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Abstract

This dissertation focuses on real-time decision-makimgefige-scale domain search
and object classification using Multiple Autonomous Veésc(MAV). In recent years,
MAV systems have attracted considerable attention and baee widely utilized. Of
particular interest is their application to search andsifecstion under limited sensory
capabilities. Since search requires sensor mobility aaskdication requires a sensor to
stay within the vicinity of an object, search and classifaaiare two competing tasks.
Therefore, there is a need to develop real-time sensoragitwcdecision-making strate-
gies to guarantee task accomplishment. These decisiorespeeially crucial when the
domain is much larger than the field-of-view of a sensor, oemvthe number of objects
to be found and classified is much larger than that of availabhsors.

In this work, the search problem is formulated as a coveragé&al problem, which
aims at collecting enough data at every point within the darteaconstruct an awareness
map. The object classification problem seeks to satisfctategorize the property of
each found object of interest. The decision-making stiatemclude both sensor allo-
cation decisions and vehicle motion control. The awaren&ss/esian-, and risk-based
decision-making strategies are developed in sequenceawWwaeeness-based approach is
developed under a deterministic framework, while the tatte are developed under a
probabilistic framework where uncertainty in sensor measent is taken into account.
The risk-based decision-making strategy also analyzesftbet of measurement cost. It
is further extended to an integrated detection and estimatioblem with applications
in optimal sensor management. Simulation-based studeepeaformed to confirm the

effectiveness of the proposed algorithms.
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Chapter 1

Introduction

This dissertation investigates real-time decision-mglkimategies for domain search and
object classification treated as tasks competing for theedanited sensory resources
using Multiple Autonomous Vehicles (MAV) over large-scalemains. This chapter is
organized as follows. Sectiohl introduces the motivation and objectives of this re-
search. Sectioh.2reviews the related literature on MAV systems, domain deaject
classification and tracking, and decision-making straegBSectiorl.3 summarizes the

organization of this dissertation. Sectib lists the research contribution.

1.1 Motivation and Objectives

In many domain search and object classification problentduding aerial search and
rescue/destroy, surveillance, space imaging systemg, countermeasures, and wildfire
control, the effective management of limited availablessegresources is key to mission
successq3, 144).

There are two basic objectives in a search and classificptimpiem. The objective

for domain search is to find each object of interest in a givanain and fix its position in



space (and time for dynamic objects). The objective for ctgassification is to observe
each found object until the desired amount of informatioslbeen collected to determine
the property of the object. The characteristics of inteneay include geometric shape,
categorization, nature of electromagnetic emissions ajetoproperty. When the object
is mobile, the objective is to track its state (e.g., posiaod velocity).

Given limited sensory capabilities, it is crucial to alleeaesources (which vehicle
should search/classify what?) and assign tasks (shouldid&search or classify?) using
the most efficient way possible. A sensor vehicle can perfeither the search mission
or the classification mission, but not both at the same tirear(h requires mobility and
classification requires neighboring the object). On onelhaith limited available obser-
vations in the presence of sensor errors, a sensor may gagesallarm of object presence
while there is actually none, miss detection of a criticgkeoh or report incorrect clas-
sifications. On the other hand, taking exhaustive obsemstat one particular location
of interest may result in losing the opportunity to find anassify possibly more critical
objects at other locations within the domain. Hence, a \Velsensor has to decide on
whether to continue searching more unknown objects andfisadhe decision accuracy,
or keep taking observations at the current location andreggetsewhere in the domain.
This is especially true when 1) the size of the mission dongamuch larger as compared
to the limited sensory range of the vehicles, and 2) the numbenknown objects to be
detected and classified is greater than that of available 84R&lére, a large-scale domain
is defined as a domain if a set of static limited-range sensamsnot cover every point
within it even in the worst case scenario when all the sensoorges are disjoint.

This decision-making is critical in applications where @a@& not afford to search the
whole space first and then classify, or classify until fulitaety before proceeding with
the search. For example, in search and rescue, if the vededsor finds all potential

human victims first, and then goes about classifying whiehhaiman victims and which



are not, and decides to rescue only the classified humamggcby then, many victims

could have passed away. On the contrary, if the vehicle setesudes to classify each

found object first with extremely high certainty before doaing to search, that may

come at the cost of delaying the detection of critically regh victims who may pass

away if not detected sooner. This also applies to scenatieserobjects could be harmful
(e.g., timed explosives) if their detection and classifarats delayed. Therefore, there is
a pressing need to develop MAV systems that seek to collemteps data and complete
tasks efficiently under constrained resources.

Figure 1.1 illustrates a typical scenario for search and rescue usifyM Let D
be a large-scale mission domain. The green and red dotssegpiranknown objects
of interest to be found and classified. They are assumed wepsdlifferent properties
and the number of objects is much larger than that of the adalMAVs. Based on
the progress of the search and rescue mission, each vehalesmeal-time decisions
regarding whether to look for more objects within the domairkeep taking observations
at current locations. In this dissertation, both deterstioiand probabilistic decision-
making strategies will be investigated to guarantee theatieh and classification of all

unknown objects of interest under such scenarios.

1.2 Literature Review

1.2.1 Multiple Autonomous Vehicle Systems

Many applications have emerged in recent years that relyheruse of a network of
sensor-equipped MAVs to collect and process dawado, 66, 73, 114]. This can be at-
tributed to advances in relatively inexpensive and mimiaéd networking and sensor
technologies. The applications have widely spread ovetany| civilian and commer-

cial areas and often involve tasks in adversarial and higglyamic environments. In

3



Figure 1.1: Decision-making for search and classification.

particular, MAVs have been increasingly used to perfornrajens that were tradition-
ally carried out by humans, especially for missions thatinegoperations in dangerous
and highly dynamic environments that are hazardous to husparators. The advan-
tages of autonomous vehicles over humans are (1) minimunofi®ss of human lives
(e.g., search and rescue operations in hostile envirorgpemrtd (2) more efficient com-
putational power for data processing and real-time detisiaking as opposed to the
limitations on human cognition, especially under strelssfunditions. However, due to
the limitations on computation and communication capaédiof a single on-board sen-
sor, existing MAV systems are easily overwhelmed when dgalvith large-scale in-
formation management. This then opens a niche for the duresearch on intelligent
decision-making and task allocation scheme under limiéedsry resources of the MAV
systems.

There is rich literature on the control and applications éM&ystems. The coordina-
tion of MAVs has been a significant field of research with a dn@ange of applications in
mobile robotics, intelligent highways, air traffic contrehtellite clusters and so or@g

provides a survey of recent research and future directroneoperative control of MAV



systems. Specific areas of interest include formation ogntooperative tasking, ren-
dezvous, coverage, and consensus.

Graph theory 48] has been widely utilized on this topic. I18%], the authors use the
Laplacian of a formation graph and present a Nyquist-likeedon for unmanned aerial
vehicles (UAVs) formation stabilization. Ir1pQ, the authors study the MAV distributed
formation control problem using potential functions ob&ad naturally from the structural
constraints of a desired formation. The work 65] focuses on the attitude alignment
of MAVs using nearest neighbor rules. 1h{d1], the multi-agent consensus problem is
addressed under either fixed or switching topology, dicecteundirected information
flow in the absence or presence of communication delays.

Optimization-based approach is another large categorgabfitiques for MAVs co-
ordinated control. In§4], a decomposition team-optimal strategy is proposed fer th
rendezvous of multiple UAVs at a predetermined target looafThe objective is to max-
imize the survivability of the UAVs. In31], the MAV optimal formation control problem
is investigated using receding horizon control. Mixedeg#r linear programming (MILP)
method has also been used for MAVs coordination problemausecof its modeling ca-
pability and available commercial softwards9,32]. The information-theoretic methods
are well established, which seeks to maximize the inforomateasuresAp, 51].

Apart from the above work, the areas of particular inteneshis dissertation include
using MAV systems for domain search and object classifinats well as the manage-
ment of sensory resources. Sectih@.2discusses the work on coverage control, object
detection, classification and tracking with MAVs. The lggrre on task assignment and

sensor management using MAV systems will be provided ini@e6t1 of Chapter6.



1.2.2 Domain Search, Object Classification and Tracking

The problem of domain search, unknown object classificatiahtracking has wide appli-
cations on humanitarian as well as military operations.nipas include but are not lim-
ited to the search-and-rescue operations in the open seaisety populated aread(,
search and destroy missions for previously spotted enemgtsain multi-targeting/multi-
platform battlefield 118, terrain acquisition T9], multi-agent (in particular, satellite)
imaging systemsg7], intelligent highway/vehicle system&17], fire detection and pre-
vention 6], mine clearing 27], room vacuuming97], and lawn mowing 1].

Domain search deals with the problem of unknown object $eamd detection within
a given domain. This problem usually requires the MAV systiémsense all reachable
areas in the mission domain to achieve some objective fumgati.g., minimum amount of
time, maximum information, shortest path, etc. (see, fangple R, 20] and references
therein). In [LQ], an excellent survey of the major results in search theopyavided. The
problem of complete search for a target is studied8 116 130. In [147], a probabilis-
tic approach for domain search and path planning is propegldnultiple UAVs under
global communications. The objective is to minimize theimmment uncertainty in a
finite amount of search time. The uncertainty map is updasatgithe Dempster-Shafer
evidential method via sensor fusion. With the same goalli]| the authors present
an agent-based negotiation scheme for a multi-UAV searehnabipn with limited sen-
sory and communication ranges. Bj,[the problem of searching an area containing both
regions of opportunity and hazard with multiple coopematilAVs is considered. An al-
ternate approach for searching in an uncertain environmmeitmultaneous Localization
and Mapping (SLAM) T4]. In[124], the occupancy grid mapping algorithm is addressed,
which generates maps from noisy observations given forgkmobot pose. It is often
used after solving a SLAM problem to generate robot navaggtiath from the raw sensor

endpoints. In the robotics literature, a significant amafmesearch can be found in the



field of robot motion planningq1,79] and coverage path planning{, 68,120 145 144|.

In this dissertation, domain search is treated as the cgeerantrol problem using
sensor networksg] 15, 134, where the vehicle sensor is controlled in such a way that
the entire search domain can be covered. There are three ps@gories in cover-
age control, that is, optimal localization of immobile vekisensors, optimal redeploy-
ment/reconfigration of mobile sensors, and dynamic cowecagtrol using mobile sen-
sors. Under the scenario of large-scale mission domainsemrehicle mobility is re-
quired, the third class of coverage control approach is tdbin this work. The goal is
to dynamically cover every point within the domain using MsAounted with on-board
sensors until achieving full coverage/awareness of theesemvironment. This problem
is closely related to the coverage path planning problenolotics. More details are
provided in Chapte®.

Unknown object classification and tracking together witmam search are generally
treated as concurrent tasks that require the cooperattorashecision-making of MAVS.
Sectionl1.2.3will provide a more detailed review of existing literaturethis area and
the comparison with the strategies proposed in this dessent This section first reviews
some related work with focus on classification and trackihg.[17], the authors ad-
dress the problem of cooperative target classificationgudistribputed UAVs. The views
of neighboring vehicles are stochastically combined toimae the probability of cor-
rect classification. In16], the authors further discuss the capacitated transhipareh
market-based bidding approaches to vehicle assignmerdofmperative classification.
A similar cooperative classification scheme is discussdé4hfor munition problems,
which aids in reducing the false target attack rate. A birabject classification model
is presented ind6], which a task load balancing scheme is proposed to cope thiéth
uncertain results in task completion. W2, a heuristic agreement strategy is presented

for the cooperative control of UAVs. The authors associatkassification difficulty with



each target, and a classification effort with each UAV.94d][ teams of UAVs are uti-
lized to track moving targets in a cooperative convoy escossion. The UAVs follow
the convoy based on the shared GPS information from the greeinicles and track sus-
picious attackers based on the live video. A hierarchicghyrid control architecture is
proposed for the cooperative tracking strategy. 4i|,[ a class of collaborative signal
processing techniques is investigated with focus on a leliacking application using
sensor networks. A leader-based information-driven trackcheme is presented, which
enables energy-efficient sensor selection8Bj,[a cooperative acoustic tracking method
is presented using binary-detection sensor networks. fBlekihg algorithm records the
detection time of each sensor and performs line fitting fgecifs position estimates. The
work in [69] discusses the trajectory tracking problem that requiresbllective centroid
of a group of nonholonomic UAVS to travel at a reference viieyo@ cooperative track-
ing mechanism using multiple mobile sensors is providedB8). [ Detected targets are
clustered using K-means clustering technique to mininhizaumber of required mobile
sensors. An Extended Kohonen neural network is used asatidrig algorithm and an
auction-based consensus mechanism is used as the coopstitiegy between trackers.
In [92], a probabilistic tracking approach based on Condensatigorithm is proposed.
Multiple pan-tilt-zoom cameras are used to track the objedth a level of reliability for

belief updates.

1.2.3 Decision-Making for Search, Classification and Tracig

Although the literature in domain search, object clasdificeand tracking is rich, little
attention has been paid to the real-time decision-makingagks competing for the same
set of limited sensory resources.

Coordinated search and classification/tracking has beghest mainly for optimal

path planning and state estimation in the literature. b, a distributed sequential



auction scheme is presented for a multi-robot search artdogesperation. Local com-
munications between neighbors are allowed and the shafeghniation is used to make
the decision. The control goal is to allocate an agent to gecblbnd complete the mis-
sion in minimum time. Inspired by work on patrticle filter, ih]7] the authors develop
a strategy to dynamically control the relative configunated sensor teams in order to
get optimal estimates for target tracking through multisze fusion. In 12,13], the au-
thors use the Beta distribution to model the level of confogenr target existence for an
UAV search task. The minimum number of observations neealeghieve a probability
threshold is derived. Inl[14, a cooperative control scheme based on Fischer informa-
tion measure is proposed for the optimal path planning obentef UAVs in a ground
target tracking problem. IlR7], a pursuit-evasion game and map building are combined
in a probabilistic game theoretic framework, where subrogk pursuit policies are pre-
sented to minimize the expected capture time.81,[the author proposes a Bayesian-
based multitarget-multisensor management scheme. Thexaption strategy, based
on probability hypothesis densities, seeks to maximizethleeexpected number of tar-
gets. In B9, the target existence probability gain from searchingiatie used as a cost
function to determine the vehicle’s optimal path. k0#], the control goal is to maxi-
mize the total number of observed objects and the amount sérghation time of each.
In [73], an optimal decision policy for the routing and munitionamagement of multiple
formations of unmanned combat vehicles is proposed wittenfegt information about
adversarial ground units. A Recursive Bayesian Filter (RBlEsed for environment esti-
mate. The threat type and location probabilities of the gdounits are taken into account
for classification. However, the underlying assumption enadhe above research is that
there is only a single object to be found, classified and &dgckr, the search domain is
small and the sensing resources are not limited and, thussageconcern.

The development of a unified framework for search and trackioblems has also



been studied in several pape#d[41, 125. In [4(], the authors investigate search-and-
tracking using grid-based RBF with foreknown multi-targesitions, but in the presence
of noise. The results are extended #2|[to dynamic search spaces based on forward
reachable set analysis. I4]], an element-based method is provided for a continuous
probability density function of the target. 1125, the authors employ both grid-based
Bayes filter and a particle filter for better estimation psean.

However, none of the above work considers search and ctagsfi/tracking as com-
peting tasks, i.e., the tasks are equally-prioritized amdat need to compete for sensory
resources. Considering the practical constraints of MAVE motivated to develop a
real-time treatment of unknown object search and classditanissions, dealing with
them as tasks competing for limited sensory resources.

Some related work is presented B6], which considers a search-and-response mis-
sion with both known and unknown targets. The effects of Wiy on search and
classification is studied. The tradeoff between search aadigiing task assignment is
shown to be affected by the vehicles’ resources and knowledltarget locations. This
work considers the issue of limited resources, but focusesptimal task assignment
and hence still considers search and response in a unifimé\vark as opposed to com-
peting tasks. In110, a survey of various approximate algorithms for Parti@lgserv-
able Markov Decision Processes (POMDP) is provided for eetjal decision-making in
stochastic domains. POMDP methods cope with both the wmnogrtin control actions
and sensor errors. The RockSample problem is introducestdtese algorithms, where

"o

a robot chooses one of the actions (“move”, “sample” and ¢kleo maximize rewards.
Similarly, in [96], the authors present an approach for resource allocatiacooperative
air vehicle swarm system. The task allocation among seatassification and attack is
modeled as a network flow optimization problem, which aimmaximize some global

value.
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1.3 Dissertation Outline

The dissertation is organized as follows. Chagtartroduces the coverage control prob-
lem. A review of the literature in coverage control is praaadd Dynamic coverage control
and awareness coverage control approaches are develogedaudeterministic frame-
work. Subsequently, Bayesian-based coverage controbappes are developed under a
probabilistic framework. Underwater optical and acouséafloor mapping applications
are discussed. In Chapt8y an awareness-based decision-making strategy is proposed
for search and classification based on the awareness cevevatyol laws developed in
Chapter2. In Chapterd, a Bayesian-based probabilistic decision-making styaiede-
veloped to take into account sensor errors. To further pa@te the cost of taking new
observations, in Chapté& a risk-based sequential decision-making strategy ispted
via Bayesian sequential detection. The binary results siended to a more general
ternary setting and its application to Space Situationahrdmess (SSA) is investigated.
In Chapter6, the Bayesian sequential detection method for discret@oranvariables is
extended to the Bayesian sequential estimation methodfamuous random variables.
The integration of these two approaches provides an opsaraor management scheme
that results in minimum information risk. The dissertatiswoncluded with a summary

of current and future work in Chaptér

1.4 Research Contributions

The major contribution and novelty of this dissertatiorslia the explicit treatment of
search and classification as competing tasks based on ts®mmogress using MAVs
with limited sensory ranges. The problems of domain sea@yefage control), decision-
making between search and classification (both deterndraet probabilistic), and the

integration of detection and estimation with applicationSSA and underwater imaging
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are investigated.

The dynamic coverage control problem is first reviewed ingi&ie2. This lays a
foundation for all the domain search methods in the decisiaking strategies developed
in this work.

Borrowing from the concept of dynamic coverage control, @araness-based model
is first proposed in SectioR.3 to describe how “aware” the vehicle sensors are of the
environment. Both centralized and decentralized covecagérol strategies are devel-
oped under global and intermittent communication archites in Sectiong.3.4and
2.3.3 Together with the classification strategy developed inp@#re8, the awareness-
based decision-making strategy guarantees the detedtalhtbe unknown objects and
the classification of each found object for at least a desiredunt of time under limited
sensory resources in a deterministic framework.

In order to take into account the uncertainty in sensor gei@e, in Section2.4, a
probabilistic coverage control strategy based on Bayes filhd information theory is
developed. These results are extended in Se&idrbto the case of MAVsS with inter-
mittent information sharing. A rigorous mathematical grobthe convergence of the
expected probability of object existence is also providédupling the search and clas-
sification processes, Chap#proposes a Bayesian-based decision-making strategy that
guarantees the detection and classification of all unkndvjects in the presence of sen-
SOr errors.

Extending the Bayesian-based strategy, a risk-basediaieeisaking strategy is pro-
posed in Chapteb to take into account the cost of taking observations. Thedstal
binary sequential detection method is utilized for risklgsia. Section5.3 extends the
result to a ternary setting which allows concurrent detectind classification observa-
tions. It is then applied to the SSA problem for the detectiod classification of space

objects in Earth orbit using a Space-Based Space SunaligBBSS) network in Section
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5.4.

To further enable integrated detection and estimatiorsetatimaking, Chaptes pro-
poses a risk-based sensor management scheme. The sdqstimiation method is de-
veloped in SectioB.3for the estimation of a process. Secttdextends the risk analysis
and decision making to the multi-element case based on kqgtresitial detection and es-
timation methods. A risk-based optimal sensor managemsehen proposed in Section
6.5. The Rényi information measure is introduced to model #tative information loss
in making a suboptimal sensor allocation decision, whicmasleled as the observation
cost in this work.

The following provides a list of publications that resulfeaim this research:

Journal Papers

1. Y. Wang, I. I. Hussein, and R. S. Erwin. “Risk-based Seridanagement for
Integrated Detection and EstimationAIAA Journal of Guidance, Control, and

Dynamics (JGCD)December 2010, (submitted).

2. Y. Wang, I. I. Hussein, D. R. Brown Ill, and R. S. Erwin. “Gé&wvare Sequential
Bayesian Decision-Making for Search and ClassificatidEEE Transactions on

Aerospace and Electronic Systems (TARB)LO, (under revision).

3. Y. Wang and I. I. Hussein. “Bayesian-Based Decision-MgKkor Object Search
and Classification”.IEEE Transactions on Control Systems Technology (TCST)

2010, (in press).

4. Y. Wang and I. I. Hussein. “Awareness Coverage Control heege-Scale Do-
mains with Intermittent CommunicationsSIEEE Transactions on Automatic Con-

trol (TAC), vol. 55, no. 8, pp. 1850-1859, August 2010.

Conference Papers
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10.

11.

Y. Wang, I. I. Hussein, and R. S. Erwin. “Sensor Managerfarihtegrated Search
and Tracking via Bayesian Sequential Analysi®merican Control Conference

(ACC), San Francisco, CA, June/July 2011.

Y. Wang and I. I. Hussein. “Multiple Vehicle Bayesian-BdDomain Search with
Intermittent Information Sharing’American Control Conference (AC(3an Fran-

cisco, CA, June/July 2011.

Y. Wang, I. I. Hussein, D. R. Brown and R. S. Erwin. “Costd& Bayesian Se-
guential Decision-Making for Domain Search and Object €lfastion”. IEEE

Conference on Decision and Control (CO@p. 7196-7201, Atlanta, GA, Decem

ber 2010.

Y. Wang, I. I. Hussein and R. S. Erwin. “Bayesian Detectod Classification for
Space- Augmented Space Situational Awareness under littiemtnCommunica-
tions”. Military Communications Conference (MILCOM)p. 960-965, San Jose,
CA, October 2010. (Invited paper).

Y. Wang, I. I. Hussein, D. R. Brown Ill, and R. S. Erwin. “Go&vare Sequential
Bayesian Tasking and Decision-Making for Search and Gleason”. American

Control Conference (ACCpp. 6423-6428, Baltimore, MD, June/July 2010.

Y. Wang and I. I. Hussein. “Bayesian-Based Decision MgHKor Object Search
and Characterization”’American Control Conference (ACQ)p. 1964-1969, St.
Louis, MO, June 20089.

Y. Wang and I. I. Hussein. “Underwater Acoustic Imagisgng Autonomous Ve-
hicles”. IFAC Workshop on Navigation, Guidance and Control of Undsex Ve-
hicles (NGCUV)K:illaloe, Ireland, April 2008. (Invited Paper).
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12. Y. Wang, I. I. Hussein and R. S. Erwin. “Awareness-Basediflon Making for
Search and Tracking/American Control Conference (ACQp. 3169-3175, Seat-

tle, WA, June 2008. (Invited Paper).

13. Y. Wang and I. I. Hussein. “Awareness Coverage Contrer @&arge Scale Do-
mains with Intermittent CommunicationsAmerican Control Conference (ACC)

pp. 4370-4375, Seattle, WA, June 2008.

14. Y. Wang and I. I. Hussein. “Vision-Based Coverage CdritnoUnderwater Sam-
pling using Multiple SubmarineslEEE Multiconference on Systems and Control
(MSC) covering IEEE CCA 200% IEEE ISIC 2007 pp. 82-87, Singapore, Octo-
ber 2007. (Invited Paper).

15



Chapter 2

Coverage Control

In this chapter, the concept of coverage control is intrediueand vehicle motion control
strategies are developed. It will be shown that the full cage of a mission domain is
equivalent to the detection of all the unknown objects wittiat domain. A literature
review on cooperative coverage control is provided in ®ac#.1 Section2.2 stud-
ies deterministic Lyapunov-based coverage control. Tinéed-range sensor model and
vehicle motion control laws presented in this section lagantation for all the strate-
gies proposed in this dissertation. Extensions and apjgitaon underwater optical and
acoustic seafloor mapping are then discussed. In Se2i®a deterministic awareness-
based coverage control scheme is presented. The seaiteyigsaare designed in a way
such that the MAVs achieve full awareness of events ocayiiaineach point within the
search domain. Sectidh4 presents the probabilistic Bayesian-based coverageatontr
laws that ensures zero information uncertainty of the $edoenain (i.e., detection of all
objects). This framework is constructed by discretizing slearch domain into cells and
takes into account the uncertainties in sensor percepBased on the search strategies

proposed for a single vehicle sensor, the results are extetodVIAV systems.
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2.1 Cooperative Coverage Control

Coverage control studies the problem of covering a givenchedomain using MAVS.
In the literature of cooperative coverage control, a sigaift amount of research can be
found in two main categories: 1) Optimal localization of imibile sensorsZ9, 30,99,

and 2) optimal redeployment of mobile sens&3 16, 79].

2.1.1 Location Optimization of Immobile Sensors

This class of problems only requires the distribution of adisensor network in the do-
main. The two variables of interest are sensor domains (heach which each sensor is
responsible of sampling) and sensor locations. This dlgorcan be calculated off-line
and no further mobility is required for the vehicles. Theusian is based on Voronoi par-
titions and the Lloyd algorithm78]. The optimal sensor domain is a Voronoi cell in the
partition and the optimal sensor location is its centr@@].| For a complete discussion
of the coverage control problem applying Voronoi partispsee 24], where the authors
propose both continuous and discrete-time versions of ldssic Lloyd algorithms for
MAVs performing distributed sensing tasks. B[, a coverage control scheme based on
Voronoi diagram is proposed to maximize target exposur@messurveillance applica-

tions.

2.1.2 Optimal Redeployment of Mobile Sensors

The sensor redeployment problems involve the coordinateeement of MAVs for an
optimal final configuration. In43], the authors provide a summary on current control
theories using MAV sensor networks. The coverage deploymeilem aims at max-
imizing the area within a close range of mobile agents and as€oronoi partition al-

gorithm. In [L7], the authors use a Voronoi-based polygonal path approaghaen at
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minimizing exposure of a UAV fleet to radar. I24], a dynamic version of the Lloyd
algorithm is also provided. It drives each sensor to a unwgreroid of a cell in a dy-
namic Voronoi partition of the search domain and iterayivethieves the optimal con-
figuration. However, Voronoi-based approaches requiraestive computational effort
to compute the Voronoi cells continuously during a realetimplementation of the con-
trollers. In [76], the authors develop an optimization problem that aims atimizing
coverage using sensors with limited ranges, while miningziommunication cost using
a probabilistic network model. This class of problems iated to the active sensing lit-
erature in roboticsd7], where Kalman filter is extensively used to process obsiemns

and generate estimates.

2.1.3 Dynamic Cooperative Coverage Control

An implicit assumption made in the above problem classesatthe mission domain is
small-scale, i.e., one where in the best case scenariodhdieccovered by the union of a
set of static limited-range sensors. This is equivalertécassumption of infinite sensory
ranges in the existing literature on the redeployment gmoblwhich is especially true
for work within the stochastic framework (see, for exampd€)) that assumes Gaussian
distributions. However, this is not the case in many pratapplications, where the field-
of-view of the on-board sensors is relatively limited as paned to the size of the search
domain, or there are too few sensor vehicles. For such prahleehicle mobility is nec-
essary to be able to account for all locations containedardtimain of interest and meet
the coverage goal. Aside from large-scale domains, cothgtaaoving sensors are also
required for cases where sensors are mounted on mobildeghicapable of having zero
velocities (e.g., fixed-wing aircraft), or when the hostiedds’ safety is compromised if
left fixed in space. Mobility of the vehicles in all these pieins is also required since

information of interest that is distributed over the dom@iay be changing in time. Not
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being able to continuously monitor parts of the domain fbtiade results in the require-
ment that the network is in a constant state of mobility wittllvmanaged revisiting of
locations in the domain to guarantee satisfactory awasdeegsls over the entire domain.
Dynamic cooperative coverage control is the vehicle matmmtrol problem for coor-
dinated MAVs to dynamically cover a given arbitrarily-siegmlomain. The objective is to
survey the entire search domain such that the informatitdaated at each point achieves
a preset desired amount. This is the fundamental differbatgeen the two approaches
presented above and dynamic coverage control, which is étlkead adopted for domain
search in this dissertation. While the aforementionedaresefocuses on the optimal or
suboptimal configuration of MAVs to improve network covegggerformance, dynamic
cooperative coverage control guarantees that every pdimivhe search domain will be
sampled a desired amount of data with high certainty as & sbhe constant movement

of the MAVSs.
Remark. 2.1.1. The key feature of the proposed approach is summarizedlas/fol
e The sensor is modeled to have a limited sensory range °

e The dynamic coverage control strategy aims at collectirmugh high quality data

at each point in a domain of interest

Applications include search and rescue missions where aich in the search do-
main has to be surveyed, aerial wildfire control in inacd#esand rugged country where
each point in the wildfire region has to be “suppressed” ukegl-wing aircraft or he-
licopters, underwater sampling and mapping where each poihe deep ocean is re-
quired to be sufficiently sampled for marine geology, geajts; biology, archaeology,
and chemistry studies.

A slightly modified version of the coverage problem has beewlied in (7] for

(optimal and suboptimal) motion planning of multiple spaedt interferometric imaging
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systems (MSIIS). The problem is also related to the litesatun coverage path planning
[2,20] and Simultaneous Localization and Mapping (SLANMX] in robotics.
In the following sections, both deterministic and probiskit vehicle motion control

laws are developed for coverage control.

2.2 Deterministic Lyapunov-Based Approach

This section provides a brief summary of the major resulthefcoverage control prob-
lem discussed ind0]. It lays a foundation for all the search strategies pre=gin the

subsequent sections. The vehicle collision avoidance aoKifig control laws presented
in [60] can also be applied to other search strategies discusdbdiohapter via some

straightforward modifications. Please refer®0,[62] for more details.

2.2.1 Problem Formulation

Denote a vehicle by. LetR" = {a € R : a > 0}, @ = R? be the configuration
space of all the vehicles arfd C R? be the mission domain. Assume tt2is a simply
connected, bounded set with non-zero measure. Let the¢gma® — R*, called a
distribution density function, represent a measure ofriméttion or probability that some
event takes place or object exists oferA large value ofp indicates high likelihood of
event detection and a smaller value indicates low likelthdoet N be the total number
of MAVs andq, € @) denote the position of vehicl,i € S = {1,2,3,..., N}. Thatis,
the setS contains all vehicles performing the domain search taskhkehicleV;, i € S,

satisfies the following simple kinematic equations of motio
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whereu; € R? is the control velocity of vehicl®’;. This is a simplified model and the
results may be extended to agents with second order nonldygemics evolving on
more complex configuration manifolds.

