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Abstract

This dissertation focuses on real-time decision-making for large-scale domain search

and object classification using Multiple Autonomous Vehicles (MAV). In recent years,

MAV systems have attracted considerable attention and havebeen widely utilized. Of

particular interest is their application to search and classification under limited sensory

capabilities. Since search requires sensor mobility and classification requires a sensor to

stay within the vicinity of an object, search and classification are two competing tasks.

Therefore, there is a need to develop real-time sensor allocation decision-making strate-

gies to guarantee task accomplishment. These decisions areespecially crucial when the

domain is much larger than the field-of-view of a sensor, or when the number of objects

to be found and classified is much larger than that of available sensors.

In this work, the search problem is formulated as a coverage control problem, which

aims at collecting enough data at every point within the domain to construct an awareness

map. The object classification problem seeks to satisfactorily categorize the property of

each found object of interest. The decision-making strategies include both sensor allo-

cation decisions and vehicle motion control. The awareness-, Bayesian-, and risk-based

decision-making strategies are developed in sequence. Theawareness-based approach is

developed under a deterministic framework, while the latter two are developed under a

probabilistic framework where uncertainty in sensor measurement is taken into account.

The risk-based decision-making strategy also analyzes theeffect of measurement cost. It

is further extended to an integrated detection and estimation problem with applications

in optimal sensor management. Simulation-based studies are performed to confirm the

effectiveness of the proposed algorithms.

i



Acknowledgements

I would like to express my sincerest gratitude to my advisor Professor Islam Hussein

for his guidance, encouragement, and help during my academic studies. The two most

important things I have learned from him are confidence and persistence.

I would like to thank Professor Michael Demetriou, Professor Stephen Nestinger, and

Professor David Olinger for serving on my dissertation committee. I am indeed thankful

for the valuable time and many helpful advice they have offered.

Special thanks are warranted to Dr. R. Scott Erwin at the Air Force Research Labora-

tory for his input and advice on my research.

I would like to thank Professor Mikhail Dimentberg, Professor Yiming Rong and

Professor Mark Richman in the Mechanical Engineering Department, Professor Donald

R. Brown and Professor Alexander Wyglinski in the Electrical and Computer Engineering

Department for their academic and moral support.

I am also thankful to Barbara Edilberti and Barbara Furhman for their generous help

in administration over the years.

This dissertation is dedicated to my parents Wenlong Wang and Shuli Fu. Their con-

tinued love, support, and admiration are empowering. My success is a reflection of their

hard work and sacrifice. I would not be where I am today withoutthem.

I would also like to thank all my friends at WPI for always being a stimulating source

of knowledge and help. In particular, I would like to thank Dr. Adriana Hera for her

expertise and help in computing and programming, Russell Morin, Jeffrey Laut, Hao Su,

Jeffrey Court, Shalin Ye and Weijian Shang for the work and discussions on control sys-

tems and robotics, my best friends at WPI Zhiyang Rong and Mo Liu, and my officemates

Omair Paracha, Wael El Khatib, and Sangheum Kim. Their diligence and hard work have

always been a big motivation to me.

ii



Contents

List of Figures ix

List of Tables x

Nomenclature xiv

1 Introduction 1

1.1 Motivation and Objectives. . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Multiple Autonomous Vehicle Systems. . . . . . . . . . . . . . 3

1.2.2 Domain Search, Object Classification and Tracking. . . . . . . . 6

1.2.3 Decision-Making for Search, Classification and Tracking . . . . . 8

1.3 Dissertation Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Research Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Coverage Control 16

2.1 Cooperative Coverage Control. . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Location Optimization of Immobile Sensors. . . . . . . . . . . . 17

2.1.2 Optimal Redeployment of Mobile Sensors. . . . . . . . . . . . . 17

2.1.3 Dynamic Cooperative Coverage Control. . . . . . . . . . . . . . 18

2.2 Deterministic Lyapunov-Based Approach. . . . . . . . . . . . . . . . . 20

iii



2.2.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Vehicle Motion Control and Search Strategy. . . . . . . . . . . . 24

2.2.3 Underwater Coverage Control with Vision-Based AUVs. . . . . 27

2.2.4 Underwater Acoustic Imaging using AUVs. . . . . . . . . . . . 33

2.3 Deterministic Awareness-Based Approach. . . . . . . . . . . . . . . . . 43

2.3.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 State of Awareness Dynamic Model. . . . . . . . . . . . . . . . 47

2.3.3 Awareness Coverage with Intermittent Communications . . . . . 51

2.3.4 Generalization to Centralized Coverage Control. . . . . . . . . . 61

2.3.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Probabilistic Bayesian-Based Approach. . . . . . . . . . . . . . . . . . 64

2.4.1 Setup and Sensor Model. . . . . . . . . . . . . . . . . . . . . . 66

2.4.2 Bayes Updates. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.3 Uncertainty Map. . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.4 Bayesian-Based Coverage Control. . . . . . . . . . . . . . . . . 71

2.4.5 Extension to MAVs with Intermittent Information Sharing . . . . 73

3 Awareness-Based Decision-Making Strategy 90

3.1 Problem Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Search and Classification Metrics. . . . . . . . . . . . . . . . . . . . . . 92

3.3 Search versus Classification Decision-Making. . . . . . . . . . . . . . . 94

3.3.1 Centralized Strategy. . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.2 Decentralized Strategy. . . . . . . . . . . . . . . . . . . . . . . 99

4 Bayesian-Based Decision-Making Strategy 103

4.1 Problem Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Task Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

iv



4.3 Search vs Classification Decision-Making. . . . . . . . . . . . . . . . . 107

4.4 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1 Simulation Example. . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 Monte-Carlo Simulation. . . . . . . . . . . . . . . . . . . . . . 112

