3,251 research outputs found

    The Circuit, Spring 2017

    Get PDF
    Table of Contents: Early Career Awards Spotlighting: Leonard Bohman Visiting Faculty Bridging Past and Future Through Automation Robotics Systems Enterprise Inspiring the Next Generation Tech Team Wins Team Tech Ramping Up Automotive Controls Bucheger Moves Senior Design Forward Student News Alumni Newshttps://digitalcommons.mtu.edu/ece-newsletters/1004/thumbnail.jp

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Decision-Making for Search and Classification using Multiple Autonomous Vehicles over Large-Scale Domains

    Get PDF
    This dissertation focuses on real-time decision-making for large-scale domain search and object classification using Multiple Autonomous Vehicles (MAV). In recent years, MAV systems have attracted considerable attention and have been widely utilized. Of particular interest is their application to search and classification under limited sensory capabilities. Since search requires sensor mobility and classification requires a sensor to stay within the vicinity of an object, search and classification are two competing tasks. Therefore, there is a need to develop real-time sensor allocation decision-making strategies to guarantee task accomplishment. These decisions are especially crucial when the domain is much larger than the field-of-view of a sensor, or when the number of objects to be found and classified is much larger than that of available sensors. In this work, the search problem is formulated as a coverage control problem, which aims at collecting enough data at every point within the domain to construct an awareness map. The object classification problem seeks to satisfactorily categorize the property of each found object of interest. The decision-making strategies include both sensor allocation decisions and vehicle motion control. The awareness-, Bayesian-, and risk-based decision-making strategies are developed in sequence. The awareness-based approach is developed under a deterministic framework, while the latter two are developed under a probabilistic framework where uncertainty in sensor measurement is taken into account. The risk-based decision-making strategy also analyzes the effect of measurement cost. It is further extended to an integrated detection and estimation problem with applications in optimal sensor management. Simulation-based studies are performed to confirm the effectiveness of the proposed algorithms

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk : Volume II East Asian Perspectives.

    Get PDF
    Artificial intelligence (AI) is not only undergoing a renaissance in its technical development, but is also starting to shape deterrence relations among nucleararmed states. This is already evident in East Asia, where asymmetries of power and capability have long driven nuclear posture and weapon acquisition. Continuing this trend, integration of AI into military platforms has the potential to offer weaker nuclear-armed states the opportunity to reset imbalances in capabilities, while at the same time exacerbating concerns that stronger states may use AI to further solidify their dominance and to engage in more provocative actions. This paradox of perceptions, as it is playing out in East Asia, is fuelled by a series of national biases and assumptions that permeate decision-making. They are also likely to serve as the basis for AI algorithms that drive future conventional and nuclear platforms
    corecore