Define the instantaneous coverage functign: D x Q — R* as aC!-continuous
map that describes how effective a vehitlesenses a poirg € D. Lets = ||q;(t) — q|[,
which is the relative distance between the vehicle posdimhthe measuring point. With-
out loss of generality, consider the following sensor mddlgl. This model is not an
assumption for the ensuing theoretical results to be vdlite important feature of the
proposed sensor model is that the sensors have a finite figigvo.

Sensor Model SM.

1. Each vehicle has a peak sensing capacity/péxactly at the position; of vehicle

Vi ie.s = |la;(t) — qi(t)]| = 0. Thatis,

Az(()) =M, > Ai(S), Vs # 0.

2. Each vehicle sensor has a circular sensing symmetry awositiong;, i € S,
in the sense that all points i that are on the same circle centeredatre sensed

with the same intensity. That is,

A;(s) = constant, Vs = ¢,

for all constant, 0 < ¢ < r;, wherer; is the range of the sensor of vehidlg

3. Each vehicle has a limitesknsory domainWV;(t), with asensory ranger;. The

sensory domain of each vehicle is given by

Wit) ={qa €D : |ai(t) —al <ri}. (2.2)

21



Figure 2.1: Instantaneous coverage function.

Let the union of all coverage regions be denoted by

W(t) = UiesWi(t).

An example of such a sensor function is a fourth order polyiabfanction of s =

|a;(t) — q|| within the sensor range and zero otherwise,

M, (s* — TZ-Q)2 ifs<r;
0 if s > T

Figure2.1 shows an instantaneous coverage functigrf2.3) with q; = (0,0), M; = 1
andr; = 2.
Fixing a pointq, the effective coverage achieved by a vehi¢lsurveyingq from the

initial time ¢, = 0 to timet is defined to be

T 1) = / A(lai(r) — a3

and the effective coverage by a subset of vehitles= {V;|j € K C S} in surveyingg
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is then given by

Telat) = ST = [ 3 Ala(r) - al)ir

ek ek

Note that7x(q, t) is a non-decreasing function of timg

%TK@ =3 A (lat) - al?) = 0.

ekl
Let C* be the desired attained effective coverage at all p@jrdsD. The goal is to
attain an overall coverage 6%(q,t) = C* for all @ € D at some timg. The quantity
C* guarantees that, whefy(q,t) = C*, one can judge, with some level of confidence,

whether or not an event occurs or an object existgatD. Consider the followingrror

function

e(t) = /D h(C° — Ts(@ 1) $(@)da, (2.4)

whereh(x) is apenalty functiorthat satisfiedi(z) = h'(z) = h"(x) = 0 for all x < 0,
andh(z), k' (x),h"(x) > 0 for all z € (0,C*]. The penalty function penalizes lack of

coverage of points i®. An example for the penalty functidiz) is
h(z) = (max(0,z))*. (2.5)

It incurs a penalty whenevéfs(q,t) < C*. Once7s(q,t) > C* at a point inD, the
error at this point is zero no matter how much additional twehicles spend surveying
that point. The total error is an average over the entire dgoMaveighted by the density

function¢(q). Whene(t) = 0, one says that the search mission is accomplished.
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2.2.2 Vehicle Motion Control and Search Strategy

Without loss of generality, first consider the followingtial condition whose utility will

become obvious later:
IC1 The initial coverage is identically zer@s(q,0) = 0, Vq € D.

Consider the following nominal control law

(ai(t) —q) d(a)dq, (2.6)

s=llqi(t)—all

() =~k [ W0 - Telan) G

where - denotes the inner product amhg > 0 are fixed feedback gains. Consider the

functionV = —e,(t), wheree, = %, and note that’ — —ey Where

dt’

elt) = - /D (C* = Ts(@,t) (ZA (lay (1) qr|2>) ¢(a)dg

JES
e = / ' (C* = Ts(@, 1) <ZA (o () €1||2>> ¢(a)dq
D jES
/ * ~ 8"41(82) ~ ~\ 1~
—2 h(C —T ,t 5 jt - - Uy ¢ d
/D (€~ Te(@ 1)) <S Sy |, @ -a ) (@)dq
— / W (CF = Te(@t) <ZA (la (1) qn%) 6(a)da
D jES
. 0A;(s%) . T
+2 ki C*—Ts(q,t 5 (q;(t) — o(q)d
> [ JRAEE T >>< BT |y ey GO q>) (@ q]

are the first and second time derivativese¢f) along the trajectory generated by the

control lawu; in Equation 2.6). Consider the following condition.
Condition C1. Ts(q,t) = C*, Vq € Wi(t),Vi € S.

Lemma 2.2.1.If for somet > 0 ConditionC1 holds, thene;(t) = 0. Conversely, if

e.(t) = 0 for some time > 0, then ConditionC1 holds.
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Proof. By the propertySM3 of the sensor model, Conditidil implies that theh' term
in the integrand in the expression fqris nonzero only outsid®/(¢) where all coverage
functions A; are zero. That ish’ (C* — Ts(q,t)) = 0 precisely insidéV(t). Hence,
under ConditiorCl e; = 0.

The converse is easily verified by noting that the integrantthé expression fof; is
greater than or equal to zero everywheré@inFore; to be zero, the integrand has to be
identically equal to zero everywhere @h which holds true only if Conditioil©1 holds.
This completes the proof. [ |

From the lemmal’ = —e; > 0, 1% < 0 with equality holding if and only if Condition
C1 holds. This implies that the functioW is a Lyapunov-type function that guarantees
that the system always converges to the state describednidit@m C1. This proves the

following result.

Lemma 2.2.2. Under the control law 2.6), a MAV system will converge to the state

described in ConditiolC1.

Under the control law4.6), the vehicles are in constant motion with< 0 (i.e., error
is always decreasing) as long as the Condi@dnis not satisfied. It utilizes the gradient
of the error distribution insid&V;(¢) to move in directions with maximum error. Hence it
locally seeks to maximize coverage. However, using theroblaw (2.6) alone does not
guarantee full coverage of at ledst every where withirD. This is of no concern, since
this lack of full effective coverage implies that# 0, which will induce some vehicle to
return and recover these partially covered regions. Heheefpllowing control strategy
is proposed.
Control Strategy. Under the control lawZ.6), all vehicles in the system are in continuous
motion as long as the state described in CondiGidns avoided. Whenever the Condition
C1 holds with nonzero erraf(t) # 0, the system has to be perturbed by switching to some

other control lawa; that ensures violating Conditiddl. Once away from Conditio@1,
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the controller is switched back to the nominal contiiplin Equation 2.6). Only when
both ConditionC1 ande(t) = 0 are satisfied is when there is no need to switclto
Thus, the goal is to propose a simple linear feedback cdetrtiiat guarantees driving
the system away from ConditidDl.

Now consider a simple perturbation control law that drives system away from

ConditionC1. Define the time varying set:
D.(t) ={GeD: Ts(a,1) < C*}. (2.7)

Let D, (t) be the closure ob,(t). For each vehicl®;, let Di(¢) denote the set of points

in D.(t) that minimize the distance betweqy(t) andD,(t). That s,

e}l

Di(t) = {@ € D.(t) : & = argmingz, ¢ lai(t) — all }
This choice is efficient since the perturbation maneuveks#dee minimum-distance for
redeployment.

Let ¢, be the time at which Conditio81 holds and:(t;) > 0 while e,(t5) = 0. That
IS, ts is the time of entry into the state described in Condi@hwith nonzero error. At
t,, for each vehicle);, consider a poing:(t,) € Di(t,). Note that the seDi(t,) may

include more than a single point. Consider the control law

(1) = —ki (qi(t) — q; (ts)) - (2.8)
Under the regime whe#y = 0 ande(t) > 0, this control law is a simple linear feedback
controller and will drive each vehicle in the fleet towardséassociated (). Note that

it is possible thay; (t,) = q;(t;) for some pairi # j € S. By simple linear systems

theory, the feedback control lav2.8) will result in havingq; (), for somei € S, be
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inside a ball of radius < r; at some time, > ¢,. Hence the point} is guaranteed to lie
strictly inside the sensory range of vehitle

The above discussion proves the following result.

Theorem 2.2.1.Under sensor model properti&M1-3 andIC1, the control law

1; if Condition C1does not hold
w (1) = , 2.9)
u; if Condition C1holds

drives the errore(t) — 0 ast — oc.

2.2.3 Underwater Coverage Control with Vision-Based AUVs

In this section, the dynamic coverage control problem ibzeti for underwater appli-
cations, such as sampling, surveillance, and search aodefestrieval, using a fleet of
cooperative submarines. A sensor model based on a viseedlzamera is presented.
Underwater exploration is important for many scientific amdustrial applications.
However, the literature on multi- and single-vehicle unker application is relatively
new due to recent advances in autonomous underwater velidlB/s) and underwater
positioning and communication technologies. Cooperatnserwater MAVs have a wide
range of applications that include sampling, oceanograwkgther predictiond7, 75,
studying aquatic life$6], mine countermeasure and hydrographic reconnaissaa&g [
search and rescue/retrievél/], and archaeologyd9]. Furthermore, due the the rapid
attenuation of light and sound in sea water, advanced uraderwurvey technologies and

AUV motion control strategies are of great interest.
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Figure 2.2: Underwater sampling using a fleet of cooperatid®@narines.

2.2.3.1 Sensor Model

In underwater applications, domains of interest are gdlyetfaree-dimensional (3D)
volumes in the ocean with AUVs moving in all three directiorisgure 2.2 shows the
scenario of underwater sampling using a fleet of cooperatizenarines with cone-like
vision-based cameras.

Unlike laser-based sensors and radars, vision-based aa®esors acquire data in a
non-invasive way. They can be used for some specific apitator which visual infor-
mation plays a basic role. This is especially suitable fatarwater missions. Moreover,
there is no interference among sensors of the same typeh whidd be critical for a large
number of vehicles moving simultaneously in the same enwirent [L1].

For the sake of simplicity, consider a simpler case wher¢hallsubmarines move
along a horizontal line (the configuration spageand thus the sampling domain be-
comes an area (that is, a rectangle) below this line of mdsee Figure2.3). In this
scenario, each submarine looks in the vertically downwardipward) direction. There-
fore, domainD could also be abov@ or both above and belo®, depending on which

direction(s) the cameras are pointed. All vehicles arerassuinear kinematics given by
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Figure 2.3: One-dimensional configuration space scenario

Equation 2.1), whereu; = (u;,, u;) € R?is the control velocity of submaring. Note
that there is no control in the verticaldirection other than control forces that maintain
buoyancy of the submarine. The results obtained from tmgka scenario can easily be
generalized to two-dimensional horizontal motions. Ferttiree-dimensional configura-
tion space case, however, the gravitational and buoyancgdan the vertical direction
need to be included, which introduces nonlinearities inetipgations of motion.

In the general case whefe C R?, the sensor is a vision-based camera whose sensing
domain is a three-dimensional cone. In the simpler caseaver R! andD is a com-
pact subset dk?, the sensing domain becomes a sector, and one can use pmidinees
to define the instantaneous coverage function of the careasmsmodel. For brevity and
simplicity of exposure, the sensor model for e R? case is described in the following
paragraphs. Extension to the three-dimensional cone niedakily performed by work-
ing with spherical coordinates (introducing an additioamadjular component) instead of
polar coordinates.

In polar coordinates, let a poirf € D be represented bfp;, 6;) with respect to
submarineV;’s positionq,. As shown in Figure.4, here the radial coordinaje repre-
sents the radial distance from the camera posiiicio q, andé; is the counterclockwise
angular coordinate angle from the vertical axis passingutjn the camera attached to
submaring’;.

The sensor modebM in Section2.2.1is modified as follows: The sensing ability
of each digital camera declines along the radial distancktla@ radial angle. That is,

when the value op; and|6;| increases, the sensing ability of the camera decreasés unti

29



fN
Y

Figure 2.4: Camera Sensor Model.

it becomes zero at the maximum sensing rapgend the maximum sensing direction
O. Here the same maximum radial distance and maximum radglé as assumed for
each camera on all submarinesgeand©. This is done without loss of generality as the
ensuing results can be easily modified to reflect differentimam ranges and directions
p; and©;, respectively. Hence; is a function of both the radial distanpgand radial

angle angl®,. Mathematically, the sensory domaiyj; of each submarine is given by

WZ( ) {q S D: Pi = Hch 61

spa
|0;] = |arctan (q :q >’ < O}. (2.10)

The minimum sensing ability is given by

0= Az((qzx + Pi sin @7 iz + Pi COS @)7 (qzxa QZZ))

- Az((qzx + ﬁSin 9@'7 Qiz + ﬁCOS 9@)7 (%za qzz))

Note that they andz componentsg;,,, ¢;., of q; are constant in the linear configuration

space case.
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Figure 2.5: Instantaneous coverage function for visioseldasensor model.

An example of a sector-like instantaneous coverage fumetjas a two-variable sec-

ond order polynomial function of

d; = ||a; — §|I*, a; = arctan® (M) .

within the sensor range and zero otherwise. In particutarsicler the function

Alday =) T <70 < 67 (2.11)
0 otherwise
An example for the instantaneous coverage functt@l is given by Figure2.5 with
q; = 0,M; =1,p=12,and® = 2% in planar field.
A three-dimensional model can easily be obtained from trogdehby adding an ad-
ditional angular variable); and restricting the angular extent of the model to some maxi-

mum value¥ similar to the treatment af; above.

Remark. 2.2.1. This sensor model is similar to the one which combines caraeca
ultrasonic sensor used in the YAMABICO rob88]. For a vision-based sensor model

applied to a 3D configuration space scenario with 9 viewpmisee 18] for more details.
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2.2.3.2 Control Law

In this section, the control lan2(6) in Section2.2.2is adopted and the domain search
strategies are developed according to the modified visas®th sensor model presented
in the above section.

Consider the following nominal control law

- 0A; 0d;  0A; Ou;
w;(t) = —k; | B'(C"—Ts(q - ‘) ¢(q)dq 2.12
w(t) =k [ e - Tan) (Ge + S o@a, @12

wherek; > 0 are fixed feedback gains.

Using the same perturbation control law as Equati®®)(and following similar
derivation as in Sectio.2.2 a similar theorem as Theore2.1can be derived. This
guarantees that every point within the underwater searoradowill be sampled by .
The performance of the proposed search strategy is dematetstry the following simu-

lation results.

2.2.3.3 Simulation

In this section a numerical simulation is provided to ilhasé the performance of the cov-
erage control strategy with the perturbation control laat #nsures the global coverage.
As previously mentioned, the configuration spagas a closed interval (all sub-
marines move on a line). The domdmnshould be the area obtained by “extruding” the
interval @ downwards to a depth ¢f (the maximum radial distance of the vision-based
sensor). However, according to the sensor model, the geaditity at the maximum
radial distance is zero, which means that the domain to beredvhas to be shallower

than the distancg from where the submarines are located. Therefore, in thelatrons

1For brevity, the two-dimensional sensor model is assumesteu; is a function of the two variables
d; anda;. For the general three-dimensional conic sensor mode| taseesults can easily be extended
by adding the additional tern#; in the model ofA; and adding one more terng—ﬁg') when taking the
derivatives ofA;. '

32



shown here, the domaiR is defined as a rectangle region whose sizgis z) x [ units
length, wherd is the length of the interva) andz > 0 is a fixed variable. The quantity
Z is chosen ag in the following simulations.

The maximum radius of the vision-based camerachosen as 12 arids 40. There
are 4 submarines\ = 4) with a randomly selected initial deployment as shown irueg
2.6(@). Let the desired effective coveragé be 40. Here the control law in Equation
(2.12 is used with control gaing; = 1 x 107°,i = 1,...,4. Assume that there is no
prior information as to the accuracy of the underwater samggind, hencey(q) is set as
1 for all g € D. For the sensor model, |1&t; = 1,0 = 2?” foralli=1,...,4. Asimple
trapezoidal method is used to compute integration @v@nd a simple first order Euler
scheme to integrate with respect to time.

The results are shown in Figur@s and2.7. Figure2.6(@) shows the fleet motion
along the line where each submarine is denoted by a diffedat. Figure2.6(b) shows
the control effort as a function of time. Figug6(c) shows the global errar(t) with
switching control and can be seen to converge to zero. Figurehows the effective
coverage (dark blue for low and yellow for full coverage) dieet configuration at =

0,90, 180, 270, 360, 450 with the perturbation control law.

2.2.4 Underwater Acoustic Imaging using AUVs

This section studies the underwater acoustic imaging prohising AUVs. The integra-
tion of a guidance/control scheme and acoustic imagingga®es discussed. A sensor
model based on an acoustic sensor’s beam pattern is présehite goal is to obtain
an accurate enough image of an underwater profile. Acousthging is an active re-
search field devoted to the study of techniques for the faomaind processing of images

generated from raw signals acquired by an acoustic sy€i8r83].

33



450 T T T T T T
400 [- I,,,

! T
300 - V j |
= - T P . ’

200 J/

150 - ‘ | | {’

100 | /

_~
-

{ e
0 5 10 15 20 25 .30 35 40
position of submarine
(a) Fleet motion along the line

L I
0 50 100 150 200 250 300 350 400 450

(b) Control effort||u;(t)||,7 € S

i i i i i i i
0 50 100 150 200 250 300 350 400 450
t

(c) Errore(t)

Figure 2.6: Fleet motion, control velocity, and error fodenwater applications.

34



G)O\JBNO

15 25

(a) Coverage at= 0

- -

15
(b) Coverage at 90

OOO\J}NO

o o N O
T

0 5 15 25 35 40

(c) Coverage at= 180

0
Sl
ol
ok
8 n
0 5 15 20 25 30 35 40
(d) Coverageat 270
0 I |
n ]
ol
ok
8 n n n
0 5 15 20 25 30 35 40
(e) Coverageatt 360
0 T L 3
n
ol
6k
8 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

(f) Coverage at = 450

Figure 2.7: Evolution of coverage with perturbation cohtro

35



2.2.4.1 Integration of Guidance, Control and Acoustic Imagng

The system is composed of two main tasks: vehicle motionague for coverage control
and acoustic image processing for seafloor mapping.

The basic goal of the control part is to use a fleet of AUVs tdemblenough imag-
ing data at each location in an underwater domain. The agsumspf 1D configuration
space and linear kinematics for the AUVs still hold here. M/kbllecting imaging data
during the guidance and motion control part, the technolaiggcoustic imaging is re-
quired to process the images and estimate the profile of gigedesimultaneously. In
underwater imaging, generally, the scene under investigaihe seabed in our case, is
first insonified by an acoustic signaf (¢), then the backscattered echoes acquired by the
system are processed to create the profile. This processecparformed by two dif-
ferent approaches: use of an acoustic lens followed by aareti acoustic sensors, or
acquisition of echoes by a two-dimensional array of senandssubsequent processing
by adequate algorithms, such as the beamforming or the fagbyg class. In this section,
the beamforming algorithn6[3] is adopted to process the acoustic image. Each vehicle
is mounted with a sensor array. It is assumed that an acqudse.” (¢) is emitted and a
spherical propagation occurs inside an isotropic, lir@asprbing medium. Beamforming
is a spatial filter that linearly combines the temporal sigsaatially sampled by the sen-
sor array. The system arranges the echoes in such a way aglityahe signal coming
from a fixed direction (steering direction) and to reducetlal signals coming from the
other directions. More details of the beamforming metholdl vé presented in Section
2.2.4.2

When considering the integration of the guidance/contcbesne and the acoustic
imaging process, two different options are available f@& guidance system: either a

stochastic or a deterministic approach.
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Image Quality Feedback Based Error Guidance. The image quality (i.e., estimated
error) may be used to guide the vehicles. For example, usiéalman filter to estimate
the field and on the filter's prediction step to solve for thhigke’s best next movesg].
The algorithm presented therein guarantees that the eshingbve to the direction that

maximizes the quality of the estimated field.

Sensor Model Based Feedback Guidance.The sensor model (given by the beam pat-
tern function, see next section) may also be used for vehigigance. In this section,
this deterministic guidance approach will be adopted togretvith the beamforming al-

gorithm.

2.2.4.2 Mathematical Summary of Acoustic Imaging

Beamforming Data Acquisition. Assume that the imaged scene is made up gboint
scatterers, théy, scatterer is placed at the position= (z;, z;), as shown in Figure2.8.
Define the plane = 0 as the plane that receives the backscattered field. Thetacsigs
nal.”(t) is emitted by an ideal point source placed in the coordinaggn(i.e., at vehicle
location). ConsidelV, point like sensors that constitute a receiving 2-D arraynbered

by index/, from 0 to N, — 1. The steering direction of a beam signal is then indicated
by the angled measured with respect to theaxis. By applying the Fourier/Fresnel

approximation, one can obtain the following expressiortlierbeam signal:
ms 2pZ
b(t,v) = t——)C;BP, 0;, 0 2.13
(t.9) ;5« ~)CiBPeyr(w, 0;, ), (2.13)

sin[wNyd(sind — sind) /2|

BP, =
Bmr(w, 6, 7) sinjwd(sind — sind)/2c]

(2.14)

whereC; is some constant related to thescatterer is the speed of sound, B (w, 6, 9)

is called beam pattern, which depends on the arrival ahdlee steering anglé, and the
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Figure 2.8: Geometry of the data model.

angular frequency. It is also assumed that the array is equispaced and cenietieel
coordinate origin, and is the inter-element spacing. Figur@s9(a)and 2.9(b)show the
beam pattern for &, = 40 element array witl/ = 1.5mm spacing as a function of the
arrival angled (visualized on a logarithmic scale normalized)tdB) for fixed frequency

f = 500KHz and steering anglé = 0°C andd = 30°C, respectively §3].

Imaging Processing. The analysis of beam signals allows one to estimate the rtarae
scene. A common method to detect the distance of the scaftelject is to look for the
maximum peak of the beam signal envelope. Denotingf Iblye time instant at which the
maximum peak (whose magnitude is denotedstjyoccurs, the related distanck;, is
easily derivable from it (i.e.R* = ¢ - t*/2, if the pulse source is placed in the coordinate
origin). Therefore, for each steering directiéra triplet ¢J, R*, s*) can be extracted. The
set of triplets can be projected to get a range image in wihnetpbint defined in polar

coordinates by and R* is converted into a Cartesian poinf( z*) [94].
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Figure 2.9: Beam pattern.

2.2.4.3 Control Law

The beam pattern BP given by Equati@l() is used as a sensor model to describes how
effective the vehicle surveys a poigtc D. The effective coverage of the group indexed

by K at timet at the poinig becomes:

(@ 1) = / S B (7)dr

1€
Assume BPRis a function off; here only, that is, the steering directidgnand angular
frequencyw are fixed. Since BAs a function off; which varies with time because of the

change of vehicle position, Bs implicitly a function of time.

Consider the following nominal control law

_ BP. 90,
w(t) = s [ WO = Ts(a 1) <§ :BPi> L eo@da  (@19)
i€S ! !

wherek; > 0 are fixed feedback gains.
Together with the perturbation control law(¢) given by EquationZ.8), the overall

control strategy guarantees full coverage of every poithiwithe domain. This can be
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proved following a same fashion as Theor2r@.1

2.2.4.4 Simulation

This section provides a set of numerical simulations. Detreelength ofD asi = 20
meters in the following simulation. The seabed profile isegiby a simple piecewise

linear function

—gr ifx <0
Y= )
gr ifx>0

wherex is the discretization along the seabed length and 2.5 is the slope of the
linear function. Assume there are 2 submarings=£ 2) with a randomly selected initial
deployment as shown in FigugelQ Let the desired effective coveragé be 6000. Here
the control law in Equation2(15 is used with control gaink; = 0.05,7 = 1,2. For the
beam pattern sensor model, get 500kHz, ¥ = 0, d = 1.5mm, N, = 40, ¢ = 1500m/s
forall i = 1,2. The sensor has a Gaussian random noise with zero mean aantarst
deviation of0.5.

The control effort|u;||, i € S is shown in Figur@.11 The global erroe(t) is shown

in Figure2.12 It can be seen to converge to zero. Note that the error is alaead by
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Figure 2.12: Global errat(¢) in acoustic imaging.

dividing (C*)? x [ so that the initial error ig. Figure2.13shows the effective coverage
att = 367,734, 2152 with perturbation control laws.

The acoustic image measured by the vehicles using the tilgodiscussed in Section
2.2.4.2is shown in Figur€.14 It compares the actual seabed profile with the simulated
curve. The result shows that even with sensor noise, theopeapalgorithm efficiently

estimates the actual profile.
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2.3 Deterministic Awareness-Based Approach

In the previous section, a Lyapunov-based coverage costtiategy is proposed to guar-
antee the completion of a domain search mission under andieistic framework. Re-
maining in the deterministic framework, in this section, amareness-based dynamic
model is developed, which describes how “aware” a systenetfarked, limited-range
MAVs is of events occurring at every point over a given domdihe approach aims at
modeling the dynamic information loss over time within tieauich domain. This formu-
lation can be applied to a wide variety of problems, inclgdiarge-scale and complex
domains, that may be disconnected (surveillance over adrial pockets in a region), or
hybrid discrete and continuous (surveillance over urbamrenments and inside build-
ings, where roads and hallways are the continuous part afdh®ain, and buildings and
rooms are discrete nodes).

The proposed awareness model will be first applied to theragescontrol over large-
scale task domains using decentralized MAVs with inteenittommunications and/or
faulty sensors. For each vehicle, an individual state oframess is defined. The indi-
vidual vehicle’s state of awareness continuously evohased on the vehicle’s motion

and is updated at discrete instants whenever the vehiablestes a communication link

43



with other vehicles. This information sharing update stels & reducing the amount of
redundant coverage. The hybrid nature of the “awarenessardyc model and the in-
termittent communications between the vehicles resulswigching closed-loop control
law. Based on this awareness model, a decentralized cattategy is proposed that
guarantees that every point within the task domain will beeced with a satisfactory
state of awareness under intermittent communication®afalilty sensors.

The intermittent communication structure is desirableabige in most cases it is not
energy efficient or even possible for the vehicle fleet to na@mnopen communication
channels during the entire mission. This is especially tondarge-scale task domains,
where vehicles may need to disperse (and, hence, lose diityewith other vehicles)
in order to cover the domain. Iri21], smooth control laws using potential functions
are developed for stable flocking motion of mobile agentsimilar flocking problem is
studied in L22] and [123 under a connected (but with arbitrary dynamic switching) d
centralized networks. Both discrete-time and continummg-consensus update schemes
are proposed in1j07] for distributed multi-agent systems in the presence oftcwng
interaction topologies. Ing, a distributed Kalman consensus algorithm is proven to
converge to an unbiased estimate for both static and dyneonienunication networks.
In [143, the authors investigate distributed mobile robots in eeless network under
nearest neighbor communications. B8], local undirected communication is used in
fully distributed multi-agent systems. Both43 and [83] demonstrate improvements in
global behavior made by exchanging local sensing inforonati

For the sake of completeness, the dynamics of an individaé ©f awareness is
generalized to the total awareness achieved by a fleet of MA¥e corresponding cen-

tralized search strategies are proposed where all thelestsicare awareness information.
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2.3.1 Problem Formulation

A description of large-scale domains has already been gMehapterl. Here, a rigorous
mathematical definition is given as follows: A large-scabendin is one where, under the
best case scenario when all the sensory domainare disjoint, there exists a S€tC D

of non-zero measure such that for evary =, q ¢ W, for alli € S. Note that the results
derived in the following sections also apply to non-largals domains. The first-order
kinematic equation of motior2(1) and the sensor mod8M (2.3) are assumed for each
vehicle. The limited-range sensor models the practicéicdity in real implementation,

especially for missions over large-scale domains.

State of Awareness. Anindividual vehicle’s state of awareness is a distribuftg(q, ¢) :

R? x R — R that is a measure of how “aware” the vehitlgis of events occurring at a
specific locatiorg at timet. Here, without loss of generality, assume tkaty, ¢) € [0, 1],
that the initial state of awareness is zero (i.e., no awa®nand that the desired state of
awareness is given by (full awareness), while;(q,t) < 1 corresponds to insufficient
awareness. Fixing a poigte D, the state of awareness of a particular vehiglat time

t is assumed to satisfy the following differential equation

iz(éb t) == (Az(qu - 61”) - C) (iz(éb t) - 1)7 iz(d) 0) - iiO = 07 (NS S, (216)

where( > 0 is a constant parameter which models the loss of awarenessaaume
period during which no vehicles cover a point of interesin Having( > 0, sets a
periodical re-visit requirement to maintain desired awass levels.

Letx;(q,t) = x;(q,t) — 1 be the transformed state of awareness. The dynamics of
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the transformed state of awareness is then given by

Xz(d? t) = (Az(qu - 61“) - C) Xi(d? t)v Xi(d? 0) = X0 = _17 i €S. (217)

Therefore, the transformed state of awareng$§§, ¢t) € [—1, 0]. The initial transformed
state of awareness is1, which reflects the fact that at the outset of the surveikbanc
mission the fleet has poor awareness levels. One may set aifmmuinitial distribu-
tion for x;(q, t) to reflect any prior awareness knowledge. The nonuniforrmibiigion
x;(q, 0) may reflect regions where objects may be able to camouflagestiees better
than in other regions dP (e.g., dense forests versus open fields). A more negative val
of x;(q, 0) reflects areas with less awareness levels, and vice versaeudq the ini-
tial value is always restricted to be greater thah with —1 representing the worst case
scenario (which is the assumption made here).

For the transformed state of awareness, the desired equiibawareness level is
zero, thatisx;(q,t) =0, t >0, 1 € S, Vq € D.

A control law will be developed to guarantee the convergerice (q, t) to a neigh-
borhood of 0:||x;(q, t)|| < £ for some¢ > 0, which corresponds t®;(q, t) approaching
unity and a state of full domain awareness. Note that undedimamics 2.17), the
maximum value attainable by;(q, ¢) is zero if the initial awareness level is negative. In-
specting Equation2(17), the system state of awareness is degrading except ovenseg
whereA; — ¢ has a positive value (i.e0,< ¢ < A;).