5 Risk-Based Sequential Decision-Making Strategy 117

5.1 Literature Review on Sequential Detection. . . . . . . . . . . . . . . . . 118

5.2 Decision Making for Search and Classification. . . . . . . . . . . . . . . 119

5.2.1 Problem Setup and Sensor Model. . . . . . . . . . . . . . . . . 120

5.2.2 Risk-based Sequential Decision-Making. . . . . . . . . . . . . . 122

5.2.3 Extension to Full-Scale Domain. . . . . . . . . . . . . . . . . . 130

5.2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Extension to Three States. . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Problem Setup and Sensor Model. . . . . . . . . . . . . . . . . 136

5.3.2 Ternary Bayesian Updates for Search and Classification . . . . . 138

5.3.3 Ternary Risk-Based Sequential Decision-Making. . . . . . . . . 139

5.3.4 The Uncertainty Map, Task Metric, and Motion Control. . . . . 144

5.3.5 Full-Scale Domain Simulations. . . . . . . . . . . . . . . . . . 145

5.4 Application to Space Situational Awareness. . . . . . . . . . . . . . . . 147

5.4.1 Literature Review on SSA. . . . . . . . . . . . . . . . . . . . . 149

5.4.2 System Model and Dynamics. . . . . . . . . . . . . . . . . . . 150

5.4.3 Decision-Making for Detection and Classification in Space. . . . 154

5.4.4 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Risk-Based Sensor Management for Integrated Detection and Estimation 159

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Bayesian Sequential Detection. . . . . . . . . . . . . . . . . . . . . . . 162

v



6.2.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.2 Bayesian Sequential Detection. . . . . . . . . . . . . . . . . . . 163

6.3 Bayesian Sequential Estimation. . . . . . . . . . . . . . . . . . . . . . 167

6.3.1 System Model: Single Sensor and a Single Process. . . . . . . . 167

6.3.2 Sequential State Estimation. . . . . . . . . . . . . . . . . . . . 168

6.3.3 The State Estimation Problem. . . . . . . . . . . . . . . . . . . 168

6.4 Extension to Multiple Elements. . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Risk-based Sensor Management. . . . . . . . . . . . . . . . . . . . . . 177

6.5.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5.2 Detection and Estimation Sets. . . . . . . . . . . . . . . . . . . 177

6.5.3 Decision List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.4 Observation Decision Costs. . . . . . . . . . . . . . . . . . . . 180

6.5.5 Solution Approach. . . . . . . . . . . . . . . . . . . . . . . . . 182

6.6 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Conclusion and Future Work 187

Index 194

Bibliography 212

vi



List of Figures

1.1 Decision-making for search and classification.. . . . . . . . . . . . . . . 4

2.1 Instantaneous coverage function.. . . . . . . . . . . . . . . . . . . . . . 22

2.2 Underwater sampling using a fleet of cooperative submarines. . . . . . . 28

2.3 One-dimensional configuration space scenario. . . . . . . . . . . . . . . 29

2.4 Camera Sensor Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Instantaneous coverage function for vision-based sensor model.. . . . . . 31

2.6 Fleet motion, control velocity, and error for underwater applications.. . . 34

2.7 Evolution of coverage with perturbation control.. . . . . . . . . . . . . . 35

2.8 Geometry of the data model.. . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Beam pattern.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Fleet motion along the line in acoustic imaging.. . . . . . . . . . . . . . 40

2.11 Vehicle control effort in acoustic imaging.. . . . . . . . . . . . . . . . . 41

2.12 Global errore(t) in acoustic imaging. . . . . . . . . . . . . . . . . . . . 41

2.13 Effective coverage in acoustic imaging.. . . . . . . . . . . . . . . . . . 42

2.14 Actual versus simulated profile. . . . . . . . . . . . . . . . . . . . . . . 43

2.15 Continuous and discrete awareness state update model.. . . . . . . . . . 49

2.16 Illustration of the overall control strategy.. . . . . . . . . . . . . . . . . 53

2.17 Fleet motion, control effort, and error for awareness coverage control. . . 63

2.18 Transformed state of awarenessx(q̃, t). . . . . . . . . . . . . . . . . . . 65

vii



2.19 Information entropy functionHs. . . . . . . . . . . . . . . . . . . . . . . 70

2.20 g(β, ε, |Gi(t)|) as a function ofε andβ. . . . . . . . . . . . . . . . . . . . 80

2.21 Deployment of objects and vehicles, and probability ofobject presence.. 87

2.22 Fleet motion under search control scheme without and with memory.. . . 88

2.23 Cost function under motion control scheme without and with memory. . . 89

3.1 Centralized implementation (awareness-based decision-making). . . . . . 97

3.2 State of awareness at different time instances (Centralized). . . . . . . . . 98

3.3 Decentralized Implementation (awareness-based decision-making).. . . . 101

3.4 State of awareness at different time instances (Decentralized). . . . . . . 102

4.1 Search uncertainty map (Bayesian-based decision-making). . . . . . . . . 111

4.2 Search cost functionJ (t) and posterior probabilities for search att = 700. 112

4.3 Classification results for object2 and3 (Bayesian-based decision-making).112

5.1 Block diagram of cost-aware Bayesian sequential decision-making.. . . . 120

5.2 Bayes risk, minimum Bayes risk, and construction of minimum Bayes risk.128

5.3 Evolution of search uncertainty.. . . . . . . . . . . . . . . . . . . . . . 134

5.4 Number of false/missed detections, and incorrect classifications. . . . . . 135

5.5 Classification results for objects1 and2. . . . . . . . . . . . . . . . . . . 136

5.6 Ternary sensor model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Bayes risk surface and minimum Bayes risk surface.. . . . . . . . . . . 141

