which relaxes the constraint on the coefficients so that ω1 plus ω2480

does not necessarily equal to one. When ω1 = 0.5, ω2 = 0.1 and ω3 = 0.3, the LWF model
gets its highest classification scores. We can observe that the LWF model outperforms other
baselines, which means a relaxed linear weighted fusion strategy can more effectively incorporate
some complementary decision information offered by different modalities. However, this fusion
strategy is different from the linear combination strategy, because it optionally relaxes some485

constraint conditions. As a general framework for reasoning with uncertainty, the Dempster-
Shafer (D-S) evidence theory is also taken as a baseline. It gets the lowest classification results
among these three strategies. We think that this baseline largely relies on how to define the mass
function and the judgement rule. We use an elaborated method to define the mass function in the
Q-DSEF framework, which will be discussed later this this section.490

The DCNN model outperforms the MDL model, which indicates that training two models
separately is better than training a joint representation model when using deep learning tech-
niques. The QLM gets good results, which demonstrates that applying quantum probability
theory is flexible for developing novel sentiment analysis models.

Compared with the above baselines, the QIMF model shows a better performance over the495

FMF, MVF, DSEF and single modality models. Unsurprisingly, the QIMF model achieves the
same accuracy result, in comparison with the LWF model. Because that the LWF model re-
laxes a few constraint conditions. It indicates that our proposed decision fusion strategy is an
effective decision fusion strategy, which has its mathematical principle. Compared with the
MVF model, the accuracy result has increased by about 2%. The performances obtained by our500

QMR model illustrate the benefits of using density matrices, which are probability distributions
of events (words). Compared with the QLM, the accuracy result has increased by about 5%,
which demonstrates the effectiveness of the globally convergent algorithm. Compared with all
baselines, we believe that density matrix can carry more semantic information than vector-based
representation models. This result demonstrates that our proposed QMR model is an effective505

representation learning model.
A comparison of three multimodal sentiment analysis frameworks: We have combined

the QMR model with the LWF fusion strategy, and tune free parameters ω1, ω2, ω3. When
ω1 = 0.9, ω2 = 0.5 and ω3 = −0.1, the Q-LWF framework gets its highest classification results.
Meanwhile, it also achieves the best performance on precision and accuracy metrics. Compared510

with the LWF model, the accuracy result has increased by about 4%, which demonstrates the
effectiveness of our quantum-inspired representation model. Moreover, we have combined the
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QMR model with the D-S evidence theory, and proposed a complex mass function. This mass
function considers the uncertainty in multimodal sentiment analysis. We can observe that the
Q-DSEF framework obtains better performance than the DSEF framework. Finally, we have515

also combined the QMR model with the QIMF classification strategy, and test its performance
on the dataset. We tune free parameters α, β to make α2 = 0.7, β2 = 0.3, which means we would
pay more attention on the text. When cos θ = 0.3, our QMSA framework achieves the best per-
formance on recall, f-score and accuracy metrics. The accuracy result of our framework is over
88%, with an improvement of about 4% over the LWF model (which gets the highest results520

among all baselines). Compared with the QIMF model and the QMR model, the accuracy of
the QMSA framework increases by about 4% and 3%, respectively. Compared with the Q-LWF
framework, the QMSA framework gets higher recall and f1 classification results, and get the
same accuracy result. Compared with the Q-DSEF framework, the QMSA framework achieves
better performance on all metrics. This implies that the quantum interference inspired decision525

fusion strategy is an effective fusion strategy, which is also rooted on a well-founded mathemat-
ical derivation. Overall, we attribute the improvements to both QMR model and QIMF strategy.
It suggests that: a) an effective semantic learning model could help the machine to better “under-
stand” multimodal documents; b) the QIMF strategy indeed incorporate some complementary
decision information.530

Now, we analyze the results of using SVM classifier. Overall, we can observe that the
performance of all models using SVM is not as good as that using RF. From the perspective of
classifier, RF is often claimed to be better at dealing with super large scale of training samples.
From the perspective of dataset, since the Getty Images dataset is crawled from Getty Images
some images contain digital watermark. However, the watermark is tolerable due to the relatively535

formal and clean descriptions of multimodal documents as argued in [68]. Moreover, since we
run all models on the same dataset, the impact of watermark applies to all models. Because of
these reasons, RF and SVM give different classification results.