One can also define the overall transformed awareness dgsami

=

== (Al —all) — O)x(a.t) (2.18)

i=1

with negative initial conditions as discussed abovexiggy, ). Here> "N | A;(||lq; — q]|)
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is the total instantaneous coverage achieved by all thecheshat timet. The overall
awareness dynamics will be utilized to develop the cemdlisearch control laws. If
one wishes to consider the state of awareness achieved byase, then one can use
Equation 2.18 but summing only over elements i6. Note thatx; < x. That is, the
overall awareness of the sensors in a centralized systegttes than that of the individual
sensors in a decentralized system. Note that for the casewaléhe vehicles are set to be
fixed, if enough resources are available (i.e., enough le=shand/or large enough sensor
ranges) the entire domain can be covered With , (4, — ¢) > 0 and the awareness
level is everywhere increasing and converging to the desiadue: x(q,t) — 0 for all

q € D. This is guaranteed to occur using a static sensor netwatlaaufficiently small
domainD (the small-scale domain case). This is true because forgaiohq, the term
Zjil(Ai — () in Equation R.18) is a positive constant since each vehicle is assumed to
be fixed. This means that, for eaghthe dynamicsZ.18 is a linear differential equation
in x(q,t), which leads to asymptotic convergencexify, ¢) to zero. For large-scale
domains, a static sensor is guaranteed not to meet the diegre transformed state of
awareness because, by definition, there exists a set oferomyreasur& C D which is
not covered by some sensor. It is aimed to develop a deceettatontrol strategy that

stabilizes the state of awareness under intermittent camuations and/or faulty sensors

over a large-scale domain.

Remark. 2.3.1. Letx;(q,t) = 0 forall @ ¢ D and allt > 0. This remark will be useful

for the validation of a lemma developed later. °

2.3.2 State of Awareness Dynamic Model

State of Awareness Updates. Consider the case where the vehicles communicate only
when they are within a range > 0 of each other. If a communication channel is estab-

lished, vehicles exchange their awareness informationgl(e) = {j € S : ||q; —qi|| <
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A}, i € S, be the set of vehicles that neighbor vehitlg(including vehicle); itself) at
timet. Whenever new vehicleg; are added to the sét, vehicleV; will instantaneously
exchange all the available awareness information with reghiors in a discrete aware-
ness update step. If no or more than one vehicle drop §gm (possibly faulty sensors),
the individual state of awareness of vehitiedoes not change. Lét be the time instant
at which vehicles);, Vy, ... become members @;,. ThatisV;, V. ... € G;(t_) but
Vi, Ve ... € Gi(t]). Hence, the following update equation takes place whereeset of

vehiclesG;(t) C S\ G:(t) gets added tg;(t) at timet:

xi(@ ") = (=1)"x(a,1) - [ x(@0), (2.19)
J€Gi(t)

whereji; (t) is the number of vehicles ig;(¢). Hence, the transformed state of awareness
evolves according to the continuous dynamics given by Eou#2.17) and undergoes a
discrete update step given by Equati@rl® whenever new vehicles becorigs neigh-
bors. Figure2.15illustrates the awareness model for the continuous dyre@it?7) and
the discrete awareness state updat#d). Note that there is one continuous mo&el{)
and one switching conditio;(t) # @. When the switching condition is satisfied, the
initial condition of the system is reset according to theetemap 2.19. If G;(t) = @
(i.e., no new vehicles become neighbors\yf, then the awareness state of vehitle
obeys the continuous differential equatiéhl(?). This includes the case when vehicles
drop fromg,;(t) (e.g., faulty sensors) or when existing neighbors retaeir ¥} neighbor-
hood status. If the number of new vehiclest) in G;(¢) is nonzero at time, then the
value of the transformed state of awareness of vehicleill be discretely substituted
with the product of the awareness states of all the vehiol€s(i) and itself. According
to Equation 2.19), if the number of newly added vehicles is even, then theiplidation

of their states of awareness will be a non-negative numbsause the terms; is always
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xil(@, ) — (=1)"x(@, ) [T jeg ) %(@, 1)

Figure 2.15: Continuous and discrete awareness statesupuatel.

less than or equal to zero. In this case, the newly updateel stawareness will stay
negative after multiplying the state of awareness of vehiglitself. However, when the
number of newly added vehicles is odd, the multiplicatioalbthese states of awareness
together with the state of awareness of vehi¢leill be a positive number. Hence, the in-
troduction of(—1)™® makes sure that the updated state of awareness is always/aega
Moreover, this product reflects the improvement in the sthi@vareness of vehiclg;.

For example, assume that all the vehicles in the missiontikeet an initial transformed
state of awareness efl and their coverage goal is to achieve a transformed awaenes
value close to zero everywhere within the domain.Vifhas a transformed awareness
of —0.5 at someq at timet, and it updates its transformed state of awareness based on
the transformed state of awareness of another neighbocleebii —0.5, then the new
awareness &j is now —0.25 according to the update Equatidh19. The two extremes

are:

1. if the second vehicle has no awareness @t., a value of -1), then the new aware-

ness is still-0.5 since the second vehicle did not “add any awareness” at tiat. p

2. if the second vehicle has perfect awareness @te., a value of 0), then the new

awareness is nowsince the second vehicle had perfect awareness level there.
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Awareness Metric. Let the awareness metric be given by

1
nlt) = [ Fxtandaies, (2.20)

which is the global error over the entire mission domain eadd by vehicle);. It is said
to be global since the integration is performed over theremomainD. The coverage
goal of each vehicle is to guarantee that the above m&tra€)(decreases with time and
ultimately converges to a small neighborhood of zero.

Further, define

eg(t) = /D 1x2(51, t)dq (2.21)

as the global error over the entire mission domain achieyealllthe MAVS.

Let the local awareness error function associated witholehi be

4 1
ew, () = / >x7(q,t)dq >0, i € S, (2.22)
Wit) 2

with €}, (t) = 0 if and only if x;(q, ) = 0 for every pointq inside the sensory domain
W;(t). Thisis a decentralized awareness metric associated aliilcle)’; that reflects the
quality of the state of awareness withiy; (¢) achieved by vehicl®; alone. This metric
will be used for the development of the decentralized cotdxa Note that the metric is
a function of the position of vehicle; because of the integral domaibi;(¢).

Moreover, define the centralized awareness metric asedoveith the entire search
fleetS(t) by

1
w()= [ x@nda (2.23)
Wi(t) 2
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This is a centralized awareness metric associated witlcheeli that reflects the quality
of the state of awareness withiw;(¢) achieved by all vehicles i§. This metric will be

used to develop the control law for the centralized searoblpm.

2.3.3 Awareness Coverage with Intermittent Communication

Overall Description of Control Strategy. In this section, a decentralized control law
u! is developed based on the awareness me&rif) and the local awareness error func-
tion (2.22 over a large-scale domain using MAVs with intermittent coomications
and/or faulty sensors. The control layyis inspired by Equatior(9) in Section2.2.2for
deterministic Lyapunov-based coverage control. It is cosel of a nominal control law
u; and a perturbation control law;. Initially, a vehicle); is deployed and is governed by
a nominal control lawa; developed based on the error functi@2?, which drives it in
the direction that maximizes its local state of awarendssdgshe error function.22

is defined within the sensory domaii;(¢)) by moving in the direction of low awareness
levels. The nominal control law; will eventually drivee},, (¢) to a neighborhood of zero.
Whenever the transformed state of awareness is suchsth@t ¢)|| < &, wheref is some
threshold to be defined later, for &l € W;(t) (i.e., €}, (t) — 0), the vehicle is said
to have converged to a local minimum, and the control law isch&d to a perturbation
control lawu; that drives the vehicle out of this local minimum to the neapoint with
less than full awareness, which guarantees that every witimn the domairD with in-
sufficient awareness will be covered. Once away from thel lmimimum, €}, (¢) is no
longer in a small neighborhood of zero since not every poithiiwthe sensory domain
W;(t) has||x;(q,t)|| < &, and the controller is switched back to the nominal corgroll
The switching between the nominal control laswand the perturbation control law;

is repeated until the entire domdin has a full state of awareness. That is, the global

error e, (t) given by EquationZ.20 converges to a neighborhood of zero. Figarg6
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illustrates the overall control strategy applied on a sngdhicle for the awareness cov-
erage control over a square domain. Green represents lovea@ss, yellow for higher
awareness and red for full awareness. The black dot repgsstberposition of the vehicle,
while the circle indicates the limited range of the sensagufe 2.16a) shows an initial
deployment of the vehicle under the nominal control lawat the outset. The control
law u; moves the vehicle towards the direction of lower awarenassd. Figure.16b)
demonstrates an instance when the vehicle is trapped irabrtosimum with full aware-
ness and the perturbation control lawis applied. Figure.16c) corresponds to full

awareness, i.e., the mission is completed whgnr—: 0.

Nominal Control Law. Between discrete jumps in awareness due to intermittemt sha
ing of awareness information with other vehicles, the vehkinematic equation2(1)
and state of awareness equati@il{) constitute two first order differential equations.
In this section, these two equations together with the idd&a vehicle error function
(2.22 are used to derive a nominal control law that seeks to rethecgalue ofeﬁ/\,i for
each vehicle. The nominal control law itself does not gueiconvergence of;(q, t)
to a neighborhood of zero over the entire dom&in Instead, it only guarantees that
x;(q,t) — 0 within the sensory domaiw; for each vehicle. A perturbation control law
will be deployed along with the nominal control law to guaesnthat|x;(q, t)|| < & over
the entire domaim.

Without any loss of generality, the following assumptiontfre initial state of aware-
ness will be made.

IC2 The initial state of awareness is given by:

XZ‘((EI7 0) = X0 = —1,2 S S

Assumption 2.3.1.Assume thag = 0.
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Figure 2.16: Illustration of the overall control strategy.
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With Assumption2.3.1 the ensuing results are applicable to problems in searth an
rescue/retrieval problems (especially with static vigior objects of interests), domain
monitoring, and “low level” surveillance.

Consider the following nominal control law:

w(t) =k /W . x2(q,t) \( /O t 8<Ai(%’ gi((j)))da)qu, (2.24)

~
memory term

wherek; > 0 is a feedback gain. It will be proved that control la?Z4) guarantees the

convergence of;(q, t) to zero at every poin in the sensory domaiw ().

Remark. 2.3.2.1n the expression fog, (), the time integral “memory” term under the
spatial integration is an integration of historical dataghtranslates into the reliance on
past search history for vehicle motion planning. Note thatitemory term is multiplied
by x?(q, t) before being integrated over the sensory domain at the otitime . This

indicates that historical data as well as up-to-date awasslevels within the vehicle’s

sensor domain are compounded to decide on the motion. °
First consider the following lemma, which will be used short

Lemma 2.3.1.For any functionf" : R? x R — R, the following equation holds,

d
dt Wi(t)

oF(q, t)
ot

Fla.tda— [ q,

Wi(t)

{(graqu(q, t)) - u; +

whereu; is the velocity of vehicl®; and grag, is the gradient operator with respect &

Proof. This is a direct consequence of Equation (3.3)36][ where note thaty; is the
velocity of any point within the (rigid) domainV; (including the boundary). [ |

Next, consider the following condition, whose utility wallso become obvious shortly.
Condition C2. x;(q.t) = 0,Vq € W;(t).
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This condition corresponds to the case where the set ofgwiitiiin 1V, have perfect

coverage and the local erref;, is zero.

Lemma 2.3.2.For anyt > 0, if ConditionC2holds for vehicl@/;, thenej,, (t) = 0,7 € S.

Conversely, it},, () = 0 for some time > 0, then ConditiorC2 holds for vehicle;.
Proof. The proof of this lemma is similar to that of Lemr@&.1in Section2.2.2 [ |

Theorem 2.3.1.Under AssumptioR.3.1 the control lawu; (¢) given by EquationZ.24)

drivese},, (t) — 0 asymptotically between awareness state switches.

Proof. Consider the functiol; = ¢i,, (t) > 0. From Lemma2.3.2 V; = 0 if and only if
ConditionC2 holds for vehicleV;. According to Lemma&.3.1,

Vi=éy(t) = — —x2(q,t)dq

O(Ex2(q. t
= / grac(le(q,t))~uid€1+/ qu. (2.25)
Wi(t) 2 Wi(t) ot

Note that according to Rema#3.1, the integration regioiV; (¢) always holds even when

W;(t) lies outside ofD. First consider the spatial gradient term in Equati®29:

1 0(:x2(q,t
/ grad =x2(q, ) - w,dq = / 9Gx(a 1) g
Wi(t) 4 (t) dq

_ L 0(x(a,t)
= x;(q, 1) ——="--2> - 1;dq.
/V\/i(t) (@9 Jq

Next, an expression f(ﬁ(xjﬁf%“) needs to be derived. From Equati@l(7) and assuming

¢ =0, it follows that

x;(q,t) = e*fJAi(d,qi(a))dgxiO.
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Hence,

L‘i((:l’t) _ _e_fotAi((lﬂi(U))dUXio/t 3(Ai(<~1,~<1¢(0)))d0
9q 0 oq
! a(Ai(C] qx‘(U)))
= —x;(q,t - do.
(q,t) /0 %
Therefore,

t . p~ .
| eradgx@n) waa-- [ <@ ( / 8<A1<0591<">>>da) - 6d4.

Wi(t) Wi(t) 0 q

Note thatu, (¢) is a function of time but naj, so it can be pulled outside of the integration.

Substituten;(¢) in Equation 2.24) into the above equation, it follows that

/W i(t)grao(éx?@,t)yuidq: K { /W x@y ( /0 5’<Ai<%§i<o>>> da) dqr <0

Next, consider the integral of the time derivation term irugtpn @.25. According to

Equation 2.17) and assuming no information loss, thatgss 0,

0(3x}(q.1) i ) )
/ —ar A= _/ x; (@ t)Ai([la — aill)dg < 0.
Wil®) Wi(t)

Therefore,

s

~~

first term

- / (@ 1) A:(1d - qif)dq < 0.
W7(t)

(. J

~
second term

Note that equality holds if and only if ConditidD2 holds. This can be seen as follows.

First, note that if Conditioi2 holds,V; is clearly equal to zero becauggq, t) = 0 for
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vq € W;(t). Secondly, ifi; is zero, butx;(q, t) # 0 within W;(¢), the second term will
always be non-zero becaudg(||q — q;||) > 0 within the sensory domaiw/;(¢). Hence,
for \Z = 0, the only possibility is thak;(q, t) = 0, which also makes the first term zero.

ThenV; = 0 only if ConditionC2 holds. This and Lemma.3.2complete the proof. B

Perturbation Control Law. Before introducing the perturbation control law, consider

the following condition.

Condition C3. ||x;(q,t)|| < &,Vq € W;(t), whereé > 0 is the awareness tolerance.

This condition corresponds to the case where the local érer over)V;) is in a
neighborhood of zero, that is, the situation when the vehgiaking very little progress
(almost “stuck”).

Using the nominal control law in Equatio.4), each vehicle will be guaranteed to
have a state of awarenels;(q,t)|| < ¢ at each poingg € W;(t) for a givené > 0,
i.e., ConditionC3. However, this does not necessarily mean that the egr@r of each
vehicle over the entire domain given by Equati@m®Q) will converge to a neighborhood
of zero. If ConditionC3 holds but withe,;(t) > £ (to be precisely defined), the pertur-
bation control law given by Equatio2 @) in Section2.2.2is used to perturb the system
away from the Conditiol©3, however, hergj; € D is chosen such thdk;(q;, ts)| > &.

Define the following sets in a same fashion as in Se@i@x? i.e.,
D(t) ={aeD:|xiat) > ¢},
let D (¢) be the closure P! (¢) and we have,
Di(t) = {a e D.(t) : = argmin, ., lai(t) —al }

Here the superscriptsis used to indicate that the sets are associated with vehjcle
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Note thatq; is chosen based on coverage information available to \ehjanly, which

is appropriate in the setting here since the control law ced#alized.

Theorem 2.3.2.1f the system is at the state described by the Condi@i8rand the set
152(t) at timet is nonempty, then the control lawy(¢) given by EquationZ.8) drives the

system away from ConditidD3.

Proof. If Condition C3 holds and the sdﬁé(t} at timet is nonempty, it follows from the
linearity of the closed-loop systeni;(t) = —k;(q:(t) — q; (t,)) that the vehicley; will
converge asymptotically to a neighborhoodft,). Hence, there will exist a time such

that||q;, — q;|| < r;, at which time ConditiorC3 no longer holds. [

Overall Control Strategy. Theorems.3.1and2.3.2give us the following result.

Theorem 2.3.3.Under limited sensory range mod8M and initial conditionIC2, the
control law
u; if ConditionC3does not hold

uj (t) = , (2.26)
u; if ConditionC3holds

drives the errofe,;(t), i € S, to a neighborhood of zero value.

Proof. Under the control lawZ.24), each vehicle moves in the direction that improves its
own local (since integration is performed over the sensanan)V;(t)) awareness level
and is in continuous motion as long as the state describendi@on C3 is avoided.
Whenever the Conditio@3 holds with global erroe,,(t) > &,i € S, the system is per-
turbed away from the Conditio63 by switching to the perturbation control la&.8).
Once away from the Conditio@3, the controller is switched back to the nominal con-
troller. This procedure is repeated until the point in timeew there does not exigt

whenever Conditior©3 holds. The non-existence of suclgaguarantees that, () is
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sufficiently close to zero (sindex;(q, t)|| is not larger thaig everywhere). That is to say,
only when both Conditiol©3 holds and|x;(q, t)|| < &, (||x:(q,t)|| — 1), forallq € D,
the mission is said to be accomplished and no further switrctsi performed.

To complete the proof, one has to show that infinite switchieigveen (1) the continu-
ous awareness evolutio®.{7) and discrete awareness upd&d@, and (2) the nominal
control lawu; (2.24) and the perturbation control law; (2.8) can never happen. For the
former, note the fact that whety(q, t) undergoes a discrete update step, no instabilities
are introduced. This is true since the update equationtsesub discrete change from
a continuous distributiorx;(q, t) over D to another continuous distributiag;(q, ™).
Moreover,||x;(q,t")| < ||xi(q,t)|| for eachq at each switching instant. Hence, the re-
setting ofx;(q, ) can not introduce unbounded divergence by design and cairesult
in the decrease in the norm»f(q, t).

Secondly, infinite switching betwean andu; is impossible because (a) during the
application ofu; the value ofe,; decreases by an amount of non-zero measure, and (b) if
ConditionC3 occurs and the control law; is applied, once the vehicle is within a range
less thanr; from q;, e,; decreases by an amount of non-zero measure. These two facts
guarantee that a finite number of switches will be perfornsegtaiche,; < &, where¢ is

an upper bound given by

2Ap
) = [ pet@nie= | [ Se@on] = [ Jaofas 52 -

whereAyp is the area oD.

Finally, it also needs to show that the control veloait(t) can never be infinite.
Whenx;(q, t) undergoes resetting, the control layundergoes a finite drop in magnitude
(sincex?(q, t) itself experiences a finite drop in magnitude, see Equato®4y, and

since the memory term indicated in Equatiéh2d) does not change across switches)
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and, hence, no infinite control inputs are encountered a@osreness state switches.
In between switches, the contra) is also finite (but, in this case, continuous in time)
because the memory term is finite (since the coverage funetjdgs at leastC!) for any
finite time and since|x;(q, t)|| converges to a neighborhood of zero. The perturbation
control lawu;,(¢) is clearly bounded in magnitude since the feedback gainite famd the

vectorq;(t) — q; (ts) has a finite magnitude (due to boundednesB)f [ |

Remark. 2.3.3.The search approach proposed herein requires computasibtie order

of O(n? + 2) at each time step, whereis the number of cells in the discretized sensory
domainW;. While alternative approaches, such as Voronoi-partithgrand stochastic-
based SLAM methods, are computationally more burdensoefer(k [60] for more

details). °

Remark. 2.3.4. As a matter of implementation, if the condition for the resap and the
ConditionC3 occur at the same instant, checking of the Condi@®is performed after

the reset map is performed. °

Remark. 2.3.5. Note thatu; relies on the properties of the sensor coverage functign
Hence, the coverage control law relies on the given sensatemtd guide the vehicle

during the coverage mission. o

Remark. 2.3.6. Redundant coverage (overlapping paths) would be expectenhg the

vehicles. The main reasons for the overlapping of paths are:

e Decentralization and the fact that communications are leghed only intermit-
tently, meaning that a vehicle may not have the actual ol/arstiory of coverage
information. A main difference between the approach intaetl here andg9
or [24] is that every sensor only considers a local error functk:ig)i(t) that is

independent of what other sensors may do. In other wordsdahsor metrics pre-

60



sented here are independent of each other and do not catargroperty of “co-
operation in sensing.” That is, cooperation is establisireterms of interchange of

information through communication only.

e Sometimes a vehicle has to traverse an already coveredragiarder to get to an

uncovered region. °

2.3.4 Generalization to Centralized Coverage Control

In this section, the above decentralized coverage corgves for MAVs are generalized
to centralized coverage control laws, where the awareméssnation is shared over all
vehicles inS. Consider the following conditions.

IC3 The initial state of awareness is given y(q, 0) = x, = —1.

Condition C4. x(q,t) = 0,Vq € W;(1).
Here, the dynamics of(q, t) follows Equation 2.18. Following similar procedures
as above, the global awareness mei€{) and the local awareness error functi@d

based on all the MAVs are utilized to develop a centralizedro law u?.

1

1,(t) if Condition C4 doesn’t hold for V, € S
wi(t) = (2.27)
u,(t) if Condition C4 holds for V;, € S

where

,(t) = ki /W . x2(, 1) < /0 %{Wda) dq (2.28)

memory term

J/

is the centralized nominal control law, and the choice of et q; in the central-

ized perturbation control law is based on centralized amese information such that
Ix(a, )] > €.
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Theorem 2.3.4.Under limited sensory range mod8M and initial conditionIC3, the
control law u}(¢) given by EquationZ.27) drives the errore,(¢) to a neighborhood of

zero value.

This theorem can be proved following similar derivationsTagorem?2.3.3without

difficulty.

2.3.5 Simulation

In this section a numerical simulation is provided to ilhas¢ the performance of the
control strategy4.26). Define the domairD as a square region whose sizéisx 64
units length and thus naturally discretize it irtd x 64 cells, whereq represents the
centroid of each cell. The domain has no information losat i) = 0. Assume there
are 4 vehiclesy = 4) with a randomly selected initial deployment as shown bygieen
dots in Figure2.17(a) Figure2.17(a)shows the fleet motion in the plane (start at green
dot and end at red dot). Let the initial statg,: = 1,2, 3,4, be —1 and the desired state
for x;(q, t) be 0, which correspond to,, = 0 and the desired actual state of awareness
x;(q,t) = 1. Here the nominal control law in Equatio.R4) is used with control gain
k; = 8 and the perturbation control law in Equati¢h8) is used with control gaiﬁi =1,
1 = 1,...,4. A vehicle is set to switch to the linear feedback control lalenever
ConditionC3 applies to it with¢ = 1e~3. For the sensor model, s&f; = 1,r; = 12 for
all i = 1,...,4. For the intermittent communication range, it is set as #maesas the
sensory range = r; = 12. The control velocities for all vehicles are shown in Figure
2.17(b) The global erroe,(t) plotted in Figure2.17(c)is the actual total performance
achieved by the entire vehicle fleet and can be seen to cant@rgro.

Figure 2.18 shows the variation of the transformed state of awareré§st) dur-
ing the coverage mission, which is the equivalent awarelees$ as achieved by all the

MAVs. Note that the minimal transformed state of awarenssbout—5.2 x 1073 over
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Figure 2.17: Fleet motion, control effort, and error for a@reess coverage control.
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the entire domain at= 325 and that the global error metric converges to a neighborhood

of zero as predicted by Theore23.3

2.4 Probabilistic Bayesian-Based Approach

In this section, the coverage control strategies are dpedlander a probabilistic frame-
work, which guarantee full certainty over the mission damaased on Bayes analysis
and information theory. In practice, no matter how high tbhaldy of a vehicle sensor
is, its sensing capability is limited and erroneous obg@ma are bound to occur due
to noise and sensor failuré24. Hence, false or missed detections of object existence
are inevitable and the system performance is indeternani$herefore, a probabilistic
framework is desirable as it takes into account sensorsrasrwell as allows for future
incorporation of other tasks such as object tracking, deda@ation, data/decision fusion,
sensor registration, and clutter resolution.

In the stochastic setting, Bayes filters are used extensigeldynamic surveillance
of a search domain. IrbB], the author uses the Kalman filter for estimating a spatiall
decoupled (i.e., it does not satisfy a partial differergighation, or a PDE) field and using
the prediction step of the filter for guiding the vehicles tovain directions that improve
the field estimate. The control algorithm is modified to guéea satisfactory global
coverage of the domain. Other stochastic dynamic covenageaches include SLAM
[21,28,74,90] and information-theoretic method49,50]. A similar filter-based coverage
problem is addressed id9] (for spatially decoupled processes) from an information-

theoretic perspective.
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Figure 2.18: Transformed state of awareneSs, t).
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2.4.1 Setup and Sensor Model

The grid-based method is used to develop the coverage tpnttdem under probabilis-
tic frameworks. The search domain is discretized iNg cells. Letc be an arbitrary cell
in D, and poiniq is the centroid o€, which is consistent with the definition gfunder de-
terministic Lyapunov-based and aware-based framewor&sumie that the discretization
is fine enough such that at most one object can exist withirlaTlee work presented
in this section is analogous to the binary Bayes filter andoit®ipancy grid mapping
algorithm [L24], which are very popular mapping techniques to deal witheoletions
with sensor uncertainties in robotics.

For the sake of clarity of ideas, first consider the case whwree exists a single
autonomous sensor-equipped vehicle that performs thelsé&sk. This scenario is an
extreme case in which the resources available are at a mini@single sensor vehicle as
opposed to multiple cooperating ones). The extension to M#nain search is provided
in Section2.4.5

A Bernoulli-type sensor model is used, which gives binaripats: object “present”
or “absent”. This is a simplified but reasonable sensor mbdeause it abstracts away
the complexities in sensor noise, image processing algorérrors, etc.J2,13].

Let X (¢) be the binary state random variable, wh&r&) = 0 corresponds to object
absent and{'(¢) = 1 corresponds to object present. Let the position of olifacbe p,
and?P is the set of all object positions (unknown and randomly gateel). The number
of objects N, is a Binomial random variable with paramete¥g,; and Prolpc € P),
where Prolic € P) is the probability of object presence at cel{identical for all¢ and

independent). Hence, the probability/otells in the domain containing an object is

Prob(N, = k) = (J\;‘“) Prol(é € P)*(1 — Prob(é € P))Nerk,
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wherek = 1,2, -+, Nio. The expectation oN, equals to the number of total cellsTh

multiplied by Prol§c € P), that is,
Note that the realization oX (¢) depends on the position of the observed cell, that is,

X (e 1 ceP,
0 otherwise.

SinceP is unknown and randonk (¢) is a random variable with respect to everg D.

Similarly, letY'(¢) be the binary observation random variable, whe(€) = 0 cor-
responds to the observation indicating object absentYaf@d = 1 corresponds to the
observation indicating object present, respectively. @tial observation is taken ac-
cording to the probability parametgrof the Bernoulli distribution.

Given a stateX (¢) = j, the conditional probability mass functighof the Bernoulli
observation distribution is given by

3 _ ‘ o} ifk=j5
fre(Y(e) =k[X(¢) =j) = , J,k=0,1. (2.30)

1—-p0 ifk#£y
Because the states(c) are spatially i.i.d., the observation§¢) taken at every cek
within the mission domai® are spatially i.i.d. and hence the probability distribatfor
everyc € D follows the same structure.
Therefore, the general conditional probability matBixs given as follows
Prob(Y(¢) =0|X(¢)=0)=p  Prob(Y(¢)=0/X(¢)=1)=1-

B= 7 s
Prob(Y(¢) = 1|X(€) =0)=1—8  Prob(Y(¢) = 1|X(¢) = 1) = 3
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whereProb(Y(¢) = i|X(¢) = j), i,j = 0,1, describes the probability of measuring
Y (¢) = i given stateX (¢) = j. For the sake of simplicity, it is assumed that the sen-
sor capabilities of making a correct measurement are the.sdmat is,Prob(Y (¢) =
0]X(¢) = 0) = Prob(Y(¢) = 1|X(¢) = 1) = [ as the detection probability of the
sensor.

The following two sensor models are assumed in this work. él@r note that the
specific formulation will not affect the analysis of the sefggent search methods. Both
of the sensor models capture the key feature of limited sgnmsmge and will be used

interchangeably throughout this dissertation.

Unit Sensory Range For the sake of illustration clarity, assume that the seissonly
capable of observing one cell at a time. That is, the sensdehassumes a limited unit

sensory range. Thereforg,s set as a constant value.

Limited Circular Sensory Domain To be consistent with the sensor models used in the
deterministic frameworks in Sectio@s2 and2.3, let the detection probability to be a
function of the relative distance between the sensor andeheoid of the observing cell

¢. Similar as the sensor mode&M proposed in SectioB.2, here a limited-range circular
sensor domain is assumed and a fourth order polynomialitmof s = ||q(t) — q|| is

used within the sensor rangeandb,, = 0.5 otherwise,

M(s> =12’ 4b, ifs<r
B(s) = ; (2.32)
b, ifs>r
whereM + b,, gives the peak value ¢f if the cell ¢ being observed is located at the sen-

sor vehicle’s location, which indicates that the sensoetedtion probability is highest

exactly where it is. The sensing capability decreases vaitige and becomes5 out-
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side of W, implying that the sensor returns an equal-likely obséowadf “absence” or

“presence” regardless of the truth.

2.4.2 Bayes Updates

Next, Bayes’ rule is employed to update the probability geabexistence ak. Given
an observationy;(c) = i taken at time step, Bayes’ rule gives, for eadl, the posterior

probability of object existence¥{((¢) = j) as:

P(X(8) = jIYi(&) = ist +1) = (2.33)
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P(Y,(&) = i) ’
whereP(Y;(¢) = i|X(c) = j;t) is the probability of the particular observatidi(c) = i
being taken given stat& (¢) = j, which is given by the3 function .32, P(Y;(¢) =
i| X (¢) = j;t) is the prior probability ofX (¢) = j att, and P(Y;(¢) = i) gives the total
probability of having observatioF,(¢) = i regardless of the actual state.

According to the law of total probability,

PYi(¢) =i) = P(Yi(e) =i|X(c) = j;t)P(X = j;1)

+ PY(&) =i|X(@) =1—j;i)P(X =1 j;1), i,j = 0, 1(2.34)

Substitute Equatior2(34) into Equation 2.33, the posterior probability of object absent
is P(X(¢) = 0]Y;(¢c) = i;t + 1) and object present iB(X(¢) = 1]Y;(¢) = i;t + 1)

whenever there is a new observatidgiic) = i taken.

