249 research outputs found

    Design and evaluation of a DASH-compliant second screen video player for live events in mobile scenarios

    Get PDF
    The huge diffusion of mobile devices is rapidly changing the way multimedia content is consumed. Mobile devices are often used as a second screen, providing complementary information on the content shown on the primary screen, as different camera angles in case of a sport event. The introduction of multiple camera angles poses many challenges with respect to guaranteeing a high Quality of Experience to the end user, especially when the live aspect, different devices and highly variable network conditions typical of mobile environments come into play. Due to the ability of HTTP Adaptive Streaming (HAS) protocols to dynamically adapt to bandwidth fluctuations, they are especially suited for the delivery of multimedia content in mobile environments. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate quality level to be dynamically requested, based on the current network conditions. Recently, a standardized solution has been proposed by the MPEG consortium, called Dynamic Adaptive Streaming over HTTP (DASH). We present in this paper a DASH-compliant iOS video player designed to support research on rate adaptation heuristics for live second screen scenarios in mobile environments. The video player allows to monitor the battery consumption and CPU usage of the mobile device and to provide this information to the heuristic. Live and Video-on-Demand streaming scenarios and real-time multi-video switching are supported as well. Quantitative results based on real 3G traces are reported on how the developed prototype has been used to benchmark two existing heuristics and to analyse the main aspects affecting battery lifetime in mobile video streaming

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Quality of Experience Provision in the Future Internet

    Get PDF
    This work deals with the satisfaction of the quality of experience (QoE) requirements in the perspective of the emerging future Internet framework. The evolution of the Internet is pointing out its limitations, which are likely to hinder its potential. In this respect, this paper introduces an innovative approach to cope with some key limitations of the present communication networks. In particular, the need of efficiently utilizing the available network resources and of guaranteeing the user expectations in terms of QoE requires a full cognitive approach, which is realized by the introduction of a novel architecture design, the so-called future Internet core platform. The future Internet core platform aims at bringing together the applications world with the network world, hence introducing a further cognitive level while enabling a new generation of applications: network-aware applications. This paper is concerned with an important aspect of the intelligent connectivity between applications and network: the service class association, which, if performed with a cognitive approach, can yield some important improvements and advantages in the emerging information era. The key idea presented in this paper is a real-time dynamic control procedure for the selection of the optimal service class. The approach is based on theoretical considerations validated by a proof-of-concept simulation
    • …
    corecore