Nevertheless, from the SVM results, we can still get the similar observations as with the
RF results. The QIMF model outperforms single visual model, single textual model, the MVF540

model and the DSEF model. Compared with the LWF model, the QIMF model achieves the
same accuracy result but higher recall and f1 results. Our QIMF model could access different
information from textual and visual models via different weights. This shows that introducing an
effective and principled decision-level fusion strategy is better than unimodal sentiment analysis
model and a simple fusion strategy. It is worth noting that the DSEF model and the Q-DSEF545

framework perform poorly. we analyze our data and probability scores, and think that the D-S
evidence theory relies on the classifiers. When different classifiers give the opposite classification
results, the D-S evidence theory may exacerbate uncertainty about the decision. The QMR model
produces a very large improvement over the MVF model, about 24%. In addition, we tune free
parameters α, β to obtain α2 = 0.8, β2 = 0.2. When cos θ = −0.6, our QMSA framework gets a550

73.76% accuracy, which outperforms the Single visual, Single textual, bag of words, FMF, MVF,
DSEF, MDL and QLM models. It indicates that extracting more features at feature level plus
accessing more information at decision level lead to a better performance. In order to provide a
clearer empirical sense of our model’s performance, a complete ROC curve is shown in Figure
4. Moreover, a series of positive and negative examples (for which our framework makes sound555

judgment while the MVF and FMF models classify them wrongly) from the Getty Images dataset
are shown in Figure 8 for illustration.

The computational time: Because both datasets are very large and the training and testing
samples for the quantum-inspired models are all matrices, the computation time used for training
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Figure 4: the complete ROC curves on Getty Images dataset. (a) ROC curves of RF classifier; (b) ROC curves of SVM
classifier.

Table 3: The computational time of most models on GI dataset.

Classifier Model Computational time (h) Model Computational time (h)

RF

QMSA 144.5 Q-DSEF 145.0
Q-LWF 144.5 QMR 256.7

FMF 103.8 DSEF 42.2
MVF 46.6 LWF 46.6

Single visual model 39.7 Single textual model 12.4

SVM

QMSA 696.0 Q-DSEF 696.4
Q-LWF 696.0 QMR 893.3

FMF 233.0 DSEF 154.4
MVF 194.2 LWF 194.2

Single visual model 143.1 Single textual model 38.5

and classification is longer than the use of other baselines. Random Forest has a better ability560

to deal with large scale of samples. The total computation time of QMSA framework using RF
classifier to complete all 10-fold validation experiments on the Getty Images dataset is almost
144.5 hours, longer than that of the FMF model (103.8 hours), DSEF model (42.2 hours) and
MVF model (46.6 hours). The computational time of QMSA framework using SVM classifier
is almost 696 hours, also longer than that of the FMF model (233 hours), DSEF model (154.4565

hours) and MVF model (194.2 hours). Table 3 summarizes the computational time of these
models.
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Table 4: The Performance on Getty Images. Best results are highlighted in boldface. Numbers in parentheses indicate
relative improvement over the MVF model. The symbol † means statistical improvement over all baselines.

Classifier Algorithm Precision Recall F1 Accuracy

RF

Single visual model 0.7247 0.8073 0.7638 0.7341
Single textual model 0.7729 0.8125 0.7919 0.7739
Bag of words model 0.8622 0.8163 0.8400 0.8304

FMF model 0.7061 0.8079 0.7536 0.7180
MVF model 0.8105 0.8355 0.8226 0.8278
LWF model 0.8478 0.8336 0.8360 0.8459
DSEF model 0.7928 0.9104 0.8475 0.8252
MDL model 0.7844 0.8137 0.7981 0.7912

DCNN model 0.8457 0.7829 0.8132 0.8111
QLM 0.8289 0.8519 0.8393 0.8210

QIMF model 0.8165 0.9072 0.8604 0.8459
(+0.74%) (+8.58%) (+4.59%) (+2.18%)

QMR model 0.8652† 0.8779† 0.8715† 0.8615†
(+6.75%) (+5.07%) (+5.94%) (+4.07%)

Q-LWF framework 0.8828† 0.8708† 0.8745† 0.8824†
(+8.24%) (+4.46%) (+6.30%) (+6.60%)

Q-DSEF framework 0.8637† 0.9116† 0.8870† 0.8758†
(+6.56%) (+11.29%) (+9.11%) (+5.79%)

QMSA framework 0.8794† 0.9152† 0.8969† 0.8824†
(+8.50%) (+9.54%) (+9.03%) (+6.60%)