2.4.3 Uncertainty Map

Based on the updated probabilities, an information-bagprbach is used to construct the

uncertainty map for everg within the search domain. The uncertainty map will be used
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Figure 2.19: Information entropy functiaf,.

to guide the vehicle towards regions with highest searctemainty in the domain. The

information entropy function of a probability distributias used to evaluate uncertainty.
Let Py, = {P(X(¢) = 0), P(X(¢) = 1)} be the probability distribution of the search
process for the two distinct realizations of the state in@age. Define the information

entropy afc at timet as:

H,(Py.,é,t) = —P(X(&) = 0)In P(X(€) = 0) — P(X(€) = 1) In P(X (&) = 1(2.35)

If P(X(¢) =0)=0,thetermP(X(¢c) = 0)InP(X(c) = 0) is set to 0 by convention
because there is no uncertainty about object existencelothareof. It also follows that
limp(x(e)=0)—o P(X(€) = 0)In P(X(¢) = 0) = 0. The same applies faP(X (¢) =
1)In P(X(¢) = 1) whenP(X(c) = 1) = 0. Figure2.19shows the information entropy
(2.39 as a function ofP(X(¢) = 1). Note thatH,(Py,,¢,t) > 0 and the maximum
value attainable byl ( Py, , €, t) iS Hy max = 0.6931 whenP (X (¢) = 1) = 0.5. Thisim-
plies that the equal-likely case results in the most unsemdormation. The information
entropy distribution at time stefpover the domain forms an uncertainty map at that time
instant.

The greater the value df,, the bigger the uncertainty is. The desired uncertainty

level is Hy(Ppg,,¢,t) = 0 overD. The initial “uncertainty” distribution is assumed to
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be the maximum valué/; ,,..V¢ € D reflecting the fact that at the outset of the search

mission there is a poor search certainty level everywheti@mihe domain.

2.4.4 Bayesian-Based Coverage Control

Now consider a search strategy for the coverage controlgmoin the Bayesian-based
probabilistic framework. In general, the contiglt) is restricted to a séf. For example,
U could be the set of all controis(t) € R? such that|u(t)|| < umax Whereumax is the

maximum allowable control velocity. First consider a &g (¢). Let

Ow(t) ={ceW:q—q(t) €eU}.

In other words,Qy(t) is the set of cells within the sensory domain where the vehicl
could reach given the restrictions on control.

Consider the following condition, whose utility will bece@nobvious shortly.

Condition C5. H(Py,,¢,t) < H¥, V¢ € Qu(t), whereH* > 0 is a preset threshold
of some small value.

Following the same structure as the deterministic Lyapdmased and awareness-
based control laws2(2.1,2.26), the Bayesian-based probabilistic search strategy engiv

as follows:

u(t) if Condition C5 does not hold
u'(t) = . (2.36)
u(t) if Condition C5 holds

Let ¢, be the cell that has the highest search uncertainty withiri¢), that is,

C.(t+1) = argmax.g,, o Hs(Pu,, €, 1). (2.37)
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The nominal control law is then set to be
a(t) = .t +1) —q(t) €U,

whereq, is the centroid of celk,.
If Condition C5 holds, then the perturbation controlkeft) is used, and* is chosen
as the centroid of* € Op(t) = {¢ € D: q—q(t) € U} such thatd,(Py,,c*, t) > H.
The choice ot* by the vehicle can be made several ways. Here provides ongxdsa
of many possible perturbation control approaches, whiatorssistent with the scheme
presented in Sectich2.2 This maneuver seeks the minimum distance for redeployment

and hence is efficient energy-wise than other possibilities
De(t) = {é S QD(t) : HS(PHwévt) > H:},

which is a set of allc for which H,(Py,, ¢, t) is larger than the preset valué®. Let
D.(t) be the set of cells iD,(t) that minimize the distance between the position vector

of vehicleV, q, and the seD. (¢):

De(t) = {€" € De(t) : € = argmingep, ) |4 — a(t)ll} -

The control law 2.36 guarantees that the uncertainty functidg( Py, ¢, t5) for all
¢ € Dis belowH}! at some timé,. A formal proof will be given as part of the Bayesian-

based decision-making strategy in Sec#o®@in Chapterd.

Remark. 2.4.1. Note that according to Equatior2(37), ¢,(t + 1) might be a set of cells
holding the same maximum search uncertainty value. If therenultiple such cells, then
one can define a rule that picks the “best” one according to sanetric (e.g., the cell

with its centroid that is closest to the vehicle’s currensipion). Currently, assume there
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is only one such cell for the sake of simplicity. °

Remark. 2.4.2. The reasons that the choice@fis restricted to/V (as opposed t®) in

the definition 09,y (¢) (causingu to become a local controller) are as follows:

1. UsingWV instead ofD avoids unnecessary extra computational burden during the
search forc, by using a smaller space and, hence, is more computatiogfityent.
It is especially true in the case of large-scale domains,re/meuch of the domain
D is unreachable from where the vehicle is because of theicéstr onu to be in

the control sei/.

2. Although in this dissertation it is assumed that the Veras full knowledge of the
domainD and the search uncertainty functid,( Py, ¢, t) for all ¢ € D, D may
not be known in real time. In this case, all the informatioe trehicle could obtain

is within its limited sensory domain. °

Remark. 2.4.3.Having!{ arbitrary (i.e., such thaQp(¢) may not be equal t®), our
algorithm may get stuck in regions whee < H! and no control can take outside this
region and no overall coverage can be guaranteed. This isoatsbming of the current
proposed control strategy but as long as there is no globatredized computer that sees

the entireD, there is very little any control policy will ever be able to.d °

2.4.5 Extension to MAVs with Intermittent Information Shar ing

In this section, the Bayesian-based domain search stestege extended to distributed
MAVs with intermittent information sharing. Multi-senstusion based on observations
from neighboring vehicles is implemented via binary Bay#erfi It will be proved that,
under appropriate sensor models, the belief of whetherctsgxist or not will converge
to the true state. Different motion control schemes are migaléy tested to illustrate the

effectiveness of the proposed strategy.
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In order to reduce the uncertainty due to sensor errors, wvaently, to maximize
the probability of finding an object of interest, all the dable observations a vehicle has
access to (i.e., taken by the vehicle itself and its neighigorehicles) should be fused
together and utilized as a combined observation sequenedll be proved that given
sensors with a detection probability greater than 0.5, ¢laech uncertainty will converge
to a small neighborhood of zero, i.e., all unknown objectisitarest are found with00%
confidence level. This is a nontrivial problem given limitéeoretical results existing in
the literature and its significance for effective sensor agg@ment, especially when the

sensing and communication resources are limited.

2.4.5.1 Bayes Updates for MAVs with Intermittent Communicdions

Let the detection probability of each vehicle sen¥pbe denoted ag’. Clearly, ' €
[0,1]. In this section, the binary Bayes filter is employed to updae probability of
object presence at of vehicleV; based on all the observations available at the current
time step and the prior probability. Definé€'(¢c) = {V; € Gi(t) : Y;.(¢)} as the
observation sequence taken by all the vehicles in veeneighborhoodj;(¢) at time

t. GivenY;(¢), Bayes’ rule gives, for each vehiclg,

P(X(¢) = 1| (e);t +1) = mPi(Y/ (€)|X(¢) = 1) P(X(¢) = Lit),

where P;(X (¢) = 1]Y}i(¢);t + 1) is the posterior probability of object presence at cell
¢ updated by vehicle); after the observation sequence has been taken at time.step
The quantity P;(Y;(¢)| X (¢) = 1) is the probability of the particular observation se-
quenceY; being taken given that the actual state at éeié object present. Because

the observations taken by different vehicles are i.i.dfplibws that P;(Y/(¢)| X (¢) =

1) = Hjeg,ProY;.(¢)|X(¢) = 1), where ProbY;.(¢)|X(¢) = 1) is given by the
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conditional probability matrixZ.31) and the Bernoulli observation distributio.80).
The quantityP;(X (¢) = 1;t) is the prior probability of object presence at timend;
serves as a normalizing function which ensures that thepgosprobabilitiesP; (X (¢) =
jlYi(€);t + 1), j =0, 1sum to one.

According to the law of total probability, the posterior pebility of object presence
at ¢ updated according to all the observations available tockeh; is given by the

following equation, wherg; ,(c) is the dummy variable for the random variablg(c).

PX(&) = 1Y (@)t +1)
_ P(X(¢) =1 t~) . (2.38)
PX(&) = 1) + yeg (& = 1)) (1 = R(X(e) = 1;1))

Note that the probability of object absence is given by
Pi(X(€) = 0[Y/(€);t +1) =1~ Bi(X(¢) = 1|Y/(€):t +1).

2.4.5.2 Convergence Analysis

In this section, the conditions for convergence of the seg@éP; (X (¢) = 1]Y//(¢);t +
1)} is discussed whefi’, i = 1,2, --- , N is a deterministic parameter withje, 1].

For the sake of simplicity, denotB (X (¢) = 1|Y}(¢);t + 1) asP,1, Pi(X(¢) =
1;t) as P, andILeg, ) ((é — 1)2%'»*5)*1) asS;, Equation 2.38 then simplifies to the
following non-autonomous nonlinear discrete-time system

P b
t+1 — Pt+St<1—Pt)

(2.39)

Note thatS; is a random variable dependent on the observation sequétiée Let

|G;(t)| be the cardinality of the s&%;(¢), i.e., the number of neighboring vehicles of ve-

75



hicle V; and itself, then the binary observation sequeYie@) has2!9(®)! possible com-
binations at each time stepfor cell &. Let s}, s2,---, s2%“" be the realizations af,
corresponding to each of ti: (| different observation sequences. The probability of
having each particular observation sequehté) = {Y;,(¢) = y;.(¢), V; € Gi(t)}
given object present id1; g, ;) (87)+(©) (1 — 7)1 -25+(@),

Consider the following conditional expectation

Si(1—F,)
Fl1-P.(|P] = FE =
[ v+ B [Pt+St(1_Pt)| : = pi]
St(l —pt)
FE P =
[pt + S (1 — pt)| ¢ =pi
91G; ()] m(l )
S (L —DPe
Proh S, = s*| P, = ) 2.40
Tnzlpt‘i_sgn(l_pt) u t t‘ t pt) ( )

wherep; is the dummy variable foP;. The substitution law and the law of total proba-
bility are used in the above derivation. Because the obSernvaequence taken at each
time step is a property of the sensors, and is not affecteddgrobability of object pres-

ence at the previous time stef),is independent of;,. Therefore, Equatior2(40 can be

reduced to
216 (1)) m(y )
S — Pt
Ell - P |P] = ! ProhS; = s). 2.41
[ r1| 2] m§1 pet+ 57 (1 — ) b(S; = i) ( )

Investigate the value of" and the corresponding Pra) = s7) fromm = 1 to 2!9:)l,

e m = 1 corresponds to the observation sequefice, - - - , 1}, it follows thats; =

jeg, (g7 — 1) and ProlfS; = s;) = Mjeq,)3

em =k+1, k= 1,---,|Gi(t)] correspond to the observation sequence where
only the £y, vehicle in vehicleV;’s neighborhood observesfa DefineC} as the

binomial coefficients, i.e., the number of combinationg three can choosg ob-
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jects from a set of size. Because there ar@{gi(t)‘ such observation sequences
with different orders out of the totally'%)l combinations, the value dfis in the
set[1, |G;(t)|]. Hence, it follows thak}™! = <Hjegi(t)7#k(% - 1)) (155k> and
Prob(S, = s; ™) = (Hjegi(t), #eB7) (1= B%)

o m=Fk+1+|G(t)], k=1,--- ,Cfi(t)‘ correspond to the the observation sequences
where two of the vehicles, e.g., thg andry, vehicle, observe @. Because there are

C‘zgi(t)' such observation sequences in this case,within [1, C‘zgi(t)']. Therefore,

it follows that

sfﬂﬂgi(t)‘ = (Hjegi(t% j#qyr(% o 1)> (1 fqﬁq> (1 ETBJ

and
Prob(s, = s, 19O = (g0, j0r ) (1 — 91— 57)
e And so on for other values aof

e m = 2%l correspond to the observation sequefied), - - - , 0}, it follows that
si' = jeg, ) (1 57) and ProlyS; = sj") = Iljeq,t)(1 — )

Supposep; = 1 — ¢, wheree € |0, 2) IS some constant, Equatio2.41) can be
rewritten as the follows if not all sensing parametgts= 1, andE[l — P, 1|P] = 0
when allp? = 1, j € Gi(t).

1Gi(t) j
E[l = Py |P] = Wiegun(l - + | Wieg.nd = 7) +..+
1— e+ g, (t>( = (gr — DA =€) + e, ), ju(gr — 1)e
1] ) )
> Weon(l— ) PN = U] Gl €.(2.42)
= (gr — Dz — D =€) +jeg,r), jar(g7 — e Micg,1)(g7 — D1 —€) +e



This condition requires that all vehicle sensors are maaylito take correct mea-
surements.

Under Sensing Condition 1, it follows thﬁgegi(t)(% —1) € [0,1). Now assume that
e is a small number in the neighborhood of zero, giﬂg@gi(t)(é — 1)e is also a small
number close to zero, hence, the conditional expectatiendly EquationZ.42) can be
approximated as

1G: (2)]
E[l — Py, |P] ~ <Hjegi(t)(1 — )+ > Megy, #1(1— B7)BF
k=1

C\Qgi(t)\
+oot Y e, W(1—51)5‘15r+...+Hj€gi(t)ﬁj>e. (2.43)
k=1

Observe the expression within the bracket in Equatihad, it gives the total prob-
ability of all possible observation sequences taken by #iecles in set/;(¢) given that
there is an object withif, and is therefore equal to If 57 = 3, VV; € G;(t), the expres-
sion gives the total probability of a binomial distributiaith parameteps and|G;(¢)|.

Hence, the conditional probabiliti{[1 — P,,1|P, = 1 — ¢ ~ ¢ and the following

lemma holds.

Lemma 2.4.1.Under Sensing Condition 1, if an object is present, given tha prior
probability of object presenc®;(X (¢) = 1;t¢) of vehicleV; is within a small neigh-
borhood of radius from 1 at time step, then the conditional expectation of the poste-
rior probability P;(X (¢) = 1]Y}/(¢); ¢t + 1) will remain in this neighborhood at the next
time step. If all the sensors are “perfect” with zero obsedrea error probability, i.e.,

37 = 3 = 1, then the conditional expectation Bf( X (¢) = 1|Y;(¢);t + 1) is 1.

Following a similar derivation as above, a lemma holds fa& plosterior probabil-
ity of object absence” (X (¢) = 0|Y/(c);t + 1) given there is no object at ced.

Note that in this case, if abusing notation and still dergtit X (¢) = 0|Y;(¢);t + 1)
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. j 2y;,t(€)—1
as Py, and P,(X(¢) = 0;t) as P, it follows that S, = Hje@(t)( - ) and

1-p7
the probability of having each particular observation ssme given object absent is
g,y (1 — B7)¥+@ (5)(1-via (@),

To summarize the above results, the following theorem holds

Theorem 2.4.1.For ' € (3,1], i = 1,2,---, N, if there is an object absent (respec-
tively, present), given thab;(X(¢) = 0;t) (respectively,P;(X(¢) = 1;t)) is within

a small neighborhood of at time stept, the conditional expectation af;(X(¢) =
0Y(¢);t+1) (respectivelyP; (X (¢) = 1|V (¢); t+ 1)) will remain in this neighborhood

at the next time step. H = 3 = 1, then the conditional expectationis

This theorem gives a weak result because it implies thatibtte initial prior prob-
ability is close to the true state, given “good” sensors wlighection probabilities greater
than0.5, the belief of whether objects exist or not will remain nda true state. Next,
a stronger result is derived for the case of homogeneousispriperties across the net-
work.

Next, consider the following condition.

Sensing Condition 2:5° = 8 € (3,1], i =1,2,--- , N.

This condition implies that all the vehicles have identisahsors with the same de-
tection probability3 € (3, 1.

Under Sensing Condition 2, the term within the bracket indmun 2.42) is equiva-

lent to the following expression:

19:®) 1G] (1 _ 4GB
_ )
g(B,e G0N =D YT e O B #1. (2.44)

k=0

Lemma 2.4.2. The functiony(, €, |G;(t)|) is less thanl for 5 € (1,1), € € (0,4), and
|Gi(t)] > 1. Moreoverg(3, ¢, |Gi(t)|) = 1fore =0, 8 € (3,1), and|G;(¢)| > 1.
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Before providing a rigorous proof, the results shown in Feg120confirm the above
lemma. Figure2.20showsy(3, €, |G;(t)|) as a function of € [0, 3) andj € (3, 1) for (a)
1Gi(t)] = 1, (b) |G;(t)| = 20, (c)|G:(t)| = 50, and (d)|G;(t)| = 100. It can be seen that

is less than or equal tbfor e € [0, 1) andf3 € (3, 1).

- 05 N 51 N
NI

“}\\%\\\\\\
R

RO

Figure 2.20:9(0, ¢, |G;(t)|) as a function ot and.

The following gives the proof for Lemma4.2
Proof. For brevity, letn = |G;(t)|. Proving thaty(3, €, |G;(t)]) is less than 1 is equivalent

to prove that

' Cp1—p)" s
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Becaused € (3,1), or (5 — 1) € (0, 1), it follows that

B
(5= DH1 =)+ (5 = 1)rke] (4 1)
- (DG B~ (G- DM -9+ (-
(G=Dra-g+ G -1 m+1)

Since[(l 1)1 —e) + (

! —1)”6](n+1)>0fora|lk:0,m,n,if

1
B

n

>+ DO 6" = (5= DH1- 9+ (5 -

1)”_1‘;6} <0,
k=0 s

theng(53, ¢, n) is less than 1. Note that

n

Y+ 1O = B)" = (n+1)(2 - 20)",

k=0
and
n 1 n 1 1 — 1 1 n+1
(B -1k = (B —1)t= (25_ 1) ;
k=0 k=0 B

<0. (2.45)

Next, the principle of mathematical induction is used toverthe inequality in Equation

(2.49.
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Whenn = 1, the left hand side of Equatio.45 is given by*(%*l)2 and is hence
less tharv.

Assume that fon = m,

1
(m+1)(2-28)" —

therefore, whem = m + 1, the left hand side of Equatio2.45 is given by

fl71m+2 17l71m+1 17171m+2
-1 <(m+2)(22ﬂ)(m5_ﬁ1)(2)_l) (5_;) (2.46)
B B

(m+2)(2— 29"+ |

1
B
Skipping all the detailed derivations, it follows that thght hand side of Equatior2(46)

is equal to the following expression,

(1= 28)m+ (3= 48) + (4 = D" [(1 = 28)m + (1 - 49)]
(m+ 1)@= 5) |

and it can be shown that the numerator is always lesstlaad the denominator is always
larger tharD) for 5 € (3,1) andm > 1.
To see why this is true, first when = 1 and € (1, 1), the numerator equals to the

following expression

(4—6B)+<%—1)3(2—6B)<0.

Next, take derivative of the numerator with respecttowhich gives

(1=28)+ (m+2) (%—1)m (1= 28)m + (1 — 48)] + (%—1)m (1-28) <0.

Therefore, the numerator is a monotonically decreasingtion form > 1 with a nega-

tive value atm = 1.
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Whene = 0, g(5, ¢,n) reduces to

k=0 \B k=0
This completes the proof. [ |

Therefore, from Lemma.4.2 the expectatio®[1 — P,,1|P, = 1 — €] is always less

thane. Hence, the following lemma holds.

Lemma 2.4.3. Under Sensing Condition 2, if there is an object presentemithat the
prior probability of object presencg;( X (¢) = 1;t) is within a neighborhood of one with
radiuse € [0, 3), then the conditional expectation of the posterior prolighi’; (X (¢) =

1|Y;(¢);t + 1) converges td.

Same lemma follows for the update sequehg&;(X (¢) = 0|Y} (¢);t + 1)]. There-

fore, the following theorem holds.

Theorem 2.4.2.For ' = 3 € (%, 1], i = 1,2,--- , N, if an object is present (respec-

tively, absent), the®[P;(X (¢) = 1|Y/(¢);t + 1)] converges to 1 (respectively, 0).

2.4.5.3 Uncertainty and Coverage Metric

From Theoren®.4.1, it is known that given the true state, the expected posteriaba-
bility of object presence/absengé < D will be bounded within a small neighborhood
of 1 with radiuse if the priors are given by — e. This corresponds to an upper bound
on the search uncertainty levdl', = —clne — (1 — ¢) In(1 — ¢). Here, the information
entropy function; ; follows the same form as Equatio®.85 and the subscriptis used

to indicate that this is the uncertainty level attained blyigle V;. Moreover, from Theo-
rem2.4.2 itis guaranteed that the expected posterior probabititywerges td, which is

equivalent to; ; — 0, V¢ € D.
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Now, define the coverage metric to evaluate the progreseafaarch task. Associate

each vehicle/; with the following search cost function:

— ZEED Hivs(PZ'st7 é7 t)

\Z (t) Hs,maxAD

. (2.47)

The cost7;(t) is proportional to the sum of search uncertainty @ve7;(t) is normalized
by dividing the sum over all cells by the area of the domaixn multiplied by Hj ;ax-

According to this definition, it follows that < 7;(¢) < 1. Initially, J;(t = 0) =

Hi,s(Pi,Hg 7évt)

Hs,max

< 1. If H; (P u,,¢ ts) = 0 at somet = ¢t forall ¢ € D, thenJ,(ts) = 0
and the entire domain has been satisfactorily covered and % certainty that there
are no more objects yet to be found.

2.4.5.4 \ehicle Motion Control Scheme

General Motion Control Scheme. According to the search metriQ.47), the upper

bound on the uncertainty leveél}, results in7;"(t;) = HH:x = 0 > 0 at some time

t; > 0. This is equivalent to say that the attained accuracy of tdmain search task is

1 — ¢. Furthermore100% certainty can be obtained if Sensing Condition 2 is satisfied
according to Theorer2.4.2 Therefore, under any vehicle motion control scheme that
covers all the cells within the entire mission doma@inthe cost function7;, — 4, i.e.,

all the objects of interest will be guaranteed to be foundhwliésired uncertainty. This
section seeks vehicle motion control strategies that tdikargage of the uncertainty map
and perform the search mission efficiently. Two differertticke motion control schemes
that utilize the uncertainty map will be presented, andrtherformance is compared in
simulations. The limited-range circular sensor model &ut® mode3’ in these control

schemes. This sensor model guarantees the realizatiomsingeCondition 1. To satisfy

Sensing Condition 2, one may assume an identical value 0.5 within W, and 0.5
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outside of it for all the vehicles.

Memoryless Motion Control Scheme. In this section, first consider a motion control
scheme that guides the vehicles based on only the uncgrtasgp at current time step,
that is, the control scheme is memoryless. For the sake @iy, assume that there is
no speed limit on the vehicles, i.e., a vehicle is able to mowany cell withinD from its
current location.

Consider the set
Qy(t) ={¢ € D:argmaxH; (P, pu,, ¢ t,)}, (2.48)

which is the set of cells with highest search uncertaintgllié; ; of vehicle); within D
at timet. Next, letq’(¢) be the centroid of the cell that vehiclg is currently located at

and define the subs&X,(t) C Q% (t) as

Q(t) = {¢ € Q(t) : argmin[|ac(t) — al }, (2.49)

whereq is the centroid of. The setQ)(¢) contains the cells which have both the shortest
distance from the current cell and the highest uncertainty.

At every time step, a vehiclg; takes observations at all the cells within its sensory
range. In general}* # 37, j € G(t), if V; and its neighbol’; have same distance to the
centroid of a certain celt, it follows that3* = 3/, i # j. The posterior probabilities at
these cells are updated according to Equatib88 based on all the fused observations.
The uncertainty map is then updated. At the next time stepydhicle will choose the
next cell to go to fromQ,(¢) based on the updated uncertainty map. Note &t)
may have more than one cell. L&ty be the number of cells iQ,(¢), the sensor will

randomly pick a cell fromQ,(t¢) with probability NLHd This process is repeated until
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H; is within a small neighborhood of zero with radia$or every cellc € D, which is

equivalent to finding all the unknown objects with a desiredainty level.

Motion Control Scheme with Memory. This section develops a motion control scheme
that takes into account both the current probability infation, uncertainty map and the
sensing history. First consider the following condition:

Condition C6: H; (P, u,,¢,t;) < H, Ve € Wi(t), where !, = —elne — (1 —

,87

€)In(1 — €) > 0 is a preset threshold of some small value.

For every vehiclé/;, the motion control scheme with memory is given as follows:

u;(t) if Condition C6 does not hold
ul(t) = (2.50)
u,(t) if Condition C6 holds

where

w(t) =k > <[<2a<x<e>=1;t>—1>2—1}2 t (ﬁi(wl)—ﬂi(r))),
ceEW;(t)

J

t 7=0
A

~
Memory Term

is the nominal control law, where both the current probabdf object presenc®; (X (¢) =

1;¢) and the sensing capability up to the current time step are used, and the perturba-
tion control law chooses the centroig of cell ¢ from the setQ,;(t) = {¢ € D :

H; (P, ¢ t;) > H'}, which is based on the uncertainty information at the cdrren

time step and only available to vehidkitself.

Simulation-based Performance Comparison. Now a set of numerical simulations are
provided to illustrate and compare the performances of bwbtion control schemes.
Assume a square domainwith size50 x 50, and discretize it int@500 unit cells. The

parameterV/; of the vehicle sensor is set asl, which gives the highest value fg¥ as
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Figure 2.21: Deployment of objects and vehicles, and pridibabf object presence.

0.9, i.e., there i90% chance that the sensor is sensing correctly at the locafitimeo

vehicle. The sensing capability gradually decreasés te 0.5. The desired uncertainty
levelis H}, = 0.02, corresponding te = 0.0002. There arel0 objects with a randomly
selected deployment as indicated by the magenta dots imé=22g2d (a) The position and

radius for each of thé vehicle sensors is shown by the black dot and circle.

Figure 2.21(b)shows the probability of object presence according to Vehig at
time stept = 1200 under both control schemes. All the peaks represent théiqosi
the objects detected with probability The probability of object presence as estimated
by other vehicles is similar to that shown in Figg1(b) This indicates that all the
unknown objects of interest have been found.

Figure2.22(a)shows the trajectories of all the vehicles during the emtiiesion under
the motion control scheme without memory. The green dotesgmt for vehicles’ initial
positions and red dots for final positions. Fig@.22(b)shows the trajectories of all the
vehicles under the motion control scheme with memory.

Figure 2.23(a)shows the the cost functiaf;(¢) for vehiclesYV, to Vs, respectively
under the motion control scheme without memory. Fig2r23(b)shows the the cost
function J;(t) under the motion control scheme with memory. Here the cotawin

Equation 2.50 is used with control gaitk; = 1, k; = 0.025. In both cases, all the cost
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Figure 2.22: Fleet motion under search control scheme witaod with memory.

functions converge to zero at time step 1200, which is consistent with the result shown
in Figure2.21(b)and equivalent to the detection of all the 10 unknown objettsterest.
Comparing the simulation results, there is more redundamasehicle trajectories
under the memoryless motion control scheme. This is bectheseontroller is only
dependent on the current uncertainty map and does not tekadaount the history of
the paths that the vehicles traveled before. However, thecten of uncertainty is faster
under the memoryless control scheme because it is a globabtler that always seeks
the cell with highest uncertainty within the entire searomadin. On the other hand, under
the motion control scheme with memory, the nominal corgradi a local controller which
drives the vehicle towards the cell with higher uncertaimityin the sensory domain, and
a perturbation controller is used whenever the vehicleapped in a local minimum.
Under both motion control schemes, all the unknown objettaterest are found with
desired uncertainty level. If fuel efficiency is a priorighe may want to avoid using a
memoryless motion controller that spreads all over the dionfan the contrary, if time
is a limited resource, one may prefer a memoryless motiotraier in order to achieve

the desired detection certainty quicker.
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Chapter 3

Awareness-Based Decision-Making

Strategy

In the previous chapter, both deterministic and probahilisoverage control schemes
were developed for domain search problems, which serveedsuindation for the decision-
making strategies developed in the subsequent chapteischidpter presents determin-
istic awareness-based decision-making strategies faeeh and classification of mul-
tiple unknown objects of interest using MAVS. This is basedtloee awareness model
developed in Sectio.3.

The chapter is organized as follows. Secti& introduces the problem setup. In
Section3.2, both search and classification metrics are introduced asiified. Both
centralized and decentralized decision-making strasegie developed in Sectidh3
The decision-making strategies guarantee: (1) the fulecaye of a domain of interest,
and, equivalently, the detection of all objects of inteiasthe domain with probability
one, and (2) the classification of each object’s “state” fariaimum guaranteed amount

of time ..
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3.1 Problem Setup

In the search task, all objects of interest in a search doar@mequired to be found. In
the classification task, each found object has to be clad$dreat least an amount of time
equal tor,, which is the critical minimum information collection tintbat is needed to
characterize the state of an object. Here the objects anenaskto be static.

Let N, > 0 be the number of objects to be found and classified. Bgifand the
locations of the objects i are unknown beforehand. At tintelet the setd = S(¢) U
T(t) ={1,..., Na}, which is the set of indices of all the vehicles in the sensmtfland
where the sef(¢) contains indices of vehicles carrying out the search missiod where
the set7 (¢) contains indices of vehicles carrying out an object clasaion mission.
Here assume that vehicles can either be searching or gliagsit any instant time,
but not both simultaneously, and therefore the s$&ts and 7 (¢) are disjoint for allt.
Initially, assume that all vehicles aredi{t). When a search vehicle detects an object and
decides to classify its property, this search vehicle timtssa classification vehicle and,
hence, there is one fewer vehicle in the Sét) and one more vehicle in the Sg{).

Assuming some search versus classification decision-rgakiategy that guarantees
coverage of the entire domain and that avoids the assignofi@miltiple vehicles to the
classification of a single object, for the case whén< N,, after a certain amount of
time, each object will be guaranteed to be detected andafsepty satisfactorily classi-
fied by some vehicle. However, for the worst case scenarigauNg > N, in a large-
scale domain and with a poor choice of decision-makingesgsatone may end up with
S(t) = @ while there may still exist unfound objects. For exampldrategy where once
an object is found it is classified for all time from that pofatward would likely lead
to some objects never being detected when there are moretolij@an vehicles. This

section investigates strategies that guarantee that dgett aill be found and classified,
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especially under the worst case scenario, while simultasiggroviding a lower bound
for the amount of classification time.

It is assumed that each vehidke € A satisfies the awareness dynami2d{). The
state of awareness of the set of search aggfitsin surveyingg then satisfies the differ-

ential equationZ.18).

3.2 Search and Classification Metrics

Similar to the probabilistic counterpaf.47) proposed for MAV search mission in Sec-
tion 2.4.5.3 here, the cost associated with a decision not to carry othdusearching,
Ji(t), is chosen to be proportional to the size of the un-searclathth. A uniform
probability distribution is assumed for the locations ofedlts inD, hence,7,(t) is pro-
portional to the probability of finding another object begldimet. The cost associated
with a decision not to classify found object$;(¢), is chosen to be proportional to the
time spent not classifying a found object.