5.8 Performance comparison.. . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9 Planar model of orbital sensor platform.. . . . . . . . . . . . . . . . . . 150

5.10 Model for the range-angle sensor.. . . . . . . . . . . . . . . . . . . . . 153

5.11 Space system architecture.. . . . . . . . . . . . . . . . . . . . . . . . . 156

5.12 Detection and classification results ofV1 andV2 for O1. . . . . . . . . . . 157

5.13 Detection and classification results ofV1 for O2. . . . . . . . . . . . . . . 157

viii



5.14 Detection and classification results ofV1 andV3 for O3. . . . . . . . . . . 158

5.15 Detection and classification results ofV1 andV5 for O4. . . . . . . . . . . 158

6.1 Minimum Bayes risk curve and updated probability.. . . . . . . . . . . . 166

6.2 Estimation error under differentQ. . . . . . . . . . . . . . . . . . . . . . 173

6.3 Estimation error under differentR. . . . . . . . . . . . . . . . . . . . . . 174

6.4 Estimation error under differentcobs. . . . . . . . . . . . . . . . . . . . . 175

6.5 Element transition.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.6 Decision flowchart.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.7 Observed cell at each time step for the 10-cell problem.. . . . . . . . . . 186

6.8 Actual and updated probability, actual and estimate of the process state.. 186

ix



List of Tables

3.1 Classification timeT for each object.. . . . . . . . . . . . . . . . . . . . 97

3.2 Classification time of each object by each vehicle.. . . . . . . . . . . . . 100

4.1 Varying mission domain size.. . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Varying sensory range.. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Varying peak sensing capability.. . . . . . . . . . . . . . . . . . . . . . 115

4.4 Varying number of objects.. . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1 Mean percentage of wrong decisions during different time periods.. . . . 145

5.2 Performance comparison.. . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Varying initial prior probability. . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Varying sensor detection probability.. . . . . . . . . . . . . . . . . . . . 167

6.3 Varying observation cost.. . . . . . . . . . . . . . . . . . . . . . . . . . 167

x



Nomenclature

p̄ Predicted probability of process existence

P̄ Predicted error covariance matrix
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Chapter 1

Introduction

This dissertation investigates real-time decision-making strategies for domain search and

object classification treated as tasks competing for the same limited sensory resources

using Multiple Autonomous Vehicles (MAV) over large-scaledomains. This chapter is

organized as follows. Section1.1 introduces the motivation and objectives of this re-

search. Section1.2reviews the related literature on MAV systems, domain search, object

classification and tracking, and decision-making strategies. Section1.3 summarizes the

organization of this dissertation. Section1.4 lists the research contribution.

1.1 Motivation and Objectives

In many domain search and object classification problems, including aerial search and

rescue/destroy, surveillance, space imaging systems, mine countermeasures, and wildfire

control, the effective management of limited available sensing resources is key to mission

success [53,144].

There are two basic objectives in a search and classificationproblem. The objective

for domain search is to find each object of interest in a given domain and fix its position in

1



space (and time for dynamic objects). The objective for object classification is to observe

each found object until the desired amount of information has been collected to determine

the property of the object. The characteristics of interestmay include geometric shape,

categorization, nature of electromagnetic emissions and object property. When the object

is mobile, the objective is to track its state (e.g., position and velocity).

Given limited sensory capabilities, it is crucial to allocate resources (which vehicle

should search/classify what?) and assign tasks (should a vehicle search or classify?) using

the most efficient way possible. A sensor vehicle can performeither the search mission

or the classification mission, but not both at the same time (search requires mobility and

classification requires neighboring the object). On one hand, with limited available obser-

vations in the presence of sensor errors, a sensor may give a false alarm of object presence

while there is actually none, miss detection of a critical object, or report incorrect clas-

sifications. On the other hand, taking exhaustive observations at one particular location

of interest may result in losing the opportunity to find and classify possibly more critical

objects at other locations within the domain. Hence, a vehicle sensor has to decide on

whether to continue searching more unknown objects and sacrifice the decision accuracy,

or keep taking observations at the current location and ignore elsewhere in the domain.

This is especially true when 1) the size of the mission domainis much larger as compared

to the limited sensory range of the vehicles, and 2) the number of unknown objects to be

detected and classified is greater than that of available MAVs. Here, a large-scale domain

is defined as a domain if a set of static limited-range sensorscan not cover every point

within it even in the worst case scenario when all the sensoryranges are disjoint.

This decision-making is critical in applications where onecan not afford to search the

whole space first and then classify, or classify until full certainty before proceeding with

the search. For example, in search and rescue, if the vehiclesensor finds all potential

human victims first, and then goes about classifying which are human victims and which

2



are not, and decides to rescue only the classified human victims, by then, many victims

could have passed away. On the contrary, if the vehicle sensor decides to classify each

found object first with extremely high certainty before continuing to search, that may

come at the cost of delaying the detection of critically injured victims who may pass

away if not detected sooner. This also applies to scenarios where objects could be harmful

(e.g., timed explosives) if their detection and classification is delayed. Therefore, there is

a pressing need to develop MAV systems that seek to collect, process data and complete

tasks efficiently under constrained resources.