SVM

Single visual model 0.6002 0.8633 0.7123 0.6076
Single textual model 0.6830 0.8267 0.7480 0.7035
Bag of words model 0.7327 0.7554 0.7435 0.7212

FMF model 0.7298 0.8143 0.7697 0.7400
MVF model 0.6261 0.8111 0.7083 0.6307
LWF model 0.7173 0.7156 0.7168 0.7142
DSEF model 0.5865 0.7858 0.6717 0.5915
MDL model 0.7844 0.8137 0.7981 0.7912

DCNN model 0.8457 0.7829 0.8132 0.8111
QLM 0.7329 0.7161 0.7244 0.7296

QIMF model 0.6726 0.8739 0.7662 0.7142
(+7.42%) (+7.74%) (+6.77%) (+13.24%)

QMR model 0.7561† 0.8413† 0.7951† 0.7808†
(+20.76%) (+3.72%) (+12.25%) (+23.79%)

Q-LWF framework 0.7884† 0.7940† 0.7900† 0.7976†
(+25.92%) (-2.10%) (+11.53%) (+26.46%)

Q-DSEF framework 0.6564† 0.8270† 0.7318† 0.6961†
(+4.84%) (+1.96%) (+3.17%) (+10.36%)

QMSA framework 0.8034† 0.7785† 0.7912† 0.7976†
(+28.31%) (-4.02%) (+11.70%) (+26.46%)

6.3. Results on Flickr Dataset

We conduct the second set of experiments on the Flickr dataset. Since multimodal documents
from Flickr are more diverse and informal, analyzing the sentiment of Flickr data is considered570

more more challenging. Table 5 shows the results.
First, we analyze the experimental results of using RF classifier. We can see that single

visual model has the worst performance, and single textual model can achieve a higher accuracy
but a lower precision. These results indicate again that sentiment recognition from images is
not as effective as that from text. The bag of words model gets the second highest accuracy575

result among baselines. However, it relies on the classifiers. We observe that the performance
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declines sharply when using SVM. The FMF model produces a modest improvement over mono-
modality models (single textual model and single visual model). This implies that multimodal
content do express more accurate sentiment than mono-modal content. It also suggests that
simple concatenation strategy is not enough to deal with multimodal tasks, and it is necessary to580

explore effective feature representation methods.
A comparison of three decision fusion strategies: The MVF model adopts a majority vot-

ing strategy to fuse the local decisions, and also produces modest improvement. The LWF model
and the DSEF model outperform the MVF model, which implies that it is helpful to develop
more refined decision fusion strategy. When ω1 = 0.8, ω2 = 0.3 and ω3 = 0.3, the LWF model585

gets its highest classification scores. As a general framework for reasoning with uncertainty, the
DSEF model achieves nearly the same results as the LWF model. It shows that the performance
of the D-S evidence theory may depend on the dataset.

Compared with the FMF and MVF models, both deep learning based models (which are the
MDL model and the DCNN model) do not achieve very good results. This may be because we590

do not make a lot of effort in tuning parameters. The QIMF model, which integrates the local
decisions from single visual model and single textual model, tends to outperform better than
the FMF, MVF, DSEF and single modality models. From the dataset perspective, the text in the
Flickr dataset is relatively short and concise, so that text sentiment analysis is in general an easier
task than image sentiment analysis. The QIMF model is able to pay more attention on the local595

decision from textual model through tuning free parameters α, β. The QIMF model gets almost
the same classification results as the LWF model. Because the LWF model is a generalization of
the QIMF model, through relaxing the original mathematical constraints. However, we aim to
propose a novel decision fusion strategy, which is also theoretically more principled.

Our proposed QMR model achieves a noticeable improvement over the above models. Com-600

pared with the FMF model, the performance of QMR increases by about 9%. This may be
because quantum projectors help to model mid-level term features, and density matrix contain
more semantic information. Compared with the QLM, the accuracy result has increased by
about 2%, which demonstrates the effectiveness of the globally convergent algorithm. We also
tune free parameters α, β to set α2 = 0.7, β2 = 0.3 as in the experiments with Getty images.605

When cos θ = 0.15, our QMSA framework significantly outperforms a number of baselines.
Through observing the Q-LWF framework, the Q-DSEF framework and the QMSA framework,
we believe that extracting mid-level features at feature level plus considering more decision in-
formation at decision level lead to the better performance.