Define the search cost function to be

7ty = a.1)

€g,max

wheree,(t) is given by EquationZ.21). Under Assumptior2.3.1and considering a
uniform probability distribution for the locations of théjects inD, the maximum value

of e,(t) is given by

Ap
€gmax = €4(0) = >

becausex;,, = —1. According to this definition, it follows that < 7,(¢) < 1. Initially,

J1(0) = 1 describes the fact that it is known with probabilitghat there exists at least
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one object which has not been detected. This comes from Hugrgation thatV, > 0.
If N, happens to be zero, assuming that there exists at least geet obinterest over
the domain will guarantee verifying that there is none. Unilgsumption2.3.1 when
Ji(ts) = 0 for some timet, > 0, the entire domain has been satisfactorily covered and it
is sure that there are no objects yet to be found. At this pthietsearch process is said
to be completed.

For the classification metrig,(t), let No(t) < N, be the number of objects found by

the sensor fleet up to time Define the classification cost functigh(¢) to be

¢ No(7

/ Z g; (1 (3.2)

where

1 if p;(t) ¢ W;(t) foralli e A
g;(t) =

0 if p;(t) € Wi(t) for some i € A.
If a search vehicle detects an obj&2t a functiong;(¢) is assigned to the object (unless
it has already been assigned one if detected in the past)lu& @& 0 is assigned tg; as
long as some agent classifi@s, and the classification cost associated wWithis zero. In
this case(; will be labeled as “assigned”. Once the search vehicle @ésat to classify
0;, O; is now labeled “unassigned”, angl(t) switches its value td, implying that a cost
is now associated with not classifying the found obj8¢t According to Equationd.2),

this cost is equal to the amount of time during which a foun@gatis not classified.

Remark. 3.2.1. A remark on the case with some information loss. If relaxiagulnption
2.3.1 the parametec in the awareness model reflects loss of spatial informatizer o
time. It essentially sets a periodicity to how often thererdgrea must be re-surveyed. On

the other handy; reflects loss of information associated with a specific dlieer time.
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It is important to realize this distinction between the damawareness loss nature of

(and, hence.7;) and the specific-object awareness loss naturg ¢and, hence;). e

3.3 Search versus Classification Decision-Making

Under Assumptior2.3.1 a search and classification decision-making strategy il
developed to guarantee, in both its centralized and desdezetdl implementations, finding
all objects inD and classifying each object for some time with a lower boundhe

classification time.

3.3.1 Centralized Strategy

Since it is assumed thaf, > N, whenever a vehicle detects an object, it has to decide
whether to classify it or to continue searching. If it doeside to classify, it has to decide
on how much time it can afford to classify before it contintles search process.

Before deriving one possible way to determine the amounkassdication time, first
consider a search strategy. The goal in the search strateégyattain an awareness level
of ||x(q,t)|| < ¢ forallq € D and allt > t, for somet, > 0. For the search process,
the control law 2.27) is used to drive the state of lack of awareness to a neigloodrh
of zero. It guarantees coverage of the entire dorffainith 7, (¢) converging to a small
neighborhood of zero, which implies that all objects haverb®und and the search
process is complete. The classification strategy discusskav will guarantee that all
objects will be classified for a minimum af amount of time. The search control law
(2.27) and the tracking strategy, together, will guarantee thed®n of all objects of
interest and their classification for at leasamount of time.

If a search vehicle finds object(s) within its sensory rarigen it will classify the
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object(s) for a" time period from the time of detection, where

Tec

T —
Ji(ta)’

(3.3)

tq being the time of object detection, and where> 0 is the desired critical minimum
amount of classification time. This is the amount of time thakeeded to characterize the
property of an object. The larger the valueff(t,) is (i.e., the less aware the vehicle is
of the domain), the less time the vehicle will spend classifythe object. As the degree
of awareness increases at detection time, the more timeethiel® spends classifying the
object. Note that7(¢;) can not be zero unless the mission is completed, at whictt poin
there is no need to computé

Hence, once a vehicle detects an object and decides tofglt#ssiparticular object,
it becomes a classification vehicle and will not carry out aagrching for a period of
T seconds. Note that while the vehicle is classifying, otledrieles may be searching.
In the centralized implementation, the amount of centealigystem awareness$q, t) is
available to all vehicles. So is the value @f(t,). It is assumed that each object will
only be classified once by only one vehicle during the missiafter a time period of
T, the classification vehicle will switch back to become a searehicle and leave its
classification position to find new objects. At this pointime, the object will be labeled

“assigned” and will not be classified by any other vehicleiirfid.

Theorem 3.3.1.Under AssumptioB.3.], the centralized search and classification decision-
making strategy given by Equation.27) and (.3 will guarantee that7; converges
asymptotically to zero, which is equivalent to guarantgefmat all objects be found. The

minimum amount of time spent classifying any object is goyen.

Proof. The proof for guaranteed detection of all object followsedtty from Theorem

234
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The minimum classification time comes from the fact that cerc@bject is found, it
will be classified for at least./ 7 (tq4). J1(tq) assumes a maximum value of 1 jf= 0.
In the extreme scenario where an object is found-at0, the value ofl" is exactlyr,. If
an object is found at a time other thae- 0, 7, (t4) has to be less than 1 and, herifas

greater than.. [ |

Remark. 3.3.1. For the case whenV, is known beforehand andy, < N, under the
centralized search, and assuming that if some vehicle findsbgect it will classify this
object for all future time, each object will be guaranteed®detected and its property
permanently classified by some vehicle. Proof of complaterage of the domain, and,
hence, detection of each object, follows directly from tleopof TheorenB8.3.1 Since
N, < N, and each object can only be classified by one vehicle, asgjgaiunique
vehicle to a single object whenever an object is detectexhsslile (i.e., there are enough

resources to do so) and every object will be satisfactotagsified.

A simulation result is provided in Figurésland3.2 whereN, = 6 and N, = 4 for
some choice of controller gains and coverage sensor paggndihe domai® is square
in shape and discretized inf¥; = n x n = 32 x 32 cells, whereq € R? represents
the centroid of each cell. Hence(q,t) can be written as a vector of dimension.
Figures3.4(a)and 3.4(b) show the evolution of7;(¢) and J,(t) under this centralized
control strategy. Figure3.1(c)and3.1(d)show the control force and fleet motion under
the centralized implementation. FiguBe2 shows the state of awareness distribution at
three different time instances. The circular dots inditlagepositions of the vehicles, and
the square dots indicate the objects. The magenta ciraaharehicles’ sensor ranges.
Table3.1 shows the classification time of each object, which is guashto be at least

7. = H seconds.
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Table 3.1: Classification tim€ for each object.
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(b) t = 28s

(c) t = 140s

Figure 3.2: State of awareness at different time instarCent(alized).
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3.3.2 Decentralized Strategy

Now assume that the sensor fleet is completely decentralizédt is, each vehicle is
aware of coverage achieved by itself alone. Each objectdsfnill be assumed to be
found for the first time. This represents a scenario wherenconications between ve-
hicles is not possible (for example, due to security reasthressensor vehicles have to
remain “silent” otherwise they themselves may be detecyeatdversary vehicles).

In the decentralized formulation, the search control sgwat2.26 is employed. For
the classification strategy, when a search vehigléinds object(s) within its sensory

range, it classifies the objects for a time period otlefined by

Te

T =
Jhi(ta)

(3.4)

where

Tu(t) = Lo (3.5)

€gi,max

and wheree,;(t) (Equation 2.20) is the global error over the entire mission domain
achieved by the vehicl®; only, with eg; nax = €4(0) being half of the area dp if the
initial statex;(q,t = 0) = —1 is as assumed from the outset. Moreover, define the cost
of not classifying an object found by vehidlé by

Ni(r

t )
Tult) = [ Y- 0 (3.6)
0 5=
whereN{(t) is the number of objects found by vehidkeup to timet. Assume that each

object will only be classified once by each vehicle duringrthission.

Similar to Theoren8.3.], the following results hold:
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T,(s) | Objectl | Object2 | Object3 | Object4 | Object5 | Object6
Agentl | 7.0090 | 5.8723 | 5.1221 | 5.3971 | 6.1709 | 5.6022
Agent2 | 55974 | 7.0428 | 5.1835 | 5.0000 | 5.6022 | 6.1474
Agent3 | 8.7574 | 7.9469 | 5.1609 | 5.6027 | 5.3634 | 5.1281
Agent4 | 5.7563 | 5.1835| 7.0981 | 6.3030 | 5.9109 | 6.5911

Table 3.2: Classification time of each object by each vehicle

Theorem 3.3.2.Under Assumptio@.3.], the decentralized search and tracking strategy
given by Equations226) and 3.4) will guarantee that7; converges asymptotically to
zero, which is equivalent to guaranteeing that all objeets found. The minimum amount

of timer, spent on classifying any object is also achieved by eaclthehi

The proof of this theorem is similar to the proof provided the centralized case.
The only important aspect of the proof that needs highlights that, along the same
lines as the proof for the centralized cagk; is guaranteed to converge to zero for all
V; € A. Itis not immediately clear that the global cqggt will also converge to zero as
the TheorenB.3.2states. However, note tha;(t) > e,(t) because the more vehicles
and sensors available to us, at least the same or highell@lelal coverage is achieved
by the system. Sincg/; and Jy; (for all V; € .A) are both initialized to be 1, then
Jhi(t) > Ji(t), for all timet, because,;(t) > e,(t). If J1;(t) is guaranteed to converge
to zero under the control lav2(26), then so doeg/; (¢).

A simulation result is provided in Figur&3and3.4. Figures3.3(a)and3.3(b)show
the evolution of the individuali;;(¢) and Jy;(t), i = 1,2,3,4 under the decentralized
control strategy. Figure3.3(c)and3.3(d)show the control force and fleet motion under
the decentralized implementation. Fig@&.d shows the state of awareness distribution at
three different time instances. Tal8e2 shows the classification time of each object by

each vehicle, which is guaranteed to be at least 5 seconds.

100



350

]|
1,0
1,00
I,

1,0
1,0
I,
I,

300 [~

250 [~

200 -

J2i

150

100 -

50

250 0 50 100 150 200 250

(b)

asf (\

30

251

20

-5 [ 5 10 15 20 25 30 35 40
x

(d)

Figure 3.3: Decentralized Implementation (awareness¢bdscision-making).
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Chapter 4

Bayesian-Based Decision-Making

Strategy

In the previous chapter, the deterministic awarenessebdesesion-making strategies for
search and classification are developed assuming perfesingeunder both centralized
and decentralized system architectures. This chaptesésoon the development of real-
time decision-making criteria given limited sensory rases under probabilistic frame-
works. The uncertainties in sensor perception is takeraatount during MAV decision-
making. Bayesian-based and information-theoretic seacsus classification decision-
making strategies are developed that result in guarantetetitbn and classification of
all the unknown objects in the domain.

The basic problem setup is first introduced in Sectldh In Section4.2, the proba-
bilistic counterparts of the task metrics are provided. d8lagn the problem formulation
and task metrics, a Bayesian-based decision-making gyreteleveloped in Sectioh.3
Both a simulation example and Monte-Carlo simulation eixpents are presented in Sec-

tion 4.4to study the performance of the proposed decision-maknatesty.
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4.1 Problem Setup

To illustrate the ideas while avoiding additional compiatatcomplexities, in this and
the subsequent chapters, it is assumed that there is a aitgi@omous vehicle perform-
ing the search and classification tasks under the probabiliameworks. This reflects
the case of extremely limited sensing resources, i.e.,glesautonomous vehicle as op-
posed to cooperative MAVS. The extension to MAV decisiorkimg can follow the
formulation presented in Secti¢h4.5via sensor fusion. Sectiofi4in Chapter5 dis-
cusses the extended application of risk-based sequemeitadidn-making to the Space
Situational Awareness (SSA) problem using a Space-BasadeSpurveillance (SBSS)
system, which consists of both ground-based sensors aitohgréatellites.

For both the search and classification processes, the Be#type limited-range sen-
sor model 2.31,2.32 in Section2.4.1is used, however, with different observation con-
tents: X (¢) = 0 for object “present” andX (¢) = 1 for object “absent” in search, and
X.(px) = 0 for object O, having property ‘F" andX.(px) = 1 for objectO, having
property ‘G’ in classification. Here, an object can be assias many property types as
needed, but without loss of generality, it is assumed thailgact can have one of two
properties, either Property ‘F’ or Property ‘G’. LEl(p;) be the corresponding classifi-
cation observation random variable, wh&rép;,) = 0 corresponds to the observation in-
dicating that there is an obje€Y, with property ‘F’ present at positiop,, andY (px) = 1
corresponds to property ‘G’, respectively. The actual oleeon is taken according to the
probability parametes,. of the Bernoulli distribution. The general conditional padility

matrix B,. for the classification process is then given as follows

B. =
Prob(Y.(px) = 0| Xc(px) = 0) = 8. Prob(Ye(px) = 0|Xc(pr) =1) =1 - 5.

Prob(Y,(py) = 1|Xe(pi) =0) = 1— . Prob(Ya(ps) = 1|Xe(py) = 1) = 4.
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Similar as in Sectio2.4.], two types of sensor models can be assumed for classification
For the unit-range sensor modeg), is set as a constant value. For the limited circular

range sensor model, the following example is in a same fasisd=quation.32),

M. (5% — 7’2)2 +0b, ifs<r,
Be(s) =49 ™ , (4.1)

by, if s >r,
whereM. + b, is the maximum sensing capability= ||q(¢) — pxl|, ¥ = 1,2, -+, N,
andr. is limited classification sensory range. When an object tdrest is within the
sensor’s effective classification raditis< r., this object is said to be found, and the ve-
hicle has to decide whether to classify it or continue seagchBayes’ rule is employed
to update the probability of object presence at édibr the search process. Similar as
Equations 2.34) and .33, we use Bayes rule to update the probability of a found ob-
ject O, having property ‘G’ for the classification process, i.B.(X.(px) = 1). Based
on the updated probability of object existence, define aarmétion entropy function
H,(Py,,c,t) (2.39 as a measure of uncertainty for the search process. Fotabsfc
cation process, define a similar information entropy fwrc#.( Py, px, t) @s Equation

(2.39 for every found objecO,. to evaluate its classification uncertainty:

HC(PHC7 Pk, t)

= c(Xc(pk:) = O) In Pc(Xc(pk:) = O) - Pc(Xc(pk:) = 1) In Pc(Xc(pk) - 1)7

where the probability distributio®’;, for the classification process is given by, =
{P.(X.(px) = 0), P.(X.(px) = 1)}. There are as many scal&t.'s as there are found
objectsO, up to timet. The initial value forH, for every found objecO, can also be set

asH. = H.max = 0.6931.
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4.2 Task Metrics

This section develops metrics to be used for the search velagsification decision-
making process. For the search process, a same metric asdag(2ad?) is presented
when applied to a single vehicle sensor. In the event of olojetection and a decision
not to proceed with the search process, but, instead, tastglassify the found object,

the associated cost is defined as

o ZéeD HS(PHs? C, t)
B Hs,maxA'D

I (1) . (4.2)

For the classification process, 181,(¢) be the number of objects found by the au-
tonomous sensor vehicle up to time For each found objedd, € {1,2,---, N,(¢)},

define the classification metri€,(py, t) to be

Hd(pknt) = ng(t)v (43)

where the weighting parametéf” € (0, 1) is a preset upper bound on the desired uncer-
tainty level for classification. This metric couples thersbaand classification processes
and allows decision-making based on the real-time progregee mission.H,; depends

on how uncertain the vehicle is of the presence of more udf@minects inD through

J . If the vehicle finds an objec®, (i.e., within the effective classification radiag and
decides to classify it, the vehicle will continually clagst and compare the classification
uncertaintyH.( Py, , px, t) to the desired classification uncertairffy(py, ¢). Only when

the classification condition

H.(Pu,.,pr,t) < Hy(Pk, ta) (4.4)

is satisfied, the vehicle stops classifying the found olgadtswitch to search again. Here,
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tq is the time of object detection.

The highest classification uncertainty bouH¢l is motivated by the following. Say
that the vehicle detects an object at the beginning of theiomniswitht; = 0 and decides
to classify it. Initially, 7(0) = 1 and the vehicle will attempt to classify it unfil. < H*.
This is the minimum desired classification accuracy levelaoy found object. Any
further classification accuracy will come at the cost of ref@rming the search task and
decrease the potential of finding more critical objects exdbmain. If an object is found
at a time other thaty, = 0, J (t4) has to be less thahand, henceH,(px, t4) is smaller
than H. On the other end of the spectrum/if(t,) = 0, the vehicle can spend as much
time classifying the object since it does not come at anyckeewst. This is because the
vehicle has achievet)0% certainty that it has found all critical and noncritical ebis in

the domain.

4.3 Search vs Classification Decision-Making

Now consider a probabilistic Bayesian-based search velassification decision-making
strategy that guarantees finding all the unknown objecf3 (ne., achieve7 — 0) and
classifying each object with an upper bouH¢ of the classification uncertainty.

For the search strategy, the control |23 is used and the following lemma holds.

Lemma 4.3.1. Assumé/ is such thatD = Op(t), the search strategy2(36) guarantees
an uncertainty leveld,(Py,,¢,t;) < H! for all ¢ € D. Therefore, the search cost

J(t) < e, = = forall t > t, for somet, > 0. This is equivalent to the detection of

Hs max

all unknown objects ifD with a desired certainty level.

Proof. If Condition C5 does not hold, the nominal control law(¢) is utilized to drive the
vehicle to some celt, that has the highest search uncertaint@ip (¢).

When the uncertainty/, of all the cellsc € O,y () converges td{7¥, ConditionC5
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holds, and the vehicle gets trapped in region&lof< H! by applying only the nominal
control lawu while the entire domaif® has not been fully searched yet.

At this moment, the perturbation control lawis used to drive the vehicle out of the
regions with low uncertainty?? to somec* € Qp(t) such thatH,(Py,,¢c*,t) > H!
if such a point exists. Under the perturbation control Idey,— q*|| will eventually be
smaller than- and, hence, Conditio@5 will not hold. At this point in time, the control
is switched back to the nominal control law. Note thas always ini/ by definition of
Op(1).

Given thatQp(t) C D(t) according to definition, it/ is such that anyj € D(t) is
also inQp(t), viz., D = Qp(t), then every cell irD is reachable from where the sensor
is. The switching between andu is repeated until whenever Conditi@b holds there
does not exis€*. The non-existence of suchca at some time, > 0 guarantees that
J (ts) is sufficiently close to zero. Becaugk( Py, ¢, t,) is smaller than!* everywhere

within D, it follows that 7 (¢;) < HHu = ¢, according to the search cost functighd).

max

The search mission is then said to be completed. [ |
Next, consider the following classification strategy: Asarnvehicle will stop search-
ing and begins to classify an object whenever the objecttisinvits effective classifica-
tion ranger.. If the classification conditior4(4) is satisfied, the vehicle will switch back
to become a search vehicle and leave its classificationiposd find new objects. The
vehicle can resume classifying an object that has beentddtaad classified in the past

if it finds it again during the search process.

Lemma 4.3.2. The classification strategy guarantees that each foundcoimeD will be

classified with an upper bound uncertairfy.

Proof. Once the vehicle finds obje@, within its effective classification range and
decides to classify it, it switches to a classification tas# will not carry out any search

until H.(Py., pr,t) < Ha(pk,tqs). After achieving at least the desired upper bound of
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classification uncertaintif *, the vehicle switches back to search again. When the vehicle
left the object, the classification uncertainty for thiseattjwill remain constant until
the vehicle comes back to classify it when possible. At thmaet the value offf; will

be smaller because more regions have been searched sirlastttime the vehicle has
found the object. This process will be repeated until eagbabdlin D has a classification

uncertainty of at mosk !, or equivalently, the classification task is completed. W

Theorem 4.3.1.According to Lemma4.3.1and4.3.2 the search and classification decision-
making strategy guarantees thdtconverges asymptotically to zero, which is equivalent
to guaranteeing that all the unknown objects within the domall be found. The maxi-

mum acceptable classification uncertaiify is achieved by every found object.

Remark. 4.3.1. The priority of each task during the mission is based on tlaé-tiene
progress, that is, the corresponding task metrics at eadle instant. In the current set-
ting, whenever the object is within a sensor vehicle’s &ffecclassification range.,
the vehicle will begin to classify the object. At that mom#ém classification task pos-
sesses higher priority. The vehicle will switch back to seagain when the classification
uncertaintyH. is less than the desired classification uncertainty lg¥glwhich is time-
varying and depends on the search uncertainty |&eht the detection timeg; according
to the classification metricd(3) and the search cost functiod.@). At this pointin time,
the search task is given a higher priority. Becausgis decreasing with timet; also
decreases. Therefore, a vehicle will be able to spend more tlassifying a found ob-
ject when more unknown objects have been found than at teetaftthe mission. This
can be interpreted as that more priority will be assignedhe tlassification task as time

increases. °
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4.4 Simulation

This section provides A) a detailed numerical simulaticat fhustrates the performance
of the decision-making strategy, and B) a Monte-Carlo satioh study to demonstrate
the properties of the proposed algorithms. All the simaladiare implemented by means

of a 2.27-GHz, i3-350m processor with 4GB RAM, and Matlalpapded codes.

4.4.1 Simulation Example

Assume a square domaihwith size32 x 32 units length, thus the domain is discretized
into 1024 cells. There aréV, = 5 objects. Let objects 1, 3 and 5 have property ‘F’,
and objects 2 and 4 have Property ‘G’, with a randomly setkctéial deployment as
shown by the green and magenta crosses, respectively, imedlL Figure4.1 shows
the evolution of search uncertainty, (dark red for highest uncertainty and dark blue
for lowest uncertainty) and the vehicle motiontat 1,250,475 and700. The maximum
radiusr of the search sensor is chosen t&l@nd the classification radiusis also chosen
asg, as shown by the magenta circle in Figdrd The effective classification radius

is set a$ as shown by the green circle in the figure. The black dot repitsshe position

of the vehicle. The parametéf = M. of the sensor is set &s4, which gives the highest
value for 3 as0.9, i.e., there i90% chance that the sensor is sensing correctly at the
location of the vehicle. The sensing capability graduadiguces to 0.5 according to the
models discussed above (Equatiob89 and @.1)). The initial position of the vehicle is
also selected randomly (see Figdrd(a). Let the desired upper bound for classification
uncertaintyH" be0.01. Here the control law in Equatior2 (36) is used with control gain

k = 0.2. The set/ is chosen to b®, so thatQ,y (¢) is given by the intersection éf and

W, i.e., DNW andQp(t) = D which guarantees the full coverage of the entire domain.

From Figure4.1(d) it can be concluded that the desired zero search uncertaastbeen
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achieved everywhere withi. The actual maximum achieved search uncertainty turns

out to be2.6 x 10~2 according to the simulation results.

X

5 10 15 20 25 30

(d)

Figure 4.1: Search uncertainty map (Bayesian-based daemaking).

Figure4.2(a)shows the evolution of the search cgétt) under the control strategy
(2.36 and can be seen to converge to zero. All the objects have foeed with the
probabilities of object presence asnd zero search uncertainty. Those cells that do not
contain an object end up with zero search probability aneédamty. Figuret.2(b)shows
the posterior probabilities for evegywithin D att = 700, where all the unknown objects
are detected and all the empty cells are also identified.

For all the5 found objects, objects 4 have been classified with probability of having
Property ‘G’ asl and zero classification uncertainty. Objeti8, 5 have been classified

with probability of having property ‘G’ a® and zero classification uncertainty. Figure
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Figure 4.2: Search cost functign(¢) and posterior probabilities for searchtat 700.

4.3 shows that, for example, objezthas property ‘G’ and objec has property ‘F’ with
zero classification uncertainty. The classification resaftother objects can be shown

like Figure4.3without difficulty.

50.4'

0 100 200 300 400 500 600 700
t

1

0.6

0.21

1

O0 100 200 300 400 500 600 700
t

L’.\.VT‘O.!:_)“"‘\)L

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
t t

(@) (b)

Figure 4.3: Classification results for objécand3 (Bayesian-based decision-making).

4.4.2 Monte-Carlo Simulation

In this section, a Monte-Carlo simulation-based study avjgled to investigate the per-
formance of the proposed strategy. Four metrics are usedatoate the algorithms, i.e.,
the average CPU time for mission completion, the averagelaiion steps for mis-

sion completion, the achieved mean search uncertaintytbgefomain, and the achieved
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mean classification uncertainty of all found objects andr tt@responding standard de-
viations. The mission is said to be complete when a desiractseand classification
uncertainty of at mosi.01 has been achieved. The algorithms is tested by varying the
mission domain size, search and classification sensornesang-., 7.), peak sensory ca-
pability M, and the total number of objeci&,. 100 runs are implemented for each case
with a fixed combination of the above parameters. The sStlstesults are listed in
Tables4.1-4.4.

Table4.1 shows the average CPU time for mission completion, the geesanula-
tion stepst for mission completion, the achieved mean search uncéeyt#iff/,| over
the entire domain, and the achieved mean classificationriamnaty £[H,| for all found
objects with their corresponding standard deviations éreptheses) of00 runs under
domain sized6 x 16, 24 x 24, 32 x 32, 40 x 40, respectively, using a fixed set of object
positions under each case and same parameters as in Skdtibi\s expected, the time
for mission completion grows with the domain size. An ingtireg observation is that
as the domain size increases, the final achieved averageghsaat classification uncer-
tainty levels decreases. This is because in larger dom@ioe regions will have to be
revisited in order to cover the entire domain. Moreoverertbat the deviation of classi-
fication uncertainty is larger than the search uncertaietyabise every object is detected
at a different time step and the correspondHgis time-varying.

Table4.2shows the four metrics d00 runs under sensory range€ r. = 6, 7. = 4),
(r=8,7. =6), (r =10,7. =8), (r = 10,7, = 7), respectively, using the same parame-
ters as in Sectiod.4.1 Since smaller sensory range is equivalent to larger dosiaa)
it is expected that this case leads to more mission complétice. With the same search
range, smaller classification range causes reduction imiksion completion time be-
cause the probability of object detection decreases withllensensory range. However,

the final achieved uncertainty is higher under less missoompietion time.
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Size

CPU

t

E[Hs]

E[H,]

16

1.33
(0.66)

311.72
(120.67)

2.73E-05
(9.16E-06)

1.53E-04
(3.38E-04)

24

4.96
(1.63)

489.58
(118.65)

1.34E-05
(4.09E-06)

1.17E-04
(4.52E-04)

32

13.25
(3.29)

695.53
(113.22)

8.13E-06
(1.94E-06)

3.93E-05
(1.09E-04)

40

34.81
(6.74)

1043.4
(121.77)

5.76E-06
(2.08E-06)

1.44E-05
(5.02E-05)

Table 4.1: Varying mission domain size.

Range

CPU

t

E[Hs]

ETH,]

r =
7o =4

20.66
(3.07)

916.35
(64.33)

8.68E-06
(1.28E-06)

4.00E-05
(1.77E-04)

r =
7. =6

13.25
(3.29)

695.53
(113.22)

8.13E-06
(1.94E-06)

3.93E-05
(1.09E-04)

r=10

Te =8

12.96
(4.26)

680.68
(166.89)

7.86E-06
(2.00E-06)

3.01E-05
(6.60E-05)

r=10
Te=71T

8.13
(1.44)

452.15
(57.39)

8.01E-06
(1.67E-06)

4.47E-05
(1.62E-04)

Table 4.2: Varying sensory range.
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M| CPU / E[Hs] E[H,]
0.2 | 96.31 | 2837.31| 9.30E-06 | 2.82E-05
(21.34)| (320.35)| (6.88E-07)| (1.99E-04)
0.3 | 30.37 | 1275.09| 8.69E-06 | 1.74E-05
(7.29) | (169.55)| (1.17E-06)| (4.62E-05)
0.4| 13.25 | 695.53 | 8.13E-06 | 3.93E-05
(3.29) | (113.22)| (1.94E-06)| (1.09E-04)
0.5| 7.90 | 421.60 | 6.20E-06 | 2.58E-05
(1.97) | (80.12) | (3.12E-06)| (3.69E-05)

Table 4.3: Varying peak sensing capability.

Table 4.3 shows the four metrics of00 runs under peak sensory capability =
M. =02, M =0.3, M =04, M = 0.5, respectively, using the same parameters as in
Sectiord.4.1 The largerM is, the shorter the mission completion time and the lower the
search uncertainty becomes. Note that whén= 0.5, the vehicle has perfect sensing,
i.e., 100% detection probability, at its location. This leads to a keguction in mission
completion time and final achieved uncertainty.

Table4.4 shows the four metrics afo0 runs undes, 5, 10, 20 objects, respectively,
using a fixed set of object positions under each case andriegarameters as in Section
4.4.1 The mission completion time increases with the number géaib. The achieved
search uncertainty does not differ much in each case bethedetal number of cells
is the same. However, the achieved classification unceytaioreases as the number of
objects grows since the sensing resources get distributed.

From the above simulation results, it is concluded that tp@sed algorithm is scal-
able for large-scale domains and a large number of objetiisfvis the incentive for this

work.
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No.| CPU t E[Hs] E[H,]

3 | 13.25 | 656.22 | 8.52E-06 | 1.16E-05
(2.75) | (97.63) | (1.48E-06)| (2.55E-04)

5 | 13.33 | 69553 | 8.13E-06 | 3.93E-05
(3.29) | (113.22)| (1.94E-06)| (1.09E-04)

10 | 21.94 | 957.84 | 8.15E-06 | 4.66E-05
(5.98) | (183.64)| (1.71E-06)| (1.01E-04)

20 | 36.74 | 1360.51| 7.68E-06 | 1.21E-04
(13.22)| (294.06)| (2.33E-06)| (1.67E-04)

Table 4.4: Varying number of objects.
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Chapter 5

Risk-Based Sequential Decision-Making

Strategy

This chapter focuses on the development of a risk-base@ségldecision-making strat-
egy based on the probabilistic Bayesian-based decisidingatrategy in Chapted.
To accomplish competing tasks under limited sensory regsuwvith minimum risks, a
real-time decision-making strategy is developed to dywcattyi choose the task to be per-
formed based on an overall risk assessment associatedhittetision. Risk is defined
as the expected cost of decision errors as well as obsenaigis. The proposed strat-
egy seeks to find and classify all unknown objects within tbdin with minimum risk
under limited resources.

Section5.1reviews some related literature on sequential detectidrrigk analysis.
The binary risk-based sequential decision-making styatesgng a single autonomous
vehicle is then investigated in detail in Sectibr2. In Section5.3 the binary results
are extended to the more general ternary setting, whichlenabncurrent search and
classification observations. The ternary decision-magiragegies are then applied to the

SSA problem in Sectiob.4.
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5.1 Literature Review on Sequential Detection

The proposed approach relies on the technologies of Bayesiaanalysis. To be more
specific, consider the following scenario. Imagine theeeafleet of distributed sensor-
equipped MAVs with limited sensory range over a large-saakesion domain. The sen-
sors are assumed to have measurement errors, or perceptienainties. The goal is to
detect and classify all the unknown objects within the denwath minimum risks in the
presence of the noisy measurements. To achieve this olgeetich vehicle sequentially
updates its knowledge about object existence over theeadtimain and the classification
property for each found object through its own observateimch are used to compute
the risks via Bayesian sequential detection method.