Figure1.1 illustrates a typical scenario for search and rescue using MAVs. Let D

be a large-scale mission domain. The green and red dots represent unknown objects

of interest to be found and classified. They are assumed to possess different properties

and the number of objects is much larger than that of the available MAVs. Based on

the progress of the search and rescue mission, each vehicle makes real-time decisions

regarding whether to look for more objects within the domain, or keep taking observations

at current locations. In this dissertation, both deterministic and probabilistic decision-

making strategies will be investigated to guarantee the detection and classification of all

unknown objects of interest under such scenarios.

1.2 Literature Review

1.2.1 Multiple Autonomous Vehicle Systems

Many applications have emerged in recent years that rely on the use of a network of

sensor-equipped MAVs to collect and process data [37, 39, 66, 73, 114]. This can be at-

tributed to advances in relatively inexpensive and miniaturized networking and sensor

technologies. The applications have widely spread over military, civilian and commer-

cial areas and often involve tasks in adversarial and highlydynamic environments. In

3
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Figure 1.1: Decision-making for search and classification.

particular, MAVs have been increasingly used to perform operations that were tradition-

ally carried out by humans, especially for missions that require operations in dangerous

and highly dynamic environments that are hazardous to humanoperators. The advan-

tages of autonomous vehicles over humans are (1) minimum risk of loss of human lives

(e.g., search and rescue operations in hostile environments), and (2) more efficient com-

putational power for data processing and real-time decision making as opposed to the

limitations on human cognition, especially under stressful conditions. However, due to

the limitations on computation and communication capabilities of a single on-board sen-

sor, existing MAV systems are easily overwhelmed when dealing with large-scale in-

formation management. This then opens a niche for the current research on intelligent

decision-making and task allocation scheme under limited sensory resources of the MAV

systems.

There is rich literature on the control and applications of MAV systems. The coordina-

tion of MAVs has been a significant field of research with a broad range of applications in

mobile robotics, intelligent highways, air traffic control, satellite clusters and so on. [95]

provides a survey of recent research and future directions in cooperative control of MAV
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systems. Specific areas of interest include formation control, cooperative tasking, ren-

dezvous, coverage, and consensus.

Graph theory [48] has been widely utilized on this topic. In [35], the authors use the

Laplacian of a formation graph and present a Nyquist-like criterion for unmanned aerial

vehicles (UAVs) formation stabilization. In [100], the authors study the MAV distributed

formation control problem using potential functions obtained naturally from the structural

constraints of a desired formation. The work in [65] focuses on the attitude alignment

of MAVs using nearest neighbor rules. In [101], the multi-agent consensus problem is

addressed under either fixed or switching topology, directed or undirected information

flow in the absence or presence of communication delays.

Optimization-based approach is another large category of techniques for MAVs co-

ordinated control. In [84], a decomposition team-optimal strategy is proposed for the

rendezvous of multiple UAVs at a predetermined target location. The objective is to max-

imize the survivability of the UAVs. In [31], the MAV optimal formation control problem

is investigated using receding horizon control. Mixed-integer linear programming (MILP)

method has also been used for MAVs coordination problems because of its modeling ca-

pability and available commercial softwares [4,9,32]. The information-theoretic methods

are well established, which seeks to maximize the information measures [49,51].

Apart from the above work, the areas of particular interest in this dissertation include

using MAV systems for domain search and object classification, as well as the manage-

ment of sensory resources. Section1.2.2discusses the work on coverage control, object

detection, classification and tracking with MAVs. The literature on task assignment and

sensor management using MAV systems will be provided in Section 6.1of Chapter6.
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1.2.2 Domain Search, Object Classification and Tracking

The problem of domain search, unknown object classificationand tracking has wide appli-

cations on humanitarian as well as military operations. Examples include but are not lim-

ited to the search-and-rescue operations in the open sea or sparsely populated areas [40],

search and destroy missions for previously spotted enemy targets in multi-targeting/multi-

platform battlefield [118], terrain acquisition [79], multi-agent (in particular, satellite)

imaging systems [57], intelligent highway/vehicle systems [22], fire detection and pre-

vention [26], mine clearing [27], room vacuuming [97], and lawn mowing [1].

Domain search deals with the problem of unknown object search and detection within

a given domain. This problem usually requires the MAV systems to sense all reachable

areas in the mission domain to achieve some objective function, e.g., minimum amount of

time, maximum information, shortest path, etc. (see, for example [2,20] and references

therein). In [10], an excellent survey of the major results in search theory is provided. The

problem of complete search for a target is studied in [55,116,130]. In [147], a probabilis-

tic approach for domain search and path planning is proposedwith multiple UAVs under

global communications. The objective is to minimize the environment uncertainty in a

finite amount of search time. The uncertainty map is updated using the Dempster-Shafer

evidential method via sensor fusion. With the same goal, in [119], the authors present

an agent-based negotiation scheme for a multi-UAV search operation with limited sen-

sory and communication ranges. In [8], the problem of searching an area containing both

regions of opportunity and hazard with multiple cooperative UAVs is considered. An al-

ternate approach for searching in an uncertain environmentis Simultaneous Localization

and Mapping (SLAM) [74]. In [124], the occupancy grid mapping algorithm is addressed,

which generates maps from noisy observations given foreknown robot pose. It is often

used after solving a SLAM problem to generate robot navigation path from the raw sensor

endpoints. In the robotics literature, a significant amountof research can be found in the
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field of robot motion planning [71,79] and coverage path planning [47,68,120,145,146].