Furthermore, we analyze the results of using SVM classifier. We still notice that the610

performance of SVM is not as good as RF, but get similar observations as in RF. The QIMF
model outperforms the single textual, single visual, DSEF model and MVF models. This is
because adding an interference term can incorporate some complementary decision information.
The QMR model produces a large improvement over the FMF model, about 32%, whereas the
perfomance of SVM is very close to the perfomance of RF. This shows that our QMR model615

does not rely much on classifiers when experimenting on the Flickr dataset. Moreover, we tune
the free parameters α, β to obtain α2 = 0.8, β2 = 0.2. When cos θ = −0.9, our QMSA framework
significantly outperforms all baselines. For illustration, a complete ROC curve is shown in Figure
5. Additionally, various positive and negative examples (for which our framework makes sound
judgment while the MVF and FMF models mis-classify them) from the Flickr dataset is shown620

in Figure 9.
The computation time: the computational time of QMSA framework using RF classifier on

the Flickr dataset is almost 96 hours, in comparison with that of the FMF model (77.1 hours),
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DSEF model (46 hours) and MVF model (46 hours). The computational time of QMSA frame-
work using SVM classifier is almost 504.4 hours, compared with that of the FMF model (119.3625

hours), DSEF model (100 hours) and MVF model (which is 100.3 hours). Table 6 summarizes
the computational time of these models.

Table 5: The Performance on Flickr. Best results are highlighted in boldface. Numbers in parentheses indicate relative
improvement over the MVF model. The symbol † means statistical improvement over all baselines.

Classifier Algorithm Precision Recall F1 Accuracy

RF

Single visual model 0.6256 0.6450 0.6351 0.6291
Single textual model 0.7969 0.7989 0.7946 0.7937
Bag of words model 0.8688 0.9368 0.9020 0.8947

FMF model 0.8424 0.8467 0.8445 0.8439
MVF model 0.8267 0.8514 0.8393 0.8358
LWF model 0.8375 0.8611 0.8491 0.8459
DSEF model 0.8304 0.8608 0.8453 0.8426
MDL model 0.8213 0.7999 0.8111 0.8119

DCNN model 0.8973 0.7167 0.7993 0.8184
QLM 0.9155 0.9080 0.9169 0.9106

QIMF model 0.8296 0.8533 0.8468 0.8459
(+0.35%) (+0.22%) (+0.89%) (+1.21%)

QMR model 0.9278† 0.9368† 0.9323† 0.9221†
(+12.23%) (+10.03%) (+11.62%) (+10.32%)

Q-LWF framework 0.9206† 0.9349† 0.9275† 0.9314†
(+11.35%) (+9.81%) (+10.58%) (+11.44%)

Q-DSF framework 0.9170† 0.9252† 0.9220† 0.9251†
(+10.92%) (+8.66%) (+9.85%) (+10.68%)

QMSA framework 0.9337† 0.9288† 0.9301† 0.9314†
(+12.94%) (+9.09%) (+10.82%) (+11.44%)

SVM

Single visual model 0.4758 0.7393 0.5770 0.5791
Single textual model 0.6482 0.6619 0.6592 0.6598
Bag of words model 0.6759 0.8841 0.7661 0.7367

FMF model 0.6931 0.7126 0.7027 0.6982
MVF model 0.6607 0.6933 0.6815 0.6641
LWF model 0.6864 0.7005 0.6934 0.6917
DSEF model 0.6343 0.7144 0.6720 0.6516
MDL model 0.8213 0.7999 0.8111 0.8119

DCNN model 0.8973 0.7167 0.7993 0.8184
QLM 0.9009 0.8939 0.8973 0.8982

QIMF model 0.6884 0.7030 0.6929 0.6917
(+3.25%) (+1.40%) (+1.66%) (+4.56%)

QMR model 0.9185† 0.9226† 0.9215† 0.9179†
(+39.02%) (+33.07%) (+36.68%) (+37.92%)

Q-LWF framework 0.9174† 0.9259† 0.9216† 0.9243†
(+38.85%) (+33.55%) (+35.23%) (+39.17%)

Q-DSF framework 0.9186† 0.8910† 0.9156† 0.9161†
(+39.03%) (+28.52%) (+34.35%) (+37.94%)

QMSA framework 0.9310† 0.9245† 0.9269† 0.9243†
(+40.91%) (+33.35%) (+36.00%) (+39.17%)

6.4. Remarks on cos θ
The cos θ of the interference term comes from the phase of the product αϕ1 (x) · βϕ2 (x),

which can range from -1 to +1. In this section, we tune cos θ with different settings, for a in-630
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Figure 5: the complete ROC curves on Flickr dataset. (a) ROC curves of RF classifier; (b) ROC curves of SVM classifier.