The key feature of sequential detectid®¥ is that it allows the number of observa-
tions to vary in order to achieve an optimal decision. Thed3&@n sequential detection
method used in this chapter is such that the Bayes risk (t@itmedlly defined in Sec-
tion 5.2.2 is minimized at each time ste@33. This method was formulated by Wald
and Wolfowitz in [L33 and provides a strong theoretical background for detaatisk
analysis. Two types of costs are taken into account in thkecatculation: 1) the cost of
making a wrong decision, i.e., the probability of misseldéaletection, or incorrect clas-
sification, and 2) the cost of taking more observations foossfbly better decision. The
observation cost is computed in real time based on the pge@fehe task. Due to the ran-
domness of observations and the dynamic observation adstision may be made with a
few observation samples to reduce measurement cost, velfereather cases one would
rather take more samples to reduce decision uncertaintyrarsdminimize the overall
risk. In [148, a sequential Bayes classifier is utilized for the realetiatassification of
detected targets under a neural network based framewosleMas, without consideration

of observation costs. Another sequential detection meihtite Sequential Probability
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Ratio Test (SPRT)J05 131] based on binary Neyman-Pearson formulation where no
prior probability information is needed. On average, a $enalumber of observations
are needed to make a decision using SPRT compared with aiiyergimble method
with a predetermined fixed number of observatioh3. The change-point detection
theory [7,113 is a generalization and modification of SPRT. It detects ange in the
probability distribution of a stochastic process or timeese Existing techniques include
the Shyriaev-Roberts (SR)1(9 113 and the Cumulative Sum Control Chart (CUSUM,
a.k.a. Page test]lp3 tests.

In the literature, sequential decision-making via tratkebketween exploration and
exploitation has been investigated in a risk-neutral cdnt€he work in 115 124 and
references therein provide an overview of techniques thdetoff between expected in-
formation gain (or equivalently, rewards) and the cost e by applying a control ac-
tion for Partially Observable Markov Decision Process (HQW. The planning problem

is addressed under no constraints of decision error, arehisah risk-neutral.

5.2 Decision Making for Search and Classification

For the sake of illustration, Figur®.1 is provided to show the block diagram of the
proposed strategy and the organization of the section. m ti the sensor takes an
observation at a celt; in the search domain based on the sensor model proposed in
Section2.4.1 Next, the posterior probability of object existence orakassification at

¢; gets updated via the Bayes update equations formulatecctioSs2.4.2and4.1 In
Section5.2.2 the Bayesian sequential detection method is introduaea $mgle celk;,
which depends on the sensor model as well as the dynamicvaliser cost. Its output

is the minimum Bayes risk surface at cejl Combined with the updated probabilities,

the sensor makes a decision (whether or not to take one meer\aion aftc;) that
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Figure 5.1: Block diagram of cost-aware Bayesian sequeatgi@sion-making.

minimizes the Bayes risk at time An uncertainty map is constructed based on the
updated probabilities of every cell within the domain acdtog to Section®.4.3and4.1

If the desired certainty level has not been achieved yetsla naetric is developed to
formulate the dynamic observation cost. Finally, the ressarle combined: if the decision
is to stop taking observation at the current agll a sensor motion control scheme is
provided, which drives the sensor to the cgllthat has the maximum uncertainty in
the domain. This process is repeated over time until botts#a@ch and classification

uncertainties are satisfactorily low.

5.2.1 Problem Setup and Sensor Model

The sensor model proposed in Sectind.lis assumed here. Conditioned on the state
X (¢) at a particular celt, lett be time index, the observation$(¢) taken along time
are temporally i.i.d. Therefore, if a sensor takes an oladenv at each time step at

for a window of L time steps, there ark + 1 different combinations of unordered scalar

observations, that is, ranging from zero positive obs@wab L positive ones. Let the
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variableZ(c¢) be the number of times that observatipfc) = 1 is taken at celt, which
is a number in the s€i0, - - - , L}. The following (L + 1) x 2 matrix gives the general

conditional probability matrix for the search task oveobservations:

[ ProfZ(e) = 0]X(&) = 0] ProbZ(&) = 0|X(&) = 1]
ProbZ(c) = 1|X(¢) =0] ProdZ(¢) =1|X(¢) = 1]

I ProbZ(¢c) = L|X(¢) =0] ProdZ(¢) = L|X(¢) =1]

with 3"/ ProbZ(¢) = 1|X(¢) = j] = 1,j = 0,1. Because the sensor follows the
Bernoulli distribution for a single observation, Pfalic) = /| X (¢) = j] follows a bi-
nomial distribution with parametet and L, which describes the probability of haviig

positive observations given state(¢) = j. Hence, the general conditional probability

matrix can be written as follows:

s 1-pt |
po | B9 LaO =gy | 51
| (-py .

The value of5 can be either the unit or the limited circular sensory rangeussed in
Section2.4.1

As stated in Sectiod.1, the sensor model for the classification process follows a
similar fashion withX.(psx), Y.(px) representing the state and observation variables for

objectpy, k = 1,2, -+, No. The general conditional probability matrix is denotedsas

with detection probabilitys,..
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5.2.2 Risk-based Sequential Decision-Making

This section takes the search process as an example toatkighe Bayesian sequential
risk analysis procedure at a single cell The method can be adopt to the risk-based
classification of a found objegt, in a straightforward manner via changing parameters.
Instead of deriving an optimal detector given a fixed numlbebservations as in classical
Bayesian, Minimax or Neyman-Pearson hypothesis testirthads [L05 112 126,147,

the Bayesian sequential detector takes observationsaidigcision can be made with

minimum Bayes risk. This results in a random number of totaslenvations taken.

5.2.2.1 Conditional Bayes Risk without Observation Cost

First, assuming a Uniform Cost Assignment (UCA), define theislon cost matrix as

0 ifi=j
C’Lj - )
1 ifi#j
wherei = 0, 1 represent: object absent andl: object present; = 0, 1 correspond to

stateX(¢) = 0 and X (¢) = 1. Hence(;; is the cost of deciding when the state is

X(¢) = j. C can be written in the matrix form as

Let éj(é, L,A), j=0,1, L > 1, be the conditional risk of deciding (¢) # j atc

given that the actual state (¢) = j over at least one observation,

Rj (6, L, A) = CjAbj, (52)
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where

1. ¢; = [Cy; C4j] is thejy column of the decision cost matriX and contains the

costs of deciding object absent and present given fa&e = ;.

2. A = [A(i,j)] is the deterministic decision rule. The matrix elemati, j), i =
0,1, j=0,---,L—1canbe eithed or 1, and>_!_  A(4, j) = 1. WhenA(i, j) =
1, it means that decisionis made given that the observatign= j corresponds to
the ji, column of A. For L > 1, the dimension of\ is 2 x L because there are two
possible realizations of the states. Foe= 0, i.e., there are no observations taken,
A could be ‘always decide there is no object’, ‘always declu=ée is an object’,

regardless of the observations, and there will be no expliatrix form.

3. b; is theji column of the general conditional probability matix = [B;;], i =
0,1,---,L—-1, j =0,1for L > 1. The elemenD;; gives the probability of having
observatiorn”Z = i given statej. According to the probability axiorr[f;o1 B;; =
1, 7=0,1.ForL > 1, BisalL x 2 matrix.

Therefore, under UCA, there is no cost if the decision is ttteia state, and the
conditional riskR; can be interpreted as the error probability of making a widegsion,
i.e., decidingX (¢) # j given that the actual state }(c) = j under a certain decision

rule A over L observations for cett.

Remark. 5.2.1.“Reasonable” Deterministic Decision RulesHere, the sensor is as-
sumed to be a “good” one, that is to say, the detection prolighis higher than the
error probability of the sensor, i.e3 > 0.5. Therefore, there are only a small number of

“reasonable” deterministic decision rules. Givénobservations, the set of “reasonable”
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deterministic decision rules is the set of all rules of thaety

l 1 [ >wv
Al —
0 otherwise
wherel € {0, ..., L} is the total number of positive observations and {0,..., L+ 1}

is the threshold where a positive decision is made. This s1eaa only needs to consider

decision rule matrices that look like

1 1000
00111

and not like

10110
01 001

When the threshold = 0, the vehicle sensor will always decide object present andrig
the observations. Similarly, when= L + 1, it will always decide object absent. Note
that “reasonable” decision rules grows linearly with and dominates any other type of

decision rules with the same valuelaf °

5.2.2.2 Conditional Bayes Risk with Observation Cost

Now assign an observation cagts each time the sensor makes a new observation. This
cost could be based on energy, amount of observation tiroe Fer the sake of clarity,
firstassume it is a constant when deriving the formulatidaweA dynamic cost function
cobs(t) IS then developed to relate the observation cost with tHertatrics for real-time

decision-making in multi-cell domains.
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Define¢ = {¢x}2, as the stopping rule antl = {6, }3>, as the intermediate de-
cision rule. If¢, = 0, the sensor takes another measurementy i= 1, the sensor
stops taking further observations. At every time sktep, can be either one of three
intermediate decisions: (i) deciding object absent, (@riding object present, or (iii)
taking one more observation and postpone making a decisitiretfollowing time step.
Let the stopping time be the minimum amount of time it takem#ke a final decision,
i.e., N(¢) = min{k : ¢, = 1}, which is a random variable due to the randomness of
the observations. The expected stopping time under sf&& = j is then given by
EjIN(¢)] = E[N(¢)|X(€) = j].

Since now a cosiyys is assigned for each observation, the conditional Bay&g5%i2)

under UCA overl. > (0 observations can be modified as:

R;(¢, L, A) = Prob{decideX (€) # j|X(€) = j) + consE;[N(0)], j =0,1.  (5.3)

If L > 1, A has explicit matrix form and the above equations can be te@nras:

R;(€, L, A) = ¢;Abj + copsE; [N ()], 7 =0, 1. (5.4)

5.2.2.3 Bayes Risk
Now define the Bayes risk as the expected conditional Bag&sunder decision rulé
over L observations at ced:

7"(6, L, 1— 7o, A) = 7TOR0((~'5, L, A) + (1 — Wo)Rl(é, L, A), L > O, (55)

wherer, = P(X(¢) = 0;t = t,) is the prior probability of state being (¢c) = 0 at time
instantt, when an observation is taken at aellAt each celkc at every time step, given a

fixed o under the constraints, € [0, 1], the sensor chooses a combinatiofof> 0, A)

125



that yields the minimum value of the Bayes riskThis same procedure is repeated until
the cost of making a wrong decision based on the current wedisen is less than that of

taking one more observation for a possibly better decision.

5.2.2.4 Bayesian Sequential Detection

The following elaborates on the decision-making procedtfrthe sensor does not take
any observations/( = 0) and directly make a decision, according to Equati@n3)@nd

(5.5), the Bayes risks dt different decision rules\ are as follows

r(¢,L =0,1—m, A = always decide object absent ,

r(¢,L =0,1—m, A = always decide object presenrt 1 — .

If the sensor decides to take an observatibn>(1), the minimum Bayes risk over all

possible choices oA with L observations is
Tmin(éu L Z 1, ]_ — 7T0) = gnlgn 7TOR0(6, L Z ]_, A) + (]_ — Wo)Rl(é, L Z 1, A) Z LCObS
€orL

whereg;, is defined as the set of all deterministic decision rulesdahabased on exactly
L observations.
Following similar procedure, the overall minimum Baye&fisnctionsr; ;. under all

possible combinations ¢\, L > 0) is computed,

*
min

T (6, ]_ — 7T0) = minL:071727...rmin((~:, L, 1 — 7T0).
The basic procedure of Bayesian sequential detection issuized as follows: With
initial priorsm; = P(X(¢) = j;t = 0), j = 0,1, check the corresponding,;, value.

*
If r*..

is given by the risk function witt,. > 1, the sensor takes an observatign,(c).
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Compute the posteriorB(X (¢) = j|Y;—o(¢);t = 1) according to Equation2(33 and
again checl’ . to make decisions. The process is repeated using theseiprsses the
new priors. The key is that an observation is taken if and dnly;, (¢, L > 1,1 —m) <
min(1—mo, ). Whenry, = min(¢, L = 0,1—m), the sensor stops taking observations

and a decision is made at

5.2.2.5 Simulation for a Single Cell

The following preliminary simulation for a single cell iktrates the proposed scheme.
Fix a cell¢, choose3 = 0.8 (i.e., M = 0.3 and the sensor is right located at the centroid
of this cell), and set the observation cost as a fixed numjges 0.05 to demonstrate the
Bayesian sequential detection method. Figu&{a)shows all the Bayes risk functioms
under0 (black lines),1 (blue lines) an@ (green lines) observations with € [0, 1]. In
Figure5.2(b) the red segment indicates the overall minimum Bayesitjgkc, 1 — 7).
The overall minimum Bayes risk curvg,. (¢, 1—m) is constructed by taking the smallest
value of all r,,, (¢, L,1 — m), L = 0,1,2,--- under each fixed prior probability,.
Figure5.2(c) shows the construction of the minimum Bayes risk (the red dotler a
fixed prior ;. Here, only the lines of decision rules that constitute ek gegment are
shown with the corresponding equations listed. The Bagduinctions under more than
3 observationsf > 3) have larger- values and do not contribute t¢),, (¢, 1 — m) for
the particular choice of andcgys here.

Each of the lines is interpreted as follows.
Line 1. This line represents the decision rules without any obsiervaAlways decide

there is an object at the cell regardless of the observatiesording to Equations.5),

r(¢,L = 0,1 — m, A = always decide there is an objgct

=mo X 1+ (1 —m) x 0= mp;
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Line 2. This line also represents the decision rules without aneasion. Always

decide there is no object regardless of the observations:

r(¢, L =0,1— m, A = always decide there is no obj¢ct

= 70(0 + cobs X 0) + (1 — ) (1 + Cops X 0) = 1 — 7.

Line 3. The blue line corresponds to the decision rule 3 after takimg observation:
decide the actual state according to the only one observatiat is, if Z = 1, decide

there is actually an object. It follows that

T(éaL =1,1-m, A= An)

= 7TO(l - 6 + Cobs) + (1 - 71'O>(1 - ﬁ "‘Cobs) =1~ 6 + Cobs

Line 4. This line gives the decision rules after two observationsel4 corresponds to the
decision rule that decides there is actually an object if@mld if all the two observations

are positive £ = 2). Following the same procedure as above, it follows that

7’(67[1 =2,1—m, A= AQl)

= (1 — ﬁ)Qﬂ'o + (Qﬁ(l — B) + (1 — ﬁ)Q)(l — 7T0) + 260bs§

Line 5. This line also gives the decision rules after two observatidine 5 corresponds
to the decision rule that decides there is no object if angl dmlone of the two observa-

tions is object present,

T(éuL =2,1—m, A= A22)

= (26(1 - B) + (1 - 6)2)77'0 + (1 - 5)2(1 - 770) + 2Cobs
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Thus, the red segment gives the minimum Bayesianisk(¢, 1 — my) over 0,1,2
observations.

The intersection of lines 1, 5 is the lower prior probability = 0.2059. When the
posterior probabilityP(X (¢) = 0,¢) updated through Equatio2.83 is belowr,, the
vehicle sensor stops taking observation and decides thaictinal state is object present.
This is because the minimum Bayesian risk is determinedigy linstead of lines when
P(X(¢) = 0,t) € [0,7]. The intersection of lines 2, 4 is the upper prior probapilit
my = 0.7941. WhenP (X (¢) = 0,t) is abovery (i.e., P(X(¢) = 1,t) < ), the sensor
decides that there is actually no object.

The following simple example illustrates how to utilize th@nimum Bayes risk

curver®

* . for decision-making. At a celt, assume the initial prioP(X(¢) = 0,t) =
P(X(¢c) = 1,t) = 0.5. The corresponding minimum Bayes risk for the prior 0.5 i&gi
by Line 3. So the sensor takes one observation, and if thenaigm isY;_,(¢) = 1
indicating there is an object, the posterior probabilityymlated according to the new
observation and the Bayes update ru289. The posterior probability ig?(X(¢) =
1,t) = 0.8, P(X(¢) = 0,t) = 0.2 < 7. Now 7}, is given by Line 1. Therefore, the

sensor decides not to take any more observation and deteth@re is actually an object

at this cell with Bayes risk = 0.2.

5.2.3 Extension to Full-Scale Domain

The mechanics of the Bayesian probability updates (Se2tib@ and Bayesian sequen-
tial detection (Sectio®.2.2 have been discussed for a single cell. This section defines
an uncertainty map based on these posterior probabilitiestee metrics for the search
and classification tasks in general multi-cell domains. 3é&arch task metric is related
with a dynamic observation cost for the Bayesian sequetdieilsion-making strategy in

multi-cell domains. Based on these, the sensor motion ablatwvs in Sectior?2.4.4is
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used, which seeks to find and classify all object®iwith a desired confidence level.

As stated in Section8.4.2and4.1, Bayes rule is used to update 1) the probability of
object present at each cellin D and 2) the probability of object having Property ‘G’
for each found objecp,. These updated posterior probabilities are then used te con
struct the uncertainty function2.85 and @.2) for the search and classification process,
respectively.

The search and classification metrigs2j and @.3) developed in Sectiod.2 are
used here for the risk-based decision-making for searcuseasiassification. Define the

classification conditions as follows:

la(t) — pel| < 7e
H.(Py,,pk,t) > Hy(pr, t)
HS(PH57pk7t) g H;J

: (5.6)

No Decision at py at ¢

whereH! is some upper bound on the search uncertainty to be met keetdassification
task can be carried on. Only when all the classification domt are satisfied, i.e., (a)
the objectQ;, is within the vehicle’s classification sensory range, (18 thassification
uncertainty ofQ, is larger than the desired uncertainty, (c) the search taiogy of O,

is relatively low (It is to some extent sure th@j, is an object), and (d) no decision has
been made about the property®f yet at previous time step, then the vehicle will start
to classifyOQ,.. If any one of the above condition fails, the vehitlestop classifying the
found object and switch to searching again. It can resunssifyéng an object that has
been detected and completely or partially classified in #ws [ it finds it again during
the search process. When this occurs, the valug olvill be smaller than the last time

the objected has been detected.
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Now associate a dynamic observation agsf(t) with the search cost functiaf (¢),

Cobs(t) = '7\7(75)7 (5.7)

wherey > 0 is some positive weighting parameter. At the outset of thesran, few
regions in the domain have been covered, therefore, the Gosif not searching any-
where else is high. Equivalently, taking an observatiomatdurrent cell is “expensive”,
i.e., cops(t) is large. In this case, the risk-based sequential decisiaking strategy tends
to make a decision with a few observations, which may yieiddanumber of wrong
decisions (however, it still gives the minimum Bayes riskio&ll decisions given the lim-
ited available observations), but increase the potentiapmdly detecting and classifying
more critical objects in the domain. When the sensor stdpsdabservations, makes a
decision, and leaves the current cell, it will move to anot® and again take an obser-
vation there. Because the uncertainty level associatddthatt cell changes (Equations
(2.33,(2.39), the values for7 (Equation 4.2)) andc,,s (Equation b.7)) over the entire
domain differ accordingly. Additional information is ga&ith by changing the cell to be
observed. When the sensor has surveyed more regions inrtemdhe uncertainty level
at all the visited cells is reduced with respect to the ihitizcertainty, and hence both
andc,,s decrease. The process will be repeated until) — 0 andH, — 0, Vpy, i.e., all
the unknown objects of interest within the domain have beend and classified with a
desired uncertainty level in a small neighborhood of zeroteNhat the observation cost
is assigned according to the real-time progress of the Isearg classification tasks and

facilitates real-time decision-making based on the alb&labservations.

Remark. 5.2.2. A small value ofy corresponds to the case where the sensor will stay in
a cell until a high certainty about object existence or itasdification is achieved before

moving on. A large value gives the opposite case, i.e., thgoseavill not linger long in
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any cell until it has had a chance to survey more regions irdibva@ain. °

5.2.4 Simulation

In this simulation, consider all the celtavithin a20 x 20 square domaif®. For eaclt €
D, an i.i.d. prior probability of object presence is assunvelich equals taP(X (¢) =
1,0) = % = 0.2, where E[N,] = 80 is the expected number of objects. For the
classification process, let the desired upper bound fosifieation uncertainty bé/ =
0.01 and HY = 0.3. The priorsP.(X.(px) = 0,0) = 0.5, Vk and all the objects with
even number have property ‘G’. The locations of the objesa@andomly generated. The
number of objects generated for this simulation turns obets. The locations of objects
with Property ‘F’ are indicated by th&2 green crosses and the locations of the objects
with Property ‘G’ are indicated by th&el magenta crosses in Figuse3. Figure5.3shows
the evolution of the search uncertainty midp(dark red for highest uncertainty and dark
blue for lowest uncertainty) at (&)= 1, (b) t = 200, (c) t = 400, and (d)t = 800. The
radiusr of the search sensor is chosen ta8tand the classification radius is chosen to
be6, as shown by the magenta and green circles in FigLBeSet the maximum sensing
capacity asV/ = 0.5. The parametey = 0.05. The black dot represents the position of
the vehicle. Here the control law in Equatich 36 is used with control gai = 0.2.
The set/ is chosen to b®. From the simulation results, it can be concluded that at mos
H, = 1.1 x 10~° has been achieved everywhere witfiin

Figure 5.4(a)records the number of false detections and missed detectiensus
time. It can be seen from the figure that the number of missegttiens (8) is much
larger than that of the false detection$ &t the beginning of the task. This is because the
initial prior probability P(X(q) = 1,0) to start with is closer to zero, which makes
it easier to make a wrong decision after taking an erronedsereationY (q) = 0

given that the actual state is object present. Figud¢b)compares the number of incor-
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(d)

Figure 5.3: Evolution of search uncertainty.
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Figure 5.4: Number of false/missed detections, and incoolassifications.

rect classifications, i.e., deciding Property ‘F’ given pgdy ‘G’, and deciding Property
‘G’ given Property ‘F’ over all detected objects. These twanbers are similar since
P.(X.(c),0) = 0.5. In both figures, it can be shown that as time increases, th#au
of missed detections and false detections decrease. Bdie efror numbers go to zero
with zero uncertainty at the end of the mission. This impiieg one can balance between
the number of errors within the tolerance range and the éidniime to decide when to
stop.

Figure5.5(a)shows the classification results for objéct Its probability of having
Property ‘G’ is zero and the corresponding uncertainty fiamcH,. = 0, i.e., it is100%
sure that object has Property ‘F’. Similarly, Figuré.5(b)shows that objec has Prop-
erty ‘G’ with zero uncertainty. The properties of other aligeare also satisfied classified
with the desired uncertainty level and can be shown like regh.5(a)and5.5(b)without

difficulty.

5.3 Extension to Three States

In this section, the above standard binary Bayesian sei@ligietection method is ex-

tended into a ternary risk-based sequential decisionimgadtrategy. This allows concur-
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Figure 5.5: Classification results for objettand?2.

rent search and classification observations taken by aesmmgbnomous vehicle sensor.
However, the decision to be made here is still the same wieether to make a prompt
decision regarding object existence or its classificatesel on insufficient observations,
or to keep taking observations at the current location Uttt certain about the true

State.

5.3.1 Problem Setup and Sensor Model

Now let X (¢) be a ternary state random variable at €elvhere0 corresponds to object
absent] corresponds to object having Property ‘F’, and ‘2’ correggmto object having
Property ‘G’.

For the sake of illustrative clarity, the following assumops for the sensor model are

made.

1. A sensor is able to observe only one cell at a time. Thaheunit-range sensor
model is assumed in this section. Extension to other sensdelwthat are capable
of observing multiple cells at the same time (e.g., the senmsmlels with limited

sensory range proposed B9-62, 135-14Q) is straightforward.
2. A sensor is able to move to any cell within the domain. Othetion schemes, such
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UNKNOWN STATE AT ¢ OBSERVATIONS

Property ‘F’
X(@)=1

Property ‘G’
X(e)=2

Figure 5.6: Ternary sensor model.

as gradient-based, awareness-based, and informatienadrontrol laws ($9-62,

135-140) can be adopted without difficulty.

LetY'(¢) be the corresponding ternary observation random varidiie sensor model
follows a ternary discrete probability distribution. Fazell ¢, given a state'(¢) =i, i =

0,1, 2, the probability mass functiofi of the observation distribution is given by

fr(y|X(¢) =i) = Ba fy=1, (5.8)
Bip ify =2

WhereZ§:0 Bi; = 1, Y corresponds to the ternary random variable amslthe dummy
variable. Figures.6 shows the relationship between the unknown stété) and an ob-
servationY (c).

Conditioned on the true stat&(c), let ¢ be the time index, the observatioligc)
taken along time are temporally i.i.d. Define an integer cemdariableZ;(¢), j =0, 1,2
as the number of times that observatidfc) = j appears during a window df time
steps. The quantity;(c) satisfiesZ?z0 Z;(€) = L, Z;(¢€) € [0, L]. Therefore, given

stateX(¢) =4, i = 0, 1, 2, the probability of having observatidny, z;, z2) in a window
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of L time steps follows a multinomial distribution

- - ~ ~ . L! 20 Q21 D%
PrOb(ZQ(C) = 2p, Zl(C) = 21, ZQ(C) = ZQ|X(C) = Z) = o |Bi(§) ill 122 (59)
20-R1:%22:

The sensor’s probabilities of making a correct observati@n, the detection prob-
abilities, arefSy, 511 and By;. Here it is assumed that the sensor is “good” and restrict
these values to bgy, f11, S22 > 0.5. More general values withifd, 1] can be consid-
ered, however, introducing extra analytical complexitgttdoes not contribute any new
insights. It is assumed that the sensor’s probabilitiesaiing an erroneous observation,
i.e., the error probabilities};;, ¢ # j, follow a simple linear model under the probability

axiom constraind_?_, 8;; = 1:

wherev; is some weighting parameter that satisfies v, = 1, 0 < v; < 1. This
implies that the sensor is able to better distinguish the $tate from the other two states

and returns an higher likely observation of the true statbaitlocation.

5.3.2 Ternary Bayesian Updates for Search and Classificatio

According to Bayes’ rule, given a single observatlgfc) = j taken at celt at time step

t, it follows that

P(X(&) = i[Yi(€) = jst + 1)

— ) P(Y;(€) = jIX(&) = ) P(X(€) = ist), i,j = 0,1,2. (5.11)

whereP(Y;(¢) = j|X(¢) = 1) is determined by the ternary sensor mode8), and the
Bi; andpy; (i # ) function 6.10.
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According to the law of total probability;; is given as follows,

1 1
BT PW©) =) ByP(X(€) = 0:0) + By P(X(€) = ;1) + Boy P(X(€) = 2,1)

and thus the posterior probabilities is given by substitythe value of); into Equation

(5.19.

5.3.3 Ternary Risk-Based Sequential Decision-Making

In this section, a ternary risk-based sequential decisiaking strategy is used to de-
termine the state at a callwith minimum Bayes risk. It is extended from the above
standard binary Bayesian sequential detection meth@8 106 132 in signal detection
theory [L05 112 126, 142. The formulation for Bayes risk in ternary case is similar a
the binary case, however, it ends up with the minimum Bayséssurface instead of min-
imum Bayes risk curve. Here only the main results are listetlasimulation at a single
cell is used to illustrate the modified methods.

The ternary conditional Bayes risk under UCA over 0 observations is as follows:

R;(¢, L, A) = Prob{decideX (¢) # j|X(€) = j) + consF;[N(¢)], 7 =0,1,2. (5.12)

If L > 1, A has explicit matrix form and the above equations can be te@nras:

Rj(€, L, A) = ¢;Ab; + conslj[N(0)], j =0,1,2. (5.13)

where
1. C; = [COj Clj C2j]-

2. A = [A(i,n)] is the deterministic decision rule. Let” be the total number of
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possible observation combinatiofs, 21, z2) that the sensor can take according to
the multinomial distribution§.9) over a window ofL time steps. For, > 1, the
dimension ofA is3 x 4. ForL = 0, i.e., there are no observations takén,
could be ‘always decide there is no object’, ‘always declie is an object with

Property ‘F” or ‘always decide there is an object with Prapes”.
3. b; is thejy column of B = [B;;] for L > 1. ForL > 1, BisaN x 3 matrix.

The ternary Bayes risk fat. > 0 is given as follows

T(év Lu Ty, T2, A) = (1 — 1= WQ)RO(év Lu A) + 77-1}%1(67 L7 A) + 7T2R2(67 L7 A)7(514)

wherer; = P(X(¢) = j;t = t,), 7 = 0,1,2 is the prior probability of state being
X(¢) = j attime instant,, when an observation is taken at cell
If the sensor does not take any observatiains= 0) and directly makes a decision,

the Bayes risks of different decision rule&\ are as follows

r(¢, L =0,m,m, A = always decide object absent 7, + m,
r(¢, L = 0,m,m, A = always decide object having Property fJF= 1 — 7,

r(¢, L = 0,m,m, A = always decide object having Property \G= 1 — .

The overall minimum Bayes risk over all possible combinadiof (A, L) is,

Tfnin(éa T, 7T2) = minL:O,l,Q,...,AEQLT(éu L,my,m, A)~

An observation is taken if and onlyifinacg, r(¢, L > 1,7, m2, A) < min(m; + 9, 1 —
T, 1-— 7T2).

The following preliminary simulation for a single cell isedto illustrate the proposed
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scheme. Fix a celt and assume that the sensor is located at the centroid ofethigbe

sensing parameters are chosen as follows:

Boo = 0.8, Bor = 0.1, Bpe = 0.1,
Pro= 0.2, f11 = 0.7, B12 = 0.1, (5.15)

Bog = 0.1, B = 0.15, B9 = 0.75.

Figure5.7(a)shows all the Bayes risk functiomsunder. = 0, 1 or 2 observations under
the constraints;; € [0,1] and>)> , m; < 1. Figure5.7(b)shows the overall minimum
Bayes risk surface’ . (¢, m, m), which is the minimumvalue of ali(¢, L, w1, mo, A), L >
0, under each fixed prior probability paitr, m5). The overall minimum risk surface is

composed of several enumerated risk planes, each of whidesisribed briefly in this

section.
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Figure 5.7: Bayes risk surface and minimum Bayes risk sarfac

Each of these risk planes in Figuse/ (b)annotated by the numerals- 10 is interpret

as follows.

Risk Plane 1.r(¢, L = 0, m, me, A = always decide there is no objget m + 7.