In this dissertation, domain search is treated as the coverage control problem using

sensor networks [6, 15, 134], where the vehicle sensor is controlled in such a way that

the entire search domain can be covered. There are three major categories in cover-

age control, that is, optimal localization of immobile vehicle sensors, optimal redeploy-

ment/reconfigration of mobile sensors, and dynamic coverage control using mobile sen-

sors. Under the scenario of large-scale mission domains where vehicle mobility is re-

quired, the third class of coverage control approach is adopted in this work. The goal is

to dynamically cover every point within the domain using MAVs mounted with on-board

sensors until achieving full coverage/awareness of the search environment. This problem

is closely related to the coverage path planning problem in robotics. More details are

provided in Chapter2.

Unknown object classification and tracking together with domain search are generally

treated as concurrent tasks that require the cooperation and/or decision-making of MAVs.

Section1.2.3will provide a more detailed review of existing literature in this area and

the comparison with the strategies proposed in this dissertation. This section first reviews

some related work with focus on classification and tracking.In [17], the authors ad-

dress the problem of cooperative target classification using distributed UAVs. The views

of neighboring vehicles are stochastically combined to maximize the probability of cor-

rect classification. In [16], the authors further discuss the capacitated transhipment and

market-based bidding approaches to vehicle assignment forcooperative classification.

A similar cooperative classification scheme is discussed in[64] for munition problems,

which aids in reducing the false target attack rate. A binaryobject classification model

is presented in [36], which a task load balancing scheme is proposed to cope withthe

uncertain results in task completion. In [42], a heuristic agreement strategy is presented

for the cooperative control of UAVs. The authors associate aclassification difficulty with
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each target, and a classification effort with each UAV. In [91], teams of UAVs are uti-

lized to track moving targets in a cooperative convoy escortmission. The UAVs follow

the convoy based on the shared GPS information from the ground vehicles and track sus-

picious attackers based on the live video. A hierarchical, hybrid control architecture is

proposed for the cooperative tracking strategy. In [77], a class of collaborative signal

processing techniques is investigated with focus on a vehicle tracking application using

sensor networks. A leader-based information-driven tracking scheme is presented, which

enables energy-efficient sensor selection. In [85], a cooperative acoustic tracking method

is presented using binary-detection sensor networks. The tracking algorithm records the

detection time of each sensor and performs line fitting for object’s position estimates. The

work in [69] discusses the trajectory tracking problem that requires the collective centroid

of a group of nonholonomic UAVs to travel at a reference velocity. A cooperative track-

ing mechanism using multiple mobile sensors is provided in [33]. Detected targets are

clustered using K-means clustering technique to minimize the number of required mobile

sensors. An Extended Kohonen neural network is used as the tracking algorithm and an

auction-based consensus mechanism is used as the cooperative strategy between trackers.

In [92], a probabilistic tracking approach based on Condensationalgorithm is proposed.

Multiple pan-tilt-zoom cameras are used to track the objects with a level of reliability for

belief updates.

1.2.3 Decision-Making for Search, Classification and Tracking

Although the literature in domain search, object classification and tracking is rich, little

attention has been paid to the real-time decision-making for tasks competing for the same

set of limited sensory resources.

Coordinated search and classification/tracking has been studied mainly for optimal

path planning and state estimation in the literature. In [118], a distributed sequential
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auction scheme is presented for a multi-robot search and destroy operation. Local com-

munications between neighbors are allowed and the shared information is used to make

the decision. The control goal is to allocate an agent to an object and complete the mis-

sion in minimum time. Inspired by work on particle filter, in [117] the authors develop

a strategy to dynamically control the relative configuration of sensor teams in order to

get optimal estimates for target tracking through multi-sensor fusion. In [12,13], the au-

thors use the Beta distribution to model the level of confidence of target existence for an

UAV search task. The minimum number of observations needed to achieve a probability

threshold is derived. In [114], a cooperative control scheme based on Fischer informa-

tion measure is proposed for the optimal path planning of a team of UAVs in a ground

target tracking problem. In [127], a pursuit-evasion game and map building are combined

in a probabilistic game theoretic framework, where sub-optimal pursuit policies are pre-

sented to minimize the expected capture time. In [81], the author proposes a Bayesian-

based multitarget-multisensor management scheme. The approximation strategy, based

on probability hypothesis densities, seeks to maximize thethe expected number of tar-

gets. In [39], the target existence probability gain from searching a point is used as a cost

function to determine the vehicle’s optimal path. In [104], the control goal is to maxi-

mize the total number of observed objects and the amount of observation time of each.

In [73], an optimal decision policy for the routing and munitions management of multiple

formations of unmanned combat vehicles is proposed with imperfect information about

adversarial ground units. A Recursive Bayesian Filter (RBF) is used for environment esti-

mate. The threat type and location probabilities of the ground units are taken into account

for classification. However, the underlying assumption made in the above research is that

there is only a single object to be found, classified and tracked, or, the search domain is

small and the sensing resources are not limited and, thus arenot a concern.

The development of a unified framework for search and tracking problems has also
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been studied in several papers [40,41,125]. In [40], the authors investigate search-and-

tracking using grid-based RBF with foreknown multi-targetpositions, but in the presence

of noise. The results are extended in [72] to dynamic search spaces based on forward

reachable set analysis. In [41], an element-based method is provided for a continuous

probability density function of the target. In [125], the authors employ both grid-based

Bayes filter and a particle filter for better estimation precision.

However, none of the above work considers search and classification/tracking as com-

peting tasks, i.e., the tasks are equally-prioritized and do not need to compete for sensory

resources. Considering the practical constraints of MAVs,it is motivated to develop a

real-time treatment of unknown object search and classification missions, dealing with

them as tasks competing for limited sensory resources.