Table 6: The computational time of most models on Flickr dataset.

Classifier Model Computational time (h) Model Computational time (h)

RF

QMSA 96.0 Q-DSEF 96.5
Q-LWF 96.0 QMR 169.7

FMF 77.1 DSEF 46.0
MVF 46.0 LWF 46.0

Single visual model 27.9 Single textual model 10.2

SVM

QMSA 504.4 Q-DSEF 504.9
Q-LWF 504.4 QMR 700.6

FMF 119.3 DSEF 100.2
MVF 100.3 LWF 100.3

Single visual model 85.5 Single textual model 22.1

depth understanding of the impact of cos θ. Figure 6 and Figure 7 show the impact of cos θ using
RF and SVM classifiers respectively.

In Figure 6, we analyze how our QMSA framework behaves on GI and Flickr with respect
to the parameter cos θ in light of different values of α, β. It is clear that the result increases
along with the increase of cos θ. Specifically, we can observe that the accuracy is highest when635

α2 = 0.7 and β2 = 0.3 on both datasets. When α2 = 0.3 and β2 = 0.7, the accuracy is the lowest.
These two results indicate that analyzing the sentiment of text is more important in multimodal
sentiment analysis. When α2 = 0.5 and β2 = 0.5, the accuracy increases until cos θ = −0.4,
and then keeps unchanged. After analyzing the prediction label and the prediction probability,
we find an interesting phenomenon that cos θ affects the prediction probability while does not640

affect the prediction label. This seems to imply that if we pay the same attention to text and
image, the QIMF strategy has no significant effect on the accuracy. When α2 = 0.4 and β2 = 0.6
or α2 = 0.3 and β2 = 0.7, the accuracy increases until cos θ = 1. Further, for both GI and
Flickr datasets, we can observe that our QMSA framework reaches the best performances, when
cos θ = 0.3 and cos θ = 0.15, respectively.645

In Figure 7, we notice the similar evidence that the accuracy is the highest when α2 =
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Figure 6: The effect of cos θ on Getty Images and Flickr datasets using RF classifiers.

0.8 and β2 = 0.2 or α2 = 0.7 and β2 = 0.3 on the two datasets. When α2 = 0.3 and β2 = 0.7,
the accuracy is the lowest. We can observe that our QMSA framework reaches the best perfor-
mance, when cos θ = −0.6 and cos θ = −0.9, respectively. For the Getty Images dataset, when
α2 = 0.8 and β2 = 0.2 and α2 = 0.7 and β2 = 0.3, the accuracy when cos θ = −0.6 is higher than650

the accuracy when cos θ = 0, by about 5%. When α2 = 0.5 and β2 = 0.5, the accuracy increases
sharply until cos θ = −0.8 and cos θ = −0.3, then keeps nearly unchanged. From Figure 6 and
Figure 7, we can conclude that the sentiment polarities of images are consistent with the polar-
ities of texts for most multimodal documents. These results have showed that the influence of
different cos θ on the classification results.655

7. Conclusions

Multimodal sentiment analysis is an important but challenging task. In this paper, we pro-
pose a Quantum-inspired Multimodal Sentiment Analysis (QMSA) framework, which contains
a Quantum-inspired Multimodal Representation (QMR) model and a Quantum Interference in-
spired Multimodal Decision Fusion (QIMF) strategy. In our framework, both the text and the660

image are associated to density matrices, which are estimated by a globally convergent algo-
rithm. Furthermore, the complementary decision information is considered through adding an
interference term at the decision level. We apply the QMR model to extract both textual and vi-
sual features, then use the QIMF strategy to make the final decision about the sentiment category.
The experimental results on two large scale datasets, which are crawled from the Getty Images665

and Flickr photo sharing platform, demonstrate that our proposed framework largely outperforms
a number of state-of-art sentiment analysis algorithms.
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Figure 7: The effect of cos θ on Getty Images and Flickr datasets using SVM classifiers.
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pandemic

Figure 8: Several examples of Getty Images dataset using QMSA framework. Multimodal documents of the first line are
positive examples; multimodal documents of the second line are negative examples.
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Figure 9: Several examples of Flickr dataset using QMSA framework. Multimodal documents of the first line are positive
examples; multimodal documents of the second line are negative examples.
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