Risk Plane 2.r(¢, L = 0,7, m, A = always decide object present with Property)'E
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1—m.

Risk Plane 3.7(¢, L = 0, m, m, A = always decide object present with Property )&
1 — m9.

Risk Plane 4. This plane corresponds to the decision rule after takingarservation.

The general conditional probability matrix fér= 1 is given as

Boo Bio B
B(L=1)= Bor B Bar| >
Boz Bz Po2

where the rows correspond to the observations= 1,21 = 0,22 = 0), (20 = 0,21 =
1,20 = 0),and(zp = 0,2 = 0,2, = 1), respectively. Risk Plane 4 corresponds to the

following decision rule,

1 00
Anp=1010
0 0 1

That is, decide the state according to the only one observétiken. This is the only
reasonable decision rule fér = 1. Therefore, according to Equatioh.13), it follows
thatRy(¢, L = 1, A = Ay1) = Bor+ Boa+cobs R1(¢, L =1, A = A1) = Bro+ 12+ Cobs
andRy(¢,L = 1,A = Ayy) = Bog + Pa1 + cobs HENCE(C, L = 1,71, M9, A = Ayq) IS
given directly by EquationH.14).

Risk Planes 5-10These plane give the decision rules after two observatibms general
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conditional probability matrix fod, = 2 is given as

B0

B

B
2600/
26000
2601

Bio

B

B
2f10P1
2f10P12
211512

B30

B3

B3
202002
202022
20921 B22 |

where the rows correspond to the observations= 2,2; = 0,20 = 0), (20 = 0,21 =

2722 :O)! (20 :0721 20722 —

2), (Z() = ]_,Zl = 1,22 = O), (ZQ = 1,21 = O,ZQ = 1),

and(zy =0,z = 1, 29 = 1), respectively. The corresponding decision rules are,

100110

Agy=10 1
0 0
1 0
Nos=110 1
0 0

0
1

0
0

0
0

o =

oS = O

100000

Ays=1010100

001011

(5), Agy =

(7), Aoy =

(9), Agg =

o O
o
=
o =
o O
[

o O =
o = O
= o O
o R
o O =
- o O

100100
010000
001011

The Bayes risks follow according to Equatiossld and 6.14).

143

(10)



Whenr*

min

is given by Risk Plané, 2 or 3, the sensor stops taking observation and

makes the final decision, otherwise, it always takes one wloservation.

5.3.4 The Uncertainty Map, Task Metric, and Motion Control

Let Py be the probability distribution for object absent and itssification at celé at
timet and is given byPy = { P(X(¢) = 0;t), P(X(¢) = 1;t), P(X(¢) = 2;t)}. Define

its information entropy as:

H(Py,&t) ==Y P(X(€)=j;t)In P(X(&) = j;t). (5.16)

J=0

The maximum value attainable WY is H,,.. = 1.0986 whenP(X (¢) = j,t) = 3.

Define the associated cost of not carrying further searctckasgdification as follows:

. ZéeDH(PHvévt)
B HmaXAD .

J(t) (5.17)

A dynamic observation cosys(t) is assumed according to Equatidni).

Next, consider a control strategy for the sensor motion tivemission domaimD.
Combining with the Bayesian sequential decision-makimgtsgy, it seeks to find and
classify all objects irD with a desired confidence level (i.e., achiefe— 0) under a
dynamic observation cost and the minimum Bayes risk at ey step. As mentioned
in Section5.3.], it is assumed that there is no speed limit on the sensqrihieesensor is
able to move to any cell withi® from its current location.

The memoryless motion control scheme presented in Se2i#b8.4is adopted here,
where the set®y (t) andQ,(t) are obtained by considering a single autonomous vehicle

sensor in Equation2(482.49.
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mean percentagéy) | 1 — 200 | 201 — 400 | 401 — 600 | 601 — 800
missed detection 40.43 34.51 17.35 7.71
false detection 43.49 25.43 21.64 9.44
incorrect classification 42.09 24.48 18.52 14.91

Table 5.1: Mean percentage of wrong decisions during diffetime periods.

5.3.5 Full-Scale Domain Simulations

This section provides A) a detailed numerical simulaticat thustrates the performance
of the decision-making strategy, and B) a Monte-Carlo satioh comparison between
the proposed strategy and the classical fixed-sample Baybgpothesis testings. All the
simulations are implemented on a 2.80-GHz, i7-860m praresgh 4.0GB RAM, and

Matlab-compiled codes.

5.3.5.1 Simulation Example

Consider &0 x 20 square domai®. For eachc € D, assume an i.i.d. prior probability
distribution: P(X(¢) = 0;t = 0) = 0.7, P(X(¢) = 15t = 0) = 0.1, and P(X(¢) =
2;t = 0) = 0.2. The sensing parametefs; are the same as in Equatiod.15. The
observation cost weighting parametem Equation b.7) is set af).05 and the desired
uncertainty for every cell i8.02.

The number of objects generated for this simulation turngmhe 125 (the expected
number of objects i$20 according to Equatior2(29) with 64 objects with Property ‘F’
and61 objects with Property ‘G'.

Table5.1 shows the mean percentage of missed detections, falsdidete@nd in-
correct classifications during time peridd- 200, 201 — 400, 401 — 600, and601 — 800,
respectively.100 runs are carried out in 800 time steps with the same pararsetiengs
as above. From the table, most of the errors occur at theeeatlige of the mission and

the number of errors decreases with time.
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5.3.5.2 Monte-Carlo Simulation Comparison

Now a Monte-Carlo simulation is performed to compare théguarance of the proposed
Bayesian sequential strategy and the classical fixed-saBwtesian hypothesis testing
[25,105112. Under UCA, the fixed-sample Bayesian hypothesis tessitigg maximum
a posterior (MAP) estimator. That is, the optimal decisiorresponds to the state that
gives the maximum posterior probability aftelobservations. Note that this is an off-line
batch technique where a decision is made if and only if alfittexl . observations have
been taken. Here it is used as a benchmark performanceamiter

From the simulation results, the expected number of obsenstaken at each cell
under the Bayesian sequential method.B#88. Therefore, it is reasonable to compare
the statistics of this method with — 4 fixed sample Bayesian hypothesis testing. Five
metrics are considered: the final achieved maximum unceytal,,,...;,; the final value
for the cost function7(¢;); the total number of missed detectioms; the total number
of false detections ;; and the total number of incorrect classificationsFor each case,
100 runs are carried out. For the sake of comparison, sartiegseare used for object
number, positions, properties and initial position of tledicle. All the other parameters
are as in Sectiob.3.5.1

Figuresb5.8(a}5.8(e)show the performance comparison of the five metrics, respec-
tively, between the fixed sample Bayesian hypothesis gstivith 1,2,3,4 observations
and the Bayesian sequential detection. T&bBsummarizes the statical results. In order
to achieve similar small amount of decision errors, the figaohple hypothesis testing
method required. = 4 observations at each cell. The risk-based sequentialideeis
making strategy outperforms the classical methods by 1jaied decision errors, and 2)
minimizing observation numbers. Therefore, according qadtions $.13 and 6.14),
under UCA, the proposed strategy leads to minimum Bayeswigkn a same perfor-

mance level.
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Figure 5.8: Performance comparison.

5.4 Application to Space Situational Awareness

This section examines the problem of detecting and clasgifgbjects in Earth orbit
using a Space-Based Space Surveillance (SBSS) network.S% SBstem uses a com-
bination of ground- and space-based sensors to monitoitaegiover a range of space
orbits from low earth orbits up to an altitude higher thangleesynchronous orbit. The
ternary risk-based sequential decision-making strateggldped in Sectioh.3is applied
to object detection and classification using multiple raaggle sensors with intermittent

information-sharing. The objective is to determine whetie object exists at a certain
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Hyaxt, | T (ty) Mo, ny n;
L=1 1.68E-2| 2.85E-3| 64.49| 30.99| 20.51
L=2 5.08E-3| 1.7E-4 | 18.72| 12.09| 8.48
L=3 0 2.55E-5| 12.02| 7.43 | 2.91
L=4 0 4.39E-6| 6.41 | 4.63 | 2.74
Sequential 1.18E-3| 8.86E-5| 9.07 | 3.98 | 2.15

Table 5.2: Performance comparison.

location (a cell in a discretization of the search spacepbrand, if an object exists, what
type it belongs to. This is a nontrivial extension sincetlfiroth the space-based sen-
sors and the objects of interest are now constantly in dniitéion. Secondly, the search
space is non-cartesian and will be discretized using a paeametrization. Thirdly,
the results for a single sensor vehicle in SecoBare extended to a SBSS network in
which multiple sensors share information intermittentligemever sensors come within
each other's communication range.

The problem is formulated in a simplified two-dimensionatiag where the SBSS
system is composed of four ground-based sensors and alspseé-orbiting sensor satel-
lite. This is done in order to reduce computational compyewihile retaining the basic
nontrivial elements of the problem. It will be shown thatedir application of the pro-
posed scheme will result in perfect detection and classibicaesults for any object that
exists in a geosynchronous orbit as long as it (at least)mtently penetrates the field-
of-regard of at least one sensor in the SBSS network. Thisdause, as observed in an
earth-fixed coordinate frame, objects in geosynchronaduis @ppear to be immobile. For
objects in non-geosynchronous orbits, the assumption widhility no longer holds and

performance of the proposed approach significantly degrade
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5.4.1 Literature Review on SSA

Space Situational Awareness (SSA), that is, the monitasfrectivities surrounding in-
or through-space operations and the assessment of thdicatigns, has received a great
deal of attention in recent years, which was motivatedafitiby the publication of the
Rumsfeld Commission Report11]. More recently, the needs to keep track of all objects
orbiting Earth has greatly increased due to the desire teepteollisions, increased radio
frequency interference, and limited space resources. NA&#Ats all objects as little as
1 cm to be tracked to protect the International Space Statibich would increase the
number of tracked object from 10,000 to over 100,08J0 [

There are multiple decompositions of what SSA represerds) & capabilities point

of view, SSA includes such things as:

¢ the ability to detect and track new and existing space objecgenerate orbital

characteristics and predict future motion as a functiomoéf
e monitoring and alert of associated launch and groundsiteiaes;

¢ identification and characterization of space objects terdenhe country of origin,

mission, capabilities, and current status/intentions;

e understanding of the space environment, particularly agliaffect space systems

and the services that they provide to users; and

e the generation, transmission, storage, retrieval, armbdéesy of data and informa-
tion produced by sensor systems, including appropriatis foofusion/correlation
and the display of results in a form suitable for operatorméike decisions in a

timeframe compatible with the evolving situation.

An excellent summary of the current system used by the UrStadles to perform

the detection and tracking functions of SSA, the Space 3lanee Network (SSN), is
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Figure 5.9: Planar model of orbital sensor platform.

contained in 88|, which includes current methods for tasking the networkvad as

proposed improvements.

5.4.2 System Model and Dynamics

System Model. Assume a uniform, spherical Earth. Fig&x@shows an example of the
planar orbital sensor platform for the detection and cfacsgion of space objects used in
this work.

Consider a network oV, sensors and/, objects. LetS = {V;, V,, ..., Vy, } represent
the set of sensors, that is, an entity that will accept thedfiein and classification tasks
and will produce data and information. Lét = {O;, O, ..., Oy, } represent the set of
objects, that is, an entity that is not controllable or aloldé tasked, and furthermore
which it is desired to establish information about.

The ground-based sensors are stationary with respect tarémfexed frame. The
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dynamics of motion for ground-based sensors are as follows:

o= 0, (5.18)

95 = WE7

wherer; and@; are the polar coordinates centered at the Earth for sensmdwy, is
the Earth’s angular velocity. The space-based sensomvfd{eplerian motion with the

dynamics in polar form given by

. / L .
— B e S wf 1
T P (G%S)Q)ezsm(QZ w;), (5.19)

& 1+ ejcogd; — wp)
Z’ as(1 = (e5)?) r ’

where . is the Earth’s gravitational parameter and equal8ag 600km?® /<%, af is the
semi-major axisg; is the eccentricityw; is the argument of perigee, affl — w; gives
the true anomaly.

All objects to be detected and classified are assumed to bbitnp and thus

) 1 )
2 = ——¢e%sin(0¢ — w? 5.20
i \/ aj(l — (65)2) % ( j wj)’ ( )

. 1 + e?coq 69 — w?
9; - o - 0)2 - io - ])’ j = ﬁ

Here the mission domai®® C R? is defined as the planar space domain from the
Earth’s surface up to an altitude higher than the geosymdu® orbit in which objects
to be found and classified are located. The domain is digegkin polar coordinates as
shown in Figureb.9. Definer? = (r¢, 0%) as the polar position of objegt

This work focuses on the detection and classification of aibjeocated in geosyn-

chronous orbits, and hence the ternary stafé) introduced in Sectiob.3.1is invariant
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with respect to time. For objects not in geosynchronoustofbic) will change with
time as objects enter and leave cells. Hence, the actual\sitt respect to every cetl
becomes a random process. To emphasize this time depentenstate will be denoted

by X;(c).

Sensor Model. Assume that the sensors are simple range-angle sei3iprs-[rst de-
fine

plrird) =[xt -], (5.21)

177

w(rf7r?) — cos! (’S—

For the sake of brevity, the following shorthand notatiotl bé usedp;; =

Vi = 1p(x,19).

For each sensare A, define its maximum range 85 and its maximum angle span

p(r;,r$) and

asV¥,. The sensors are restricted to generate data only withimiéell field-of-regard,
e.g., an area around the sensor’s position that it can eiééctetect and classify objects
within. Denote this area aS; and define its boundary as the area swept out by a ray
of length Y'; relative to the sensor’s current position and an angleneasured in both

directions from the local vertical direction at the sensmakion. Thus

Ii={r=(r0):p( r) <7T,andy(r],r) < V,}. (5.22)

These quantities are illustrated in FiglrdQ For ground-based sensors, which are lim-
ited by the local horizon;-7 < W¥; < 7. For space-based sensors, assuming they are
allowed to arbitrarily re-orient their sensor payloadsudoallow —7 < W¥; < 7. Each
sensor is assumed to have a ternary discrete probabilitjbdison within its sensory area

I';. Same detection probability is assumed everywhere withibespite this, the simple
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Figure 5.10: Model for the range-angle sensor.

range-angle sensor model presented here is consistertheilimited-range vision-based

sensor model considered in Sectd2.3.1

Communication Model. Two sensors can communicate with each other if they are
within the communication region of one another and a lineigitsbetween them ex-
ists. The neighbors of a sensaare all sensors within the communication regigrof .

I'¢ can be modeled in a similar way as the sensor’s field-of-tefagiven by Equation
(5.22. Assume that the communication link is error free whenevehannel is estab-
lished. Future work will focus on the case where the comnmaieit state is subject to
communication channel errors.

In this work, whenever a communication link between two sefiss established,
each sensor is assumed to have access to all the currentatises from its neighboring
sensors. Any previous observation from sen&neighbors in seg;(t) at the current
time step does not contribute to the state estimate asedaaath it at that time instant.
The sensor updates its state estimate through data fusiba (tiscussed soon) and makes
a decision based on the posterior. Another fusion techrilyaeone can apply is the
decision fusion approach4, 128. Each sensor sends its neighbors a local decision

derived by independent processing of its own observatimmeSoptimal decision rule
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is then used to fuse these local decisions. Due to the relatiower amount of data to
be transmitted, the decision fusion technique results wetocommunication cost and
higher data quality. Future work will extend the currentutesto an optimal decision

fusion framework.

5.4.3 Decision-Making for Detection and Classification in face

The ternary Bayesian sequential risk analysis developésention5.3 is used as the
decision-making strategy for detection and classificatibspace objects. The observa-
tion costceps > 0 is assigned each time the sensor makes a new observatios.isThi
because when a sensor makes an observation it is activeanitihdraws power, which
is a valuable resource, from the satellite. When all celthiwia sensor domain are sat-
isfactorily decided upon, the sensor can then be put in bfantbde to save energy. In
future work, when allow for the sensors to be non-omnidioeal! and have control over
the look direction of the sensatyys Will include both energy costs and costs associated
with observing one group of cells at the cost of ignoring athe

Bayes' rule is employed to update the probability of objdastence ' (¢) = 0), object
having Property ‘F’ ' (¢) = 1), or object having Property ‘G’X (¢) = 2) associated
with a particular senso¥; at cell¢, based on observation taken by sensors in thg gt
through intermittent communications.

Consider the Bayesian probability update equations givenhkservation sequence
Yi(e) ={V; € Gi(t) : Y;4(¢),} available to sensarat time step. According to Bayes’

rule, for eaclt, it follows that

P(X(&) = k¥ (&)t + 1) = n PV (@)X (&) = k)P(X(&) = kit), k = 0,1 (5.23)

Section2.4.5.1in Chapter2 gives the detailed derivation and final expression for the
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above Bayes update equation. The information entropy fmd¥; (5.16) is used to
measure the uncertainty level of object detection and ifieestson. Here the subscript
is used to indicate that this level of uncertainty is asgediavith vehicle sensoy;.

The ground-based sensors take observations at certaircilsdvithin their sensory
area, while the space-based sensors follow the motion dgsayiven by Equationy.19
and travel through different cells with time. When a spaasdd sensoy; leaves a cell,
whether it made a decision or not, the uncertainty lg¥ght this cell remains constant
until the sensor comes back when possible. This is repeatiidhe uncertainty of the
cell is within a small neighborhood of zero, i.e, when theedgbn and classification task

is completed.

5.4.4 Simulation Results

Figure5.11 shows the initial deployment of the space system architeatged in this
simulation. The Earth is indicated by the green solid disated at the origin of the
polar coordinate system. The radius of the geosynchrondaisigeo = 42,157 km is
represented by the green circle. Discretize the spacedirggirom the Earth’s surface
up to an altitude oft3, 629 km into 120 cells as shown in the figure. One space-based
sensor and four ground-based sensors are indicated byubstars. The magenta ellipse
shows the orbital trajectory of the orbiting sendor For the sake of simplicity in the
simulation, itis assumed th&f = I'; for all sensors and are indicated by the yellow areas.
The sensors communicate with each other and fuse theiratsers whenever they are
within each other’s communication region. The objects talécted and classified are
indicated by the diamond shapes, where the objects havopeRy ‘F’ are in black, and
the object having Property ‘G’ is in red.

The orbital motions of the sensors and objects in the spatersyare simulated for 2

sidereal days. Figurg.12(a)shows the probability of objedt on geosynchronous orbit
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270

Figure 5.11: Space system architecture.

(cell 19) having property ‘G’P; (X (¢) = 2|Y;}; ¢t + 1) and its corresponding uncertainty
function H,(P;(¢19,t)) associated with the space-based sensdtfigure5.12(b)shows
Py(X (€) = 2|Y%;t + 1) and Hy( P2(19, t)) associated with the ground-based sersor
Because object 1 is constantly within the field-of-regarderisor2, the probability and
uncertainty converge very quickly as shown by Figbrg2(b) The space-based sensor
1 does not pass through cdld until after 1 day 11 hours and 37 minutes, hence the
probability and uncertainty begin to evolve right aftertttiae instant and also converge
as shown by Figurg.12(a)

Figure5.13shows the probability of objec on the geosynchronous orbit (cél)
having property ‘F'P, (X (¢) = 1|Y;};t + 1) and its corresponding uncertainty function
H,(P(¢s9,t)) associated with the space-based sensd¥ote that the space satellite
is the only sensor that can have view@®f in the SBSS network. Becaug® enters its
field-of-regard after 3 hours 50 minutes, the probabilitg amcertainty converge after
that as shown by Figur6.13 From the above results, it is shown that the objects on

geosynchronous orbit can be detected and satisfactoalsified under the proposed
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Figure 5.13: Detection and classification result¥’pfor O,.

approach because they appear to be immobile as viewed frérarém-fixed frame.

Now investigate the performance for objects on non-gedsymous orbits. For ex-
ample, objecB has entered and left caill (within sensorl’s field-of-regard) and cell
41 (within sensom3’s field-of-regard) during the entire period. Figusel4(a)shows the
probability of object absenc® (X (¢) = 0|Y;};¢+1) at cell61 and the corresponding un-
certainty functionH; (P (¢s1, t)) associated with the space-based sehsbrgure5.14(b)
showsPs(X (¢) = 0]Y,?;t + 1) and H3(Ps(c41, t)) associated with the ground-based sen-
sor3 at cell41. Because object 3 is not on GEO orbit, its position varie$ \ngspect to
any discretized cell. The probability of object absencegsrdased whenever an object
passes through the cell within a sensor’s field-of-regadiacreases when the object is

out of sight as shown by Figui14 Once the probability of object absence approaches
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Figure 5.15: Detection and classification result¥’poaindV; for O,.

1 at a cell, it will not decrease any more even if an object ms®ugh it. Figuré.15
shows similar results for object 4, which is also not on GE®@itorTherefore, as antic-
ipated, it is concluded that the proposed method does notgtee good performance
for the detection and classification of non-geosynchroraljscts which are mobile as
viewed from an Earth-fixed frame. A nonidentity transitibpeobability matrix for a

dynamic Markov chain will be used to model the object moyilit future work.
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Chapter 6

Risk-Based Sensor Management for

Integrated Detection and Estimation

The previous chapters discuss both deterministic and priidiec decision-making strate-

gies for domain search and object classification given éthgensory resources. In par-
ticular, risk-based sequential analysis is presentedn®idetection and classification of
unknown objects of interest, where the states of objectemxig and its classification
are treated as discrete random variables. This chaptelogsvan optimal sensor man-
agement scheme for integrated detection and estimatioer dintited sensory resources
in the presence of uncertainties. This work involves bothdtlgesis testing for discrete
random variables and estimation for continuous randonabées. Based on Bayesian
sequential detection for discrete random variables iniced in Chapteb, the results are

extended to Bayesian sequential estimation for continuadom variables. Both parts
are integrated into a unified risk-based decision-makihgise, which facilitates optimal

resource allocation across multiple tasks that are compédr the same limited sensory
resources. The objective is to effectively detect andfeatigrily estimate every unknown

state of interest within a mission domain while minimizime trisk associated with the
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sensing allocation decisions.

The organization of this chapter is as follows. Sectohreviews the literature on
sensor management and summarizes the contribution ofitapger. Next, a brief review
of the Bayesian sequential detection for discrete randamblas is provided in Section
6.2 Its extension to Bayesian sequential estimation for ooius random variables is
developed in SectioB.3. The expressions in Secti@i2 is reformulated to be consistent
with Section6.3. Sections.4and6.5 present the key results of this chapter. In Section
6.4, the Bayesian sequential detection and estimation metli@extended to multiple
elements (cells for detection, process for estimation)isk-based sensor management
scheme for integrated detection and estimation of mulef@enents is developed in Sec-
tion 6.5. Measures of expected information gain for both detectimh @stimation are
also discussed. The Rényi information divergence is thtoed as a measure of the rela-
tive information loss, which is used to define the dynamiceobation cost, in making a
suboptimal sensor allocation decision. In SecBd® a numerical simulation is presented

to confirm the effectiveness of the proposed sensor managestizeeme.

6.1 Introduction

In the realm of sensor network management, detection andaggin in the presence of
uncertainties in both sensing and process dynamics arkeobalg tasks. Applications
include but are not limited to using UAVs for fire detectiordaemperature estimation in
aerial wild fire control 102, aerial search and tracking2], space situational awareness
(SSA) for the detection and categorizing of critical spalgects [L41], and chemical leak
detection and concentration estimation in emergency resgsto Chemical, Biological,
Radiological and Nuclear, Explosive (CBRNE) incidents.a#rial wild fire control, for

example, given limited sensing capabilities, the prompécteon of multiple distributed
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fire sources and the accurate estimation of the heat equatibgoverns the fire are key
to mission success It is crucial to manage sensors in a way such that detectidn a
estimation tasks are effectively assigned across searohid@artitions and the detected
processes to be estimated. This is especially true wheretiseg resources are limited.
More specifically, it is assumed that the sensors used fa@cteh are the same ones
used for estimation, albeit operated in different sensigl@s. At every point in time,
the sensor has to judge whether the currently availablenrdtion is enough to make a
detection or estimation decision. Once such a decision depespecification of where
to search or what to estimate at the next time step has to be.n@hsidering the very
limited sensory resources, these decisions need to be madedr to minimize risk, i.e.,
the optimal tradeoffs between the desired detection/esitm accuracy and the sensing
costs paid to achieve it.

There is a rich literature on sensor management and tastaiiba. Among many
other ad hoc architectures, one large category utilizeketdrased auction algorithms
for multi-robot coordination and task allocation (s&8,45,118 and references therein).
In that literature, the proposed algorithms are determanisles assuming perfect sensing
and communication links. The auction decisions acrossmifft tasks do not compete for
sensory and/or communications resources. Another catejaensor management for
multi-target tracking is driven by information theoreti@asuresg2, 70,80]. The prob-
lem is formulated in a Bayesian framework and the sensordsdimg depends on the
corresponding expected gain in information. However, thiedive in these approaches
is to maximize the expected information gain, or equivdjetnd minimize the informa-
tion uncertainty, by optimally selecting the targets totaeked. Hence, the risk (i.e., the

expected costs of the allocation decisions) associatdéddifferent sensing actions is not

LIf the process represents an object’s position and veldgityamics as in the domain search and object
tracking problems, then it is assumed that the object carleaot its search domain partition. Future
work will extend the results to the detection and trackinghobile objects that move from one partition to
another.
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taken into account.

Chapter5 investigates the problem of object search and classifitateated as two
competing tasks, which only requires the detection witpeesto discrete random vari-
ables based on the assumption of stationary objects. Fadntbgrated detection and
estimation problem presented in this chapter, a single dtipteisensors are used to per-
form the detection of discrete random variables conculgrevith the estimation of some
other continuous random variables. First, the Bayesianes@aal detection is utilized to
address the detection problem. For estimation, the Bayesquential detection is ex-
tended to the Bayesian sequential estimation for contisuandom variablesip]. The
risk analysis for integrated detection and estimation iregithe comparison of expected
information gains for a hybrid mix of discrete (for detectfj@nd continuous (for estima-
tion) random variables. Here, the Renyi information mees{2, 10§ is used to model
the information gained by making a certain sensor allocatiecision. The relative in-
formation loss in making a suboptimal allocation decisi®nsed to define the dynamic
observation cost.

The main contribution of this chaptertise integration of Bayesian sequential detec-
tion and estimation for a risk-based sensor managemeninselwven limited sensory

resources and uncertainties in both state and observatiodais.

6.2 Bayesian Sequential Detection

6.2.1 Problem Formulation

Denote the existence state & which is equal to 1 if a process exists within a given
region and O if no process exists. The existence state modeled as a discrete-time,

time independent Markov chain, where the transitional ability matrix is given by the
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identity matrix since itis assumed that the processes dherestricted mobility within the
domain partition they occupy. Léf be the observation random variable. The Bernoulli
type sensor model in Secti@¥.1lis used with detection probability.

Denote the probability of process existencethyb(X = 1;¢) = p,. Letpy, =
Prob(X = 1;t + 1|Y;.) be the predicted conditional probability apd= Prob(X =
1;t|Y1..) be the updated conditional probability. The notatiois omitted in.X (¢) with
the understanding that the state is associated with an etegoel for detection in this
section and object for estimation). Assuming identity siianal probability matrix, the

following prediction step holds:

D1 = Dt (6.1)
At time ¢, the update step is as follows:

By, =
s (1—5)(1—;@)%@ it ¥y =1 ) (6.2)

(1-B)p ev
B 1Ye=0

This is consistent with Equatio2.33.

6.2.2 Bayesian Sequential Detection

The goal of Bayesian sequential detection is to determiaacthual state of process exis-
tenceX with minimum risk given a sequence of observations up to tinléhe Bayesian
sequential detection method in Chaiés used here. Below, a brief review of the method
is given, however, with the formulation consistent with Beyesian sequential estima-
tion method to be developed in Secti6r3. A set of simulation results are also provided

to study the characteristics of the proposed method.
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6.2.2.1 Decision Cost Assignment

First introduce the hypotheseH,: the null hypothesis thak = 0; and#;: the alterna-
tive hypothesis thak’ = 1. Define the cost of accepting hypothegiswhen the actual
existence state i&¥ = j as(C};. Using a Uniform Cost Assignment (UCA), the decision
cost matrix is modified as follows

0 ifi=j
Cij: ,7'20,

ca(T) ifi#j
wherecy(7) > 0 is the cost of making the wrong detection decision at time> 0
indicating the number of observations. To be consistert wie Bayesian sequential
estimation method developed later, here the determirdstitsion ruleA is renamed as
the detection estimato¥,.... It maps a sequence of observatidfs, , into a decision to
acceptH, or Hi, 7 > 0. Let the notatiorC(XtH(Yl:HT), X;.,) denote the cost of using

estimatorXHT given that the actual state of existence at ttraer is X, .

6.2.2.2 Detection Decision-Making

Restrictingr < 1, there ends up to be six possible detection estimators amndcibrre-

sponding Bayes risksfollow the procedures provided in Sectibr.2

r(XL 7 =0) = ca(0)py. (6.3)
r(X2,7=0) = ca(0)(1 — pr). (6.4)
r(Xha(Yien), 7 = 1) = ca(D)Pr1 + Cobs. (6.5)
r(X2(Yign), 7 = 1) = ca(1)(1 = Prar) + Cops: (6.6)
r(XP (Vo) 7 = 1) = ca(1)(1 = B) + Cobs. (6.7)
r(X (Yer), 7 = 1) = ca(1)B + cons: (6.8)

164



The goal is to choose a combinationliiLrT and observation numberthat minimizes

the Bayes risk. That is, the optimal decision is the one thatsghe minimum risk:

T*(ﬁt—i—T) = minXt_,_T,TT(Xt'i‘T(}/t"'T)’ 7—).

Here,r(X},7 = 0) andr(X2,7 = 0) correspond to making a detection decision at cur-
rent cell without any further observation. Equatiof$)-(6.8) correspond to postponing

the decision and taking one more observation.

6.2.2.3 Simulation Results

In this section, the proposed optimal detection methodudistl by varying the initial
prior p;—g, sensor detection probability, and observation costys respectively. The
actual state of existence is assumed taXoe= 1 and random binary observations are

taken. For every parameter choice, 30 simulations were run.