Some related work is presented in [66], which considers a search-and-response mis-

sion with both known and unknown targets. The effects of weighting on search and

classification is studied. The tradeoff between search and predicting task assignment is

shown to be affected by the vehicles’ resources and knowledge of target locations. This

work considers the issue of limited resources, but focuses on optimal task assignment

and hence still considers search and response in a unified framework as opposed to com-

peting tasks. In [110], a survey of various approximate algorithms for PartiallyObserv-

able Markov Decision Processes (POMDP) is provided for sequential decision-making in

stochastic domains. POMDP methods cope with both the uncertainty in control actions

and sensor errors. The RockSample problem is introduced to test these algorithms, where

a robot chooses one of the actions (“move”, “sample” and “check”) to maximize rewards.

Similarly, in [96], the authors present an approach for resource allocation in a cooperative

air vehicle swarm system. The task allocation among search,classification and attack is

modeled as a network flow optimization problem, which aims tomaximize some global

value.
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1.3 Dissertation Outline

The dissertation is organized as follows. Chapter2 introduces the coverage control prob-

lem. A review of the literature in coverage control is provided. Dynamic coverage control

and awareness coverage control approaches are developed under a deterministic frame-

work. Subsequently, Bayesian-based coverage control approaches are developed under a

probabilistic framework. Underwater optical and acousticseafloor mapping applications

are discussed. In Chapter3, an awareness-based decision-making strategy is proposed

for search and classification based on the awareness coverage control laws developed in

Chapter2. In Chapter4, a Bayesian-based probabilistic decision-making strategy is de-

veloped to take into account sensor errors. To further incorporate the cost of taking new

observations, in Chapter5, a risk-based sequential decision-making strategy is presented

via Bayesian sequential detection. The binary results are extended to a more general

ternary setting and its application to Space Situational Awareness (SSA) is investigated.

In Chapter6, the Bayesian sequential detection method for discrete random variables is

extended to the Bayesian sequential estimation method for continuous random variables.

The integration of these two approaches provides an optimalsensor management scheme

that results in minimum information risk. The dissertationis concluded with a summary

of current and future work in Chapter7.

1.4 Research Contributions

The major contribution and novelty of this dissertation lies in the explicit treatment of

search and classification as competing tasks based on the mission progress using MAVs

with limited sensory ranges. The problems of domain search (coverage control), decision-

making between search and classification (both deterministic and probabilistic), and the

integration of detection and estimation with applicationsin SSA and underwater imaging
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are investigated.

The dynamic coverage control problem is first reviewed in Chapter 2. This lays a

foundation for all the domain search methods in the decision-making strategies developed

in this work.

Borrowing from the concept of dynamic coverage control, an awareness-based model

is first proposed in Section2.3 to describe how “aware” the vehicle sensors are of the

environment. Both centralized and decentralized coveragecontrol strategies are devel-

oped under global and intermittent communication architectures in Sections2.3.4 and

2.3.3. Together with the classification strategy developed in Chapter 3, the awareness-

based decision-making strategy guarantees the detection of all the unknown objects and

the classification of each found object for at least a desiredamount of time under limited

sensory resources in a deterministic framework.

In order to take into account the uncertainty in sensor perception, in Section2.4, a

probabilistic coverage control strategy based on Bayes filter and information theory is

developed. These results are extended in Section2.4.5to the case of MAVs with inter-

mittent information sharing. A rigorous mathematical proof of the convergence of the

expected probability of object existence is also provided.Coupling the search and clas-

sification processes, Chapter4 proposes a Bayesian-based decision-making strategy that

guarantees the detection and classification of all unknown objects in the presence of sen-

sor errors.

Extending the Bayesian-based strategy, a risk-based decision-making strategy is pro-

posed in Chapter5 to take into account the cost of taking observations. The standard

binary sequential detection method is utilized for risk analysis. Section5.3 extends the

result to a ternary setting which allows concurrent detection and classification observa-

tions. It is then applied to the SSA problem for the detectionand classification of space

objects in Earth orbit using a Space-Based Space Surveillance (SBSS) network in Section
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5.4.

To further enable integrated detection and estimation decision-making, Chapter6 pro-

poses a risk-based sensor management scheme. The sequential estimation method is de-

veloped in Section6.3for the estimation of a process. Section6.4extends the risk analysis

and decision making to the multi-element case based on both sequential detection and es-

timation methods. A risk-based optimal sensor management is then proposed in Section

6.5. The Rényi information measure is introduced to model the relative information loss

in making a suboptimal sensor allocation decision, which ismodeled as the observation

cost in this work.
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Chapter 2

Coverage Control

In this chapter, the concept of coverage control is introduced and vehicle motion control

strategies are developed. It will be shown that the full coverage of a mission domain is

equivalent to the detection of all the unknown objects within that domain. A literature

review on cooperative coverage control is provided in Section 2.1. Section2.2 stud-

ies deterministic Lyapunov-based coverage control. The limited-range sensor model and

vehicle motion control laws presented in this section lay a foundation for all the strate-

gies proposed in this dissertation. Extensions and applications on underwater optical and

acoustic seafloor mapping are then discussed. In Section2.3, a deterministic awareness-

based coverage control scheme is presented. The search strategies are designed in a way

such that the MAVs achieve full awareness of events occurring at each point within the

search domain. Section2.4 presents the probabilistic Bayesian-based coverage control

laws that ensures zero information uncertainty of the search domain (i.e., detection of all

objects). This framework is constructed by discretizing the search domain into cells and

takes into account the uncertainties in sensor perception.Based on the search strategies

proposed for a single vehicle sensor, the results are extended to MAV systems.
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2.1 Cooperative Coverage Control

Coverage control studies the problem of covering a given search domain using MAVs.

