418 research outputs found

    Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs

    Get PDF
    A new methodology based on tensor algebra that uses a higher order singular value decomposition to perform three-dimensional voxel reconstruction from a series of temporal images obtained using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed. Principal component analysis (PCA) is used to robustly extract the spatial and temporal image features and simultaneously de-noise the datasets. Tumour segmentation on enhanced scaled (ES) images performed using a fuzzy C-means (FCM) cluster algorithm is compared with that achieved using the proposed tensorial framework. The proposed algorithm explores the correlations between spatial and temporal features in the tumours. The multi-channel reconstruction enables improved breast tumour identification through enhanced de-noising and improved intensity consistency. The reconstructed tumours have clear and continuous boundaries; furthermore the reconstruction shows better voxel clustering in tumour regions of interest. A more homogenous intensity distribution is also observed, enabling improved image contrast between tumours and background, especially in places where fatty tissue is imaged. The fidelity of reconstruction is further evaluated on the basis of five new qualitative metrics. Results confirm the superiority of the tensorial approach. The proposed reconstruction metrics should also find future applications in the assessment of other reconstruction algorithms

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Unsupervised Discovery of Extreme Weather Events Using Universal Representations of Emergent Organization

    Full text link
    Spontaneous self-organization is ubiquitous in systems far from thermodynamic equilibrium. While organized structures that emerge dominate transport properties, universal representations that identify and describe these key objects remain elusive. Here, we introduce a theoretically-grounded framework for describing emergent organization that, via data-driven algorithms, is constructive in practice. Its building blocks are spacetime lightcones that embody how information propagates across a system through local interactions. We show that predictive equivalence classes of lightcones -- local causal states -- capture organized behaviors and coherent structures in complex spatiotemporal systems. Employing an unsupervised physics-informed machine learning algorithm and a high-performance computing implementation, we demonstrate automatically discovering coherent structures in two real world domain science problems. We show that local causal states identify vortices and track their power-law decay behavior in two-dimensional fluid turbulence. We then show how to detect and track familiar extreme weather events -- hurricanes and atmospheric rivers -- and discover other novel coherent structures associated with precipitation extremes in high-resolution climate data at the grid-cell level

    Dynamic Decomposition of Spatiotemporal Neural Signals

    Full text link
    Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals
    corecore