Varying Initial Prior Probability ~ Figure6.1(a)shows the minimum Bayes risk curve
with 5 = 0.6, cops = 0.05 andcq(0) = 1, ¢4(1) = 0.3 under different choices of initial
priorspy = 0.2, 0.5, 0.7. Figure6.1(b)shows the updated probabilify as a function of
time with initial prior probability0.2 (red),0.5 (blue), and).7 (green), respectively. The
two magenta horizontal lines correspond to the threshatadsilities7; andr;;. Table
6.1summarizes the statistical results of the simulation. Nodéthe minimum Bayes risk
is the same in all the cases because the initial prior prétatbbes not affect the value of
the Bayes risk functions. Comparing the results, it can e #eat with a relatively better
knowledge ofX initially, the number of missed detections is lower and it decisions

are made faster on average.
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Figure 6.1: Minimum Bayes risk curve and updated probabilit

Do L U E[p;] | Prob(missed detection)Avg. observations
0.2 | 0.0714| 0.9286| 0.7330 16.67% 31.7667
0.5 | 0.0714| 0.9286| 0.9151 3.33% 33.0667
0.7 1 0.0714| 0.9286| 0.9169 3.33% 29.1333

Table 6.1: Varying initial prior probability.

Varying Sensor Detection Probability Table6.2 summarizes the statistical results of
varying . Other parameters are setj@as= 0.5, cops = 0.05 andey(0) = 1, ¢4(1) = 0.3.

As can be seen in Tab&2 a sensor with a very high detection probability< 0.8) or

a very low detection probabilityA = 0.3) outperforms a sensor with a value @tlose

to 0.5 and makes an optimal decision faster on average. This isubedhe proposed
method depends on the sensor model. If the sensor qualibyvigthe optimal decision
will be to accept the hypothesis that is opposite to the ofeskvalue ofY”. However, if

the detection probability is close €05, i.e., the sensor returns a true or false observation
with equal probability, more observations need to be takefiork an optimal decision

with minimum risk can be reached.

Varying Observation Cost Table6.3summarizes the statistical results of varying.

Other parameters are setigs= 0.5, 5 = 0.6 andc4(0) = 1, ¢4(1) = 0.3. As can be seen
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6] L U E[p:] | Prob(missed detection)Avg. observations
0.3 | 0.0714| 0.9286| 0.9362 3.33% 11.0667
0.6 | 0.0714| 0.9286| 0.8854 6.67% 35.8000
0.8 1 0.0714| 0.9286| 0.9118 3.33% 3.7333

Table 6.2: Varying sensor detection probability.

Cobs T T E[p;] | Prob(missed detection)Avg. observations
0.01 | 0.0143| 0.9857| 0.9886 0% 51.0000
0.05 | 0.0714| 0.9286| 0.8854 6.67% 27.4000
0.1 | 0.1429| 0.8571| 0.7558 16.6%% 23.6667

Table 6.3: Varying observation cost.

in Table6.3 with lower observation cost, the threshold probabilitglisse to eithef or
1, which implies that the sensor tends to take more obsenatintil it reaches higher

confidence level and ends up with more correct optimal deasson average.

6.3 Bayesian Sequential Estimation

6.3.1 System Model: Single Sensor and a Single Process

In this section Bayesian risk analysis tools is developedsémjuential Bayesian esti-
mation. Consider a linear system for a continuous randonmabia; which satisfies the

discrete-time Markov chain model:

X1 = Fux¢ + vy,

ye = Hixy +wy,

where the first equation defines the evolution of the prodess sequencgx; € R", ¢t € N},
F, € R™" is the process state matriy; € R",¢t € N} is the i.i.d. Gaussian pro-

cess noise sequence with zero mean and positive semi-defovariance), € R™*",
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{y: € R™ t € N} is the measurement sequenEg, € R"™*" is the output matrix, and
{w; € R™ t € N} is the i.i.d. Gaussian measurement noise sequence withnzean
and positive definite covariand®, € R™*™. The initial condition for the process state
is assumed Gaussian with meag and positive definite covariand®, € R"*". It is
assumed that the initial process state, process noise, aagumement noise are all un-

correlated.

6.3.2 Sequential State Estimation

In sequential estimation decision-making, it will be assdrthat a suitable estimator has
been constructed (here will use the Kalman filter) and thg detision to be made is
whether to accept the estimate as the true state (and, h&npeaking additional mea-
surements) or to take (at least) one more measurement. Hbadist of decisions are: (1)

accept the estimate and stop taking measurements, and&¢2)ria more measurement.

6.3.3 The State Estimation Problem

For the estimation problem, the Kalman filter will be usedsiit is the optimal filter
for linear Gaussian systems. At time stephe process state and error covariance matrix

prediction equations are given b4

X, = Fiaxeg,

P, = Qtfl‘i‘thl]-StleIfla (6.9)

wherex;_; is the process state estimate update at tigigen measurements up to time

t—1 andP,_; is the error covariance update up to time1. The posterior state estimate
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is given by:
x =% + Ky (yr — Hyxy) (6.10)
and the posterior error covariance matfixis given by:
P, = (I1- K,H,)P,. (6.11)

In the above equatiorisis the identity matrix of dimension x n andK; is the Kalman

gain:
K, = P,H] (H,PH] + R,) . (6.12)

6.3.3.1 Estimation Error Cost assignment

Let x{(y.) be an estimator, i.e., computed estimate, of the actuakpsostate; based
on observatiory;. Omit the dependence gn for notational brevity. Define the cost of
accepting the estimate given the actual process stateasC'(x{, x;). SetC'(x{,x;) =
co(T) ||x¢ — x¢||* (quadratic cost with.(7) > 0 being somer-dependent cost value and
7 > 0 indicating the number of future observations), or the Umf&ost Assignment:

. 0 [xf —xif| < e
C(x5,%x¢) = , (6.13)

ce(r) [Ixi = x| > e

wherees > 0 is some preset small interval. In this work, fdt, the updated Kalman Filter

estimatex is used.
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6.3.3.2 Estimation Decision-Making

At time t, after making a measuremeyy, if it is decided not to take any more measure-
ments, the Bayes risk is defined as the expected value (dveosdible realizations of
the process state, conditioned on all previous measurejneinthe cost of choosing the

estimatex;:

T(),\(t,’r = O) = EXt|y1:t [C()A(t,xtﬂ = /C()A(t7xt)p<xt|y1:t)dxt. (614)

If assuming a quadratic cost assignment, it follows that

n

=00 = [ e0)lx = xlPpbelyindx = [ @)Y 6 -5 b0y

i=1

= ¢c(0)Tr [Pt} )

wherec,(0) > 0 is the estimation cost when the sensor does not take an altiser(,e.,
T = 0), andz! andz! are theiy, component ok; andx;, respectively.

The (expected) risk associated with taking more obsemaijo> 1) also needs to be
computed. Since there are no measurements over time geriad ¢ + 7 yet, define the
conditional risk, Ry, , ... (X¢4-(Ye+1:04-), 7) Over all possible measurement realizations

overt + 1 : ¢t 4+ 7 given the process stakg, , at timet + 7 as

th+1:z+7 (ktJrT (yt+1it+77 T))
= EYt+1:t+T‘xt+1:t+r [C(&Prf (yt+1:t+7)7 XtJrT)] + KTCobs

= /C(&Hr(ywrl:tw)a Xt+T)P(}’t+1:t+r\Xt+1;t+7)d}’t+1:t+r + KTCobs,

wherex > 0 is some scaling parameter. The Bayes risk is defined as thghteeli

conditional riskR , weighted by the predicted density functip(x;. ... |y1.) at

Xt41:t+7
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timet+1:¢t+7:

" (Xetrr (Yet1:447), T)

Xt 1:t4+7|Y1:t [sz+1:t+7 (}A(tJrT (yt+1:t+7>7 T)]

p(Xt+1 |Xt+2 47y Y1 t+7‘)dxt+1 p(Xt+T—1 |Xt+'r7 y1:t+T)dXt+T—1
[oe)

= Fy
:/ Xif Lot ir (Xer (Yerritr), T)IP(Ket g7 [V 16) X 12047

O()A(t—i—T(yt—l—l:t—l—T)a Xt+T)p(Xt+T|y1:t+7')dXt+Tp(Yt+1:t+T|y1:t)dYt+1:t+T + HTCobs(6-15)

If choosing a quadratic error cost assignment, the Baykssigiven by

T(fit+7(}’t+1:t+r)a 7') = /Ce(T) ’|§Ct+r - Xt+¢’|2p(Xt+r|Y1:t+r)dXt+r + KTCobs

= ¢o(T)Tr [f’HT] + KT Cobs- (6.16)

Note that all the information required to comptftgw is available at time.
If choosing a UCA, then there is no closed-form expression fmless the dimension

of the process state is one, in which case the Bayes riskes dpy

P r (yin)y ) = co(r) [ 1= Erf [ — S | | + k7cops, 7= 0,1,  (6.17)

21/2P¢,

where

Erf(-) \/_ /

is the error function and is an error bound as indicated in Equati@@. For higher-
dimension process state under UCA, the computationcain be performed using Monte

Carlo approximation techniques.
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Since the optimal filter under linearity and normality asgtions is already deter-
mined by the Kalman filter, the only parameter to be optimiaeer is the observation
numberr. The optimal decision corresponds to a particular obsenvatumberr* that

yields minimum Bayes risk:

" = argmin.r(Xe ., 7).

Remark.

¢ Note that the Bayes risk is evaluated over all possible éuteializations of the state

X1 1.4 SiNce the current prior is a sufficient statisé®].

e Under the quadratic cost assignment, since the KalmaniBlieged for estimation,
an expression for the estimation risk foe> 1 is easily obtained (Equatio (16)).
However, there is no general formula for detection risk sTitbecause the optimal
estimator for Bayesian sequential detection is unspedainetidynamically chosen
in real-time from multiple candidates based on observataloes, and is itself a

function of the uncertainty in the detection process.

e To be consistent with Bayesian sequential detection, enky 0,1 in Equation

(6.19 or Equation 6.17) will be used for estimation. °

6.3.3.3 Simulation Results

In this section, the Bayesian sequential estimation methagplied on a time-invariant
linear process and the performance is studied by varyingtbeess noise covariance
Q, measurement noise covarianBe and observation costys respectively. UCA is

assumed with error bound= 0.1.
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Varying Process Noise Covariance Figure6.2shows the estimation error between the
actual process stateand the state estimateunder different process noise covariances,
where the blue lines correspond@-= 0.001, the red lines correspond @ = 0.03, and
the black lines correspond @ = 0.5. The initial mean and covariance of the state is
xo = 5 andP, = 1, respectively. The state matrixis= 0.8, the output matrix i# = 1,
and the measurement noise covariancR is- 0.1. The observation cost 5, = 0.02.
The process estimate gets updated when the sensor takesemation. In the figure,
squares are used to indicate the time steps when obsewatiertaken and switch to
circles when observations are no longer being taken. Bettoadwitching point, which

is indicated by a star, the state estimate is simply progagaithout any state updates
(since no new observations are made). As seen from the fighie) the process noise is
larger, more observations need to be taken before an estmetuld be accepted as the

actual state with minimum risk.

Figure 6.2: Estimation error under differeQt

Varying Measurement Noise Covariance Figure6.3 shows the estimation error be-
tween the actual state and the estimate of the processinder different measurement
noise covariances, where the blue line correspond® te 10, the red line corresponds

to R = 0.1, and the black line correspondsiBo= 0.01. The initial mean and covariance
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of the state isx) = 2 andP, = 0.8, respectively. The state matrix 5 = 0.7, the
output matrix isH = 1, and the process noise covarianc€)is= 0.01. The observation
costisc,,s = 0.01. As seen from the figure, as the measurement noise gets, larges
observations need to be taken before an estimation withnmaimi risk is accepted as the

optimal decision.

Figure 6.3: Estimation error under differdrt

Varying Observation Cost Figure 6.4 shows the estimation error between the actual
statex and the estimate of the stateunder different observation costs, where the blue
line corresponds to,,; = 0.001, the red line corresponds tg,, = 0.01, and the black
line corresponds to,,; = 0.1. The measurement noise covarianc®is= 0.1 and all
other system parameters are the same as those in the casging V. As seen from the
figure, the sensor tends to take more observations befoeptiing an estimation as the

true state when the observation cost is lower.

6.4 Extension to Multiple Elements

Now apply the Bayesian sequential detection for a disci@téom variable in Section

6.2to the detection of a possible process at églh the domairD. That is, to determine
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Figure 6.4: Estimation error under different,.

if X(¢;) = 0orl. Similarly, the Bayesian sequential estimation for a cantus random
variable in Sectior6.3is applied to decide whether to accept the estimates (thategd
process statg;) of every detected procegsif the existence state at cel) is X (¢;) = 1.
Here, the discrete stat¥(c,;) = 1 could correspond, for example, to the existence of
a fire in a forest domain cell with the continuous process tedianated being a finite
dimensional model of the diffusion equation within thislcel

First consider the Bayes detection risks at a €gllThe risks associated with making
a detection decision at; at the current time stepdo not change in multi-element case
because this is the decision associated with €eltself. Hence, they are the same as
Equations §.3) and ©6.4). Given that the sensor is observiagat ¢, the Bayes risk,
associated with observing element(including the possibility of choosing; again) at

the next time step+ 1 is defined a%

Tk(Xk7t+1(Yk7t+1)7 T = 1) = EXk,tJrl\Yk,l:t[RXk,tH (Xk,t-i-l(yk,t-i—l)v T = 1)]7 (618)

2Here the subscripf is added to emphasize the current @gliwhile the equations follow the same
formulations as in Sectio8.2
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where the conditional risk is given by:

ka,t+1(Xk,t+1(Yk,t+1), T=1)= EY,C,H”X,MH[C(Xk,tﬂ(yk,tﬂ), X t+1)] + Crobs,

wherec;, .15 IS the observation cost assigned for €ellf it decides to take an observation
at element, at the next time step+ 1. The optimal decision is then to choose a com-
bination off(k,m, 7 = 0,1, element, and observation numberthat minimizes Bayes

risk:

J

T min = minx’kﬁﬁkﬁ <7’j (ij T=0), Tk(Xk7t+1(Yk7t+1), T = 1)) . (6.19)

For the estimation of a detected procésghe Bayes risk of not taking any more mea-
surements is the same as Equatiérif). Next, for proces€;, compute the (expected)

risk of taking one more measurement associated with someeelte . :

Tk(f(k,tJrl(yk,tJrl)a T = 1)
://C(fik,tﬂ(}’k,tﬂ),Xk,t+1)p(Xk,t+1|Yk,1:t+1)ka,t+1p(Yk,t+1|Yk,1;t)dYk,t+1

+Hck,obs- (620)
If under a quadratic cost assignment, the expected Bayess ggven by
T (Xipr1 (Yiet1), 7= 1) = 05(1)-“ [I:)k,tJrl} + KCk,obs;

whereck(1) > 0 is the estimation cost with 1 observation associated wigmehtk. If

under UCA and assuming a 1 dimensional state, the Bayessrgiken by

. €
Te(Xe 41 (Ypg1), 7 =1) = ) [1-Erf | ———— + KCl,obs-

21/2Pp 141
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The Bayesian sequential estimation method finds a particalabination of element
¢, and observation number & 0 or 7 = 1) that yields the decision with minimum Bayes

risk r*

J,min

for each given observation.

r;,min = min;w (Tj ()A(jﬂg, T = O), Tk(ﬁk7t+1, T = 1)) . (621)

6.5 Risk-based Sensor Management

6.5.1 Problem Statement

In this section, a sensor management scheme is develop@&udgrated detection and
estimation based on Bayesian sequential detection andatgin introduced in Sections
6.2 and6.3 and their extension to multiple-element case in Seddigh Assume that a
single sensor is capable of searching cells, and deteatohgstimating processes, but not
both at the same time. The Bayesian sequential detectioastimiation methods are inte-
grated into a unified risk analysis framework such that wkiena sensor chooses among
multiple elements (cells for detection, processes fomesion), the resulting decision

yields a minimum Bayes risk.

6.5.2 Detection and Estimation Sets

Let Qp(t) C D be the set of cells for which no detection decision has beatermna to

A

timet (i.e., 7} ., # r;(X;+ 7 = 0) according to Equatior5(19) and that are expected
to be within the sensor’s coverage area at the next timetstep. Let Qr(t) be the set

of detected processeX (¢;) = 1) that still need further measurements for an acceptable
estimate with minimum risk (i.ex; ., # (X, 7 = 0) according to Equations(21))

and that will be within the sensor’s coverage area at thetireetstept + 1. Let Q(t) =
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Qp(t) U Qr(t). Let E(t) be the set of all cells in which it has been decided that no
processes exist up to tintg X (¢;) = 0). Let7'(¢) be the set of all processes that have
the minimum Bayes risk based on all available observatign®uimet and for which

no further measurements are required (g,,, = r;(X;, 7 = 0) according to Equation

(6.21).

6.5.3 Decision List

At some timet, a sensor makes one of two types of measurements of an element
(1) a detection measurement or (2) an estimation measuteBased on the decisions
made, an elememt € Q(t) (the grey dotted ellipse encompassing b@Qth and()r) can
transition between the above mentioned sets at tiaseshown in Figuré.5.

time stept at element;

\ 1

Ho |1 41 N 10 19
1 \\ \

estimate®

’ N \

Figure 6.5: Element transition.

In general, there are two main possible transitions:
e The current elemerd; is a cell inQp(t).

1. Transition arrow 1: If no further observation is requieadl it is believed that
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the cell contains no process (hypotheXisis accepted)¢; is removed from

@p(t) and added td(t) .

2. Transition arrow 2: If no further observation is requisedl it is believed that
the cell contains a process (hypotheHis is accepted)¢; is removed from

Q@ p(t) and added ta)r(t) as a detected process that needs to be estimated.

3. If more observations are required before making a detedicision, the sen-
sor could either choose to take an observation a) at therdured ¢; (transi-
tion arrow 3), b) at another cetl, € Qp(t + 1) (transition arrow 3), or c) at
another process, € Qr(t+ 1) (transition arrow 2). Note that the cel) still

remains inQp(t + 1) at the next time step+ 1.

4. Also note that an element i can transition back t@), (as indicated by
the dashed transition arrow 4) if the previous detectioniltas no longer
satisfactory. This also applies to an already detectedegsom(); (dashed

transition arrow 5).
e The current element is a procasse Qr(t).

1. Transition arrow 6: If no further observation is requireel., the process yields
the minimum Bayes risk and the process estimate is accept@an be re-

moved fromQr(¢) and added ta@’(¢) .

2. If more observations are required before making an esbmaecision, the
sensor could either choose to take an observation a) at thentprocesg;
(transition arrow 7), b) at another procegse Qr(t+ 1) (transition arrow 7),

or c) at another celt, € Qp(t + 1) (transition arrow 8).

3. If the estimation decision associated with proagsdoes not give minimum
Bayes risk any more, i.e., the process estimate can not lepi@ctas the true

state any longer, this process is marked as “lost” and rechéreen Q- ()
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and added t@)(t) (dashed transition arrow 5). Moreover, as in detection,
an element irY'(¢) can transition back tQ(¢) (dashed transition arrow 9) or
even( p (dashed transition arrow 10) directly if the previous estiea result

is no longer acceptable

At time stept, after taking an observation at an elemeptif ¥ = r¥(r = 1), k €
Q(t), then it is less risky to take more observations than to sedeation or estimation at

¢;. The sensor is then allocated to elemegnat the next time step+ 1.

6.5.4 Observation Decision Costs

The observation cost considered in this chapter is thavelkiss of information gain that
results from making a suboptimal sensor allocation deciskor each sensor allocation
decision, associate with it a measure of gain in informati®he decision yielding the
maximum gain in information gives the optimal sensor altmcascheme and there is
no loss. For each suboptimal decision, define the observatst as the loss of gain in
information relative to the optimum. Note that here subogtiis in the sense of max-
imizing information gain only (e.g., not suboptimal withspect to risk minimization).

Mathematically, the observation cost associated with etd®) is defined as
Cjobs = Ellj+] = BL]; (6.22)

where E[1,] is the expected information gain when measugnp@ndc;- is the element
with the highest value of expected information gain.

The Rényi information divergencd (8 will be used to compute the gain in infor-

3For future research, each decision will be associated wikdunction (both solid and dashed arrows
shown in Figureés.5 made at an element in the above sets. The corresponding Bale will be evaluated
at every time step. When it is decided that a process shoulehheved fronQ 1 (¢) to Q p (¢) (or fromT'(¢)
to Qr(t) or @p(t)), it is because that the Bayes risk associated with thissecis lower than keeping
them in their previous sets.
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mation when comparing two probability densities, each hgilag to either a cell (for

detection) or a detected process (for estimation).

Rényi Information Divergence for Discrete Random Variables For detection, the
divergence is computed between two probability mass fansti the expected posterior
probability mass functiofp; 1,1 — p; 41} (given a measurement made at time 1)

and the predicted probability mass functigs ;, 1 — p; .} [108:

R R _ _ 1 Piavr (1= pPjeqn)®
]’,a Py, 171_]7‘, 1 p‘,v]-_p’, - IOg _i;_ + — .
J ({ Jit+ Jst+ } | { Jit Jt}) a—1 2 pj,t+11 (1 _pj7t+1)a—1

Herea = 0.5 is used because this choice is reported as being most sersithe differ-
ence between two probability density functiobd][

Iflet I;..v,,.,—1 andI;.y,,.,—o denote the Rényi information gain for the two pos-
sible types of sensor outputs at time- 1, the expected Rényi information gain is then

given by

By, 1Viajay e (Pi el D)
1

= Z Prob(Yj i1 = i|Yj1:4) oy, pa=i
i=0

= [(1 - 6)(1 - ﬁj7t+1\5/j,t+1:1) + Bﬁj7t+1\5/j,t+1:1} Ijva;yj,t-o-lil

+ [B(L = Pjir11v;01=0) + (1 = B)Diis11v5001=0) Lj.asv; a0 (6.23)

Rényi Information Divergence for Continuous Random Variables For estimation,
the Rényi information divergence at timés computed between two probability density
functions: (a) the expected posterior probability dengityction p(x; 41|y 1..+1) after

another (unknown) measuremegnt.; is made, and (b) the predicted dengity; ;+1|y;.1:¢)
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given the measurements upytg; [52, 108

L o (0(%5441] ¥ 51040 1P(X 041 ¥ j.1:0)) (6.24)

1 p(X't+1|Y'1:t+1) ¢
= lo /p Xit+1|Yi1: ( 2 2 dx; ¢41.

For linear Guassian models combined with a Kalman filtepllbtvs that p2]:

Eyj,t+1|yj,1:t[j701(pj (Xt+1|y1:t+1)Hpj (XtJrl‘yl:t))
_ 1 . |aRj—1H£PN+1HJT +1
2(]_ — Oé) ‘R.J_IHJP_],t*i’lH;r + I‘a

1 i .
) + 5T 1= (aR;'H,Py i H] + 1)

6.5.5 Solution Approach

Figure6.6 summarizes the solution algorithm as a general flow chartindd stept, the
sensor takes an observatidf { for detection oy, , for estimation) at the current element
¢; € Q(t — 1). Based on this real-time observation and the prior protigistimate
(p; for detection orx; ; for estimation), the updated (posterior) probabilityifastte ¢, ;
for detection andk;, for estimation) and the predicted probability/estimatg, (; for
detection anc; ;. for estimation) are obtained via a recursive implementefBayesian
update Equations®(2) and 6.1) for detection and Kalman filter Equatior®.10-(6.12
and 6.9 for estimation). Note that the predicted probabilityiestte is treated as the
prior probability/estimate at the next time steg- 1. Then the corresponding Bayes
risk are computed, where the updated probability/estinsaised to compute the Bayes
risk r;(r = 0) of making a direct detection or estimation decision withtaking any
further observations (i.e., future observation length- 0) (Equation 6.3) or (6.4) for
detection and Equatior6(14 for estimation), and the predicted probability/estimiate
used to compute the Bayes ris7 = 1) associated with taking one more observation

(r = 1) for a possibly better decision (Equatior&56.8) for detection and Equation
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(6.15 for estimation). Bayesian sequential decision-makirtgesn employed as follows.
If the minimum Bayes risk’ ., is giving by taking future observations & 1), then
the sensor will take an observation at some elemigrd (¢) (including the possibility
of choosingc,) that minimizes the Bayes risk at the next time step 1 (according to
Equation 6.18 for detection and Equatio® (20 for estimation). Otherwiser(= 0), the
sensor makes a detection or estimation decisi@n, @nd moves to somg, € Q(¢)\{¢;}
that minimizes the Bayes risk and takes an observation aetbment at the next time

stept + 1 (Equation 6.18) for detection and Equatio® (20 for estimation). This process

is repeated until a detection or estimation decision candeenat every element ig(¢).

6.6 Simulation Results

Assume there aréVy,; = 10 cells initially, among which there are processes (Cell
1-7) to be detected and estimated. Both the number of presessd their cell num-
bers are unknown to the algorithm beforehand. A limitedgeaeensor is used, which
is capable of taking either a detection or an estimation iasien on any one cell or
process at every time step. The initial predicted prob@bilj,—, for j = 3 is set to
be 0.1 and that for all the other cells i8.5. The value of the sensor detection prob-
ability g associated with each cell follows a Gaussian distributiaih wnean0.6 and
variance(.1. The process states are assumed to be time-invariant Gayssicesses
with zero mean and positive definite covariatice. Same parameters are used for the
processesF = 1H = IR = 1,Q = 0.1. For both detection and estimation,
UCA is assumed and is set to be0.1. The probability of the existence state or the
estimate of the process state will be updated when the selesides to take a mea-
surement of this element. When there is no observationerltecause that a detec-

tion/estimation decision has been made at the current elearghe sensor decides to
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Figure 6.6: Decision flowchart.
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postpone the decision and makes a measurement elsewhe@otiability/estimate is
propagated based on the predictions. The decision costiefection and estimation are
ca(0) = 1,¢4(1) = 0.3,¢.(0) = 1,¢.(1) = 0.16. The information gain scaling parameter
r is chosen to be 0.06.
Remark about parameter sensitivity. Simulation results were very sensitive to param-
eter choices. Some parameter choices lead to excessiwtidetagbservations and others
to exhaustive estimations for a single detected procesturd-work will focus on the
effective scaling of information measures and cost assasisio resolve this issue. e
The results of running the algorithm until the stoppingesid is met, i.e., the detec-
tion decisions for all cells and estimation decisions férdatected processes are made
with minimum Bayes risk, are shown in Figuré§ and6.8. All the processes have been
detected and satisfactorily estimated except that therenssed detection at Cell 4. Fig-
ure 6.7 shows the assigned observing cell at each time step acgoilithe proposed
integrated decision-making strategy. The green dots sept¢he detection stopping time
when the hypothesi#l, is accepted. The green squares indicate the detectioniisgppp
time when the alternate hypothe$is is accepted. For example, there is a missed de-
tection at Cell 4, no estimation is performed after the desaalecisionX, = 0 is made
at time step 137. Note that an already detected process castibgated before other
processes have been detected, however, a process must fiistelated before being es-
timated. Figure$.8(a) 6.8(b)and6.8(c)show the actual probability; ; (blue) and the
updated probability), , (red), the actual process statgblue) and the estimate of the
statex (red) for Cell 4, 6, and 8, respectively. Figue3(d)enlarges the estimation per-
formance of Cell 1 during time period 1-300. The horizonta$ in the figure correspond
to the moments when the sensor decides to stop taking oliseivand the estimates of

the state propagate based on the predictibns: (1).
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Chapter 7

Conclusion and Future Work

In this dissertation, real-time decision-making stragegire investigated for domain search
and object classification using MAVs under limited sens@yources over large-scale
domains. Domain search is treated as a coverage contrdepmolthich aims at con-
structing a high-confidence awareness map of the entireianis®main. Lyapunov-
based, awareness-based, and Bayesian-based dynamiagmgentrol strategies are in-
troduced in sequence. The proposed Lyapunov-based ceveoagrol law is applied to
seafloor mapping using multiple AUVs. Given limited sens@sources, a deterministic
awareness-based decision-making strategy is develogech \uarantees the detection
of all unknown objects of interest and the classificationadtefound object by at least
a desired amount of time. In order to take into account seaesors, a probabilistic
Bayesian-based decision-making strategy is then devetlofmefurther consider the cost
of taking each new observation, a risk-based decisionimgedtrategy based on Bayesian
sequential detection method is presented. The binaryidaemsaking strategy is further
extended to more general ternary settings. The resultspgieed to the SSA problem
in SBSS systems. Combining both Bayesian sequential dmteahd its extension to

Bayesian sequential estimation, an optimal risk-basesisenanagement scheme is pro-
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posed for integrated detection and estimation. Simulagsalts are provided to illustrate
the performance of the proposed strategies.

A summary of future research directions is as follows.

Search vs. Tracking Decision-Making for Mobile Objects. The mobility of the ob-
jects may be modeled according to Markov chains with nomitetransition probability
matrix. This technique can be used to develop strategiethéosearch and tracking of

space objects on non-geosynchronous orbits in the SSAgobl

Sequential Risk Analysis. In cases where no prior information is available, SPRT,
Neyman-Pearson, SR and CUSUM based hypothesis testingsevatiopted for the risk
analysis associated with decision-making. Both cenwdliand decentralized versions
of Bayesian sequential detection and SPRT methods can leéoged for sequential de-
tection as well as estimation. The integration of these @ggres will provide a general

scheme for unified detection and estimation.

Applications on SSA. The proposed risk-based sensor management scheme may be
applied to the SSA problem by incorporating nonlinear Keple spacecraft dynamics.
Computationally efficient (approximate) algorithms widd B necessity to tackle the issue

of large amount of data raised in this case.

Vehicle Dynamics. Vehicle dynamics can also be taken into account into theesyst
model. To be more specific, vehicle motion control stratefpe second-order nonlinear
vehicle dynamics including motion uncertainties and ndohomic constraints can be
considered. Application of the coverage control laws toamater sea floor mapping

can be modified to incorporate both vehicle dynamics androffe& dynamics.

188



MAV Decision Fusion. For MAV cooperative decision-making, besides the sensor fu
sion algorithm introduced in Sectidh4.5 the decision fusion technique offers a more
affordable approach for MAV communications. This is beeadscision fusion only re-
quires the transmission of a made decision from each cotyeraehicle instead of the

relatively large amount of observation data for sensoofusi

Nonlinear Systems. The Bayesian sequential estimation method can be extewded t

nonlinear systems via, for example, Gaussian sum filters.

Domain Discretization. In this dissertation, itis assumed that the domain distaigtn
is fine enough such that there is at most one object at a sielileTtis assumption can
be relaxed by allowing more than a single object per cell argdt discrimination and

data association.

Unknown Environment Geometries. Current work assumes mission domains with
known geometries. The problem of unknown environment esgpilon is of interest for
realistic implementations. This problem may be solved Bdpmting a vehicle sensor’s

position at the next time step, which will be utilized to esdite the dynamic search space.

Uncertainty in Vehicle Actions. Besides the uncertainty in sensor perception, the Par-
tially Observable Markov Decision Process (POMDP) may kexliuse model the uncer-
tainty in the outcomes of vehicle actions. The solution oM yields an optimal

action that maximizes the expected rewards.
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