In the literature of cooperative coverage control, a significant amount of research can be

found in two main categories: 1) Optimal localization of immobile sensors [29,30,99],

and 2) optimal redeployment of mobile sensors [23,76,78].

2.1.1 Location Optimization of Immobile Sensors

This class of problems only requires the distribution of a fixed sensor network in the do-

main. The two variables of interest are sensor domains (the domain which each sensor is

responsible of sampling) and sensor locations. This algorithm can be calculated off-line

and no further mobility is required for the vehicles. The solution is based on Voronoi par-

titions and the Lloyd algorithm [78]. The optimal sensor domain is a Voronoi cell in the

partition and the optimal sensor location is its centroid [30]. For a complete discussion

of the coverage control problem applying Voronoi partitions, see [24], where the authors

propose both continuous and discrete-time versions of the classic Lloyd algorithms for

MAVs performing distributed sensing tasks. In [86], a coverage control scheme based on

Voronoi diagram is proposed to maximize target exposure in some surveillance applica-

tions.

2.1.2 Optimal Redeployment of Mobile Sensors

The sensor redeployment problems involve the coordinated movement of MAVs for an

optimal final configuration. In [43], the authors provide a summary on current control

theories using MAV sensor networks. The coverage deployment problem aims at max-

imizing the area within a close range of mobile agents and uses a Voronoi partition al-

gorithm. In [17], the authors use a Voronoi-based polygonal path approach and aim at
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minimizing exposure of a UAV fleet to radar. In [24], a dynamic version of the Lloyd

algorithm is also provided. It drives each sensor to a uniquecentroid of a cell in a dy-

namic Voronoi partition of the search domain and iteratively achieves the optimal con-

figuration. However, Voronoi-based approaches require exhaustive computational effort

to compute the Voronoi cells continuously during a real-time implementation of the con-

trollers. In [76], the authors develop an optimization problem that aims at maximizing

coverage using sensors with limited ranges, while minimizing communication cost using

a probabilistic network model. This class of problems is related to the active sensing lit-

erature in robotics [87], where Kalman filter is extensively used to process observations

and generate estimates.

2.1.3 Dynamic Cooperative Coverage Control

An implicit assumption made in the above problem classes is that the mission domain is

small-scale, i.e., one where in the best case scenario that can be covered by the union of a

set of static limited-range sensors. This is equivalent to the assumption of infinite sensory

ranges in the existing literature on the redeployment problem, which is especially true

for work within the stochastic framework (see, for example,[49]) that assumes Gaussian

distributions. However, this is not the case in many practical applications, where the field-

of-view of the on-board sensors is relatively limited as compared to the size of the search

domain, or there are too few sensor vehicles. For such problems, vehicle mobility is nec-

essary to be able to account for all locations contained in the domain of interest and meet

the coverage goal. Aside from large-scale domains, constantly moving sensors are also

required for cases where sensors are mounted on mobile vehicles incapable of having zero

velocities (e.g., fixed-wing aircraft), or when the host vehicles’ safety is compromised if

left fixed in space. Mobility of the vehicles in all these problems is also required since

information of interest that is distributed over the domainmay be changing in time. Not
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being able to continuously monitor parts of the domain for all time results in the require-

ment that the network is in a constant state of mobility with well-managed revisiting of

locations in the domain to guarantee satisfactory awareness levels over the entire domain.

Dynamic cooperative coverage control is the vehicle motioncontrol problem for coor-

dinated MAVs to dynamically cover a given arbitrarily-shaped domain. The objective is to

survey the entire search domain such that the information collected at each point achieves

a preset desired amount. This is the fundamental differencebetween the two approaches

presented above and dynamic coverage control, which is the method adopted for domain

search in this dissertation. While the aforementioned research focuses on the optimal or

suboptimal configuration of MAVs to improve network coverage performance, dynamic

cooperative coverage control guarantees that every point within the search domain will be

sampled a desired amount of data with high certainty as a result of the constant movement

of the MAVs.

Remark. 2.1.1.The key feature of the proposed approach is summarized as follows:

• The sensor is modeled to have a limited sensory range •

• The dynamic coverage control strategy aims at collecting enough high quality data

at each point in a domain of interest

Applications include search and rescue missions where eachpoint in the search do-

main has to be surveyed, aerial wildfire control in inaccessible and rugged country where

each point in the wildfire region has to be “suppressed” usingfixed-wing aircraft or he-

licopters, underwater sampling and mapping where each point in the deep ocean is re-

quired to be sufficiently sampled for marine geology, geophysics, biology, archaeology,

and chemistry studies.

A slightly modified version of the coverage problem has been studied in [57] for

(optimal and suboptimal) motion planning of multiple spacecraft interferometric imaging
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systems (MSIIS). The problem is also related to the literature on coverage path planning

[2,20] and Simultaneous Localization and Mapping (SLAM) [74] in robotics.

In the following sections, both deterministic and probabilistic vehicle motion control

laws are developed for coverage control.

2.2 Deterministic Lyapunov-Based Approach

This section provides a brief summary of the major results ofthe coverage control prob-

lem discussed in [60]. It lays a foundation for all the search strategies presented in the

subsequent sections. The vehicle collision avoidance and flocking control laws presented

in [60] can also be applied to other search strategies discussed inthis chapter via some

straightforward modifications. Please refer to [60,62] for more details.

2.2.1 Problem Formulation

Denote a vehicle byV. Let R+ = {a ∈ R : a ≥ 0}, Q = R
2 be the configuration

space of all the vehicles andD ⊆ R
2 be the mission domain. Assume thatD is a simply

connected, bounded set with non-zero measure. Let the mapφ : D → R
+, called a

distribution density function, represent a measure of information or probability that some

event takes place or object exists overD. A large value ofφ indicates high likelihood of

event detection and a smaller value indicates low likelihood. LetN be the total number

of MAVs andqi ∈ Q denote the position of vehicleVi, i ∈ S = {1, 2, 3, . . . , N}. That is,

the setS contains all vehicles performing the domain search task. Each vehicleVi, i ∈ S,

satisfies the following simple kinematic equations of motion

q̇i = ui, i ∈ S, (2.1)
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whereui ∈ R
2 is the control velocity of vehicleVi. This is a simplified model and the

results may be extended to agents with second order nonlinear dynamics evolving on

more complex configuration manifolds.

Define the instantaneous coverage functionAi : D × Q → R
+ as aC1-continuous

map that describes how effective a vehicleVi senses a point̃q ∈ D. Let s = ‖qi(t)− q̃‖,

which is the relative distance between the vehicle positionand the measuring point. With-

out loss of generality, consider the following sensor modelSM. This model is not an

assumption for the ensuing theoretical results to be valid.The important feature of the

proposed sensor model is that the sensors have a finite field-of-view.

Sensor Model SM.

1. Each vehicle has a peak sensing capacity ofMi exactly at the positionqi of vehicle

Vi, i.e.,s = ‖qi(t)− qi(t)‖ = 0. That is,

Ai(0) =Mi > Ai(s), ∀s 6= 0.

2. Each vehicle sensor has a circular sensing symmetry aboutthe positionqi, i ∈ S,

in the sense that all points inD that are on the same circle centered atqi are sensed

with the same intensity. That is,

Ai(s) = constant, ∀s = c,

for all constantc, 0 ≤ c ≤ ri, whereri is the range of the sensor of vehicleVi.

3. Each vehicle has a limitedsensory domain, Wi(t), with a sensory range, ri. The

sensory domain of each vehicle is given by

Wi(t) = {q̃ ∈ D : ‖qi(t)− q̃‖ ≤ ri} . (2.2)
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Figure 2.1: Instantaneous coverage function.

Let the union of all coverage regions be denoted by

W(t) = ∪i∈SWi(t).

An example of such a sensor function is a fourth order polynomial function of s =

‖qi(t)− q̃‖ within the sensor range and zero otherwise,

Ai(s) =





Mi

r4i
(s2 − r2i )

2
if s ≤ ri

0 if s > ri

. (2.3)

Figure2.1 shows an instantaneous coverage functionAi (2.3) with qi = (0, 0), Mi = 1

andri = 2.

Fixing a pointq̃, the effective coverage achieved by a vehicleVi surveyingq̃ from the

initial time t0 = 0 to timet is defined to be

Ti(q̃, t) :=

∫ t

0

Ai(‖qi(τ)− q̃‖2)dτ

and the effective coverage by a subset of vehiclesVK = {Vj |j ∈ K ⊆ S} in surveyingq̃
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is then given by

TK(q̃, t) :=
∑

i∈K

Ti(q̃, t) =

∫ t

0

∑

i∈K

Ai(‖qi(τ)− q̃‖2)dτ.

Note thatTK(q̃, t) is a non-decreasing function of timet,

∂

∂t
TK(q̃, t) =

∑

i∈K

Ai

(
‖qi(t)− q̃‖2

)
≥ 0.

Let C∗ be the desired attained effective coverage at all pointsq̃ ∈ D. The goal is to

attain an overall coverage ofTS(q̃, t) = C∗ for all q̃ ∈ D at some timet. The quantity

C∗ guarantees that, whenTS(q̃, t) = C∗, one can judge, with some level of confidence,

whether or not an event occurs or an object exists atq̃ ∈ D. Consider the followingerror

function

e(t) =

∫

D

h (C∗ − TS(q̃, t))φ(q̃)dq̃, (2.4)

whereh(x) is apenalty functionthat satisfiesh(x) = h′(x) = h′′(x) = 0 for all x ≤ 0,

andh(x), h′(x), h′′(x) > 0 for all x ∈ (0, C∗]. The penalty function penalizes lack of

coverage of points inD. An example for the penalty functionh(x) is

h(x) = (max(0, x))2 . (2.5)

It incurs a penalty wheneverTS(q̃, t) < C∗. OnceTS(q̃, t) ≥ C∗ at a point inD, the

error at this point is zero no matter how much additional timevehicles spend surveying

that point. The total error is an average over the entire domain D weighted by the density

functionφ(q̃). Whene(t) = 0, one says that the search mission is accomplished.
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2.2.2 Vehicle Motion Control and Search Strategy

Without loss of generality, first consider the following initial condition whose utility will

become obvious later:

IC1 The initial coverage is identically zero:TS(q̃, 0) = 0, ∀q̃ ∈ D.

Consider the following nominal control law

ūi(t) = −k̄i
∫

D

h′ (C∗ − TS(q̃, t))
∂Ai(s

2)

∂(s2)

∣∣∣∣
s=‖qi(t)−q̃‖

· (qi(t)− q̃)φ(q̃)dq̃, (2.6)

where· denotes the inner product andk̄i > 0 are fixed feedback gains. Consider the

functionV̄ = −et(t), whereet = de
dt

, and note thaṫ̄V = −ett where

et(t) = −
∫

D

h′ (C∗ − TS(q̃, t))

(
∑

j∈S

Aj(‖qj(t)− q̃‖2)
)
φ(q̃)dq̃

ett =

∫

D

h′′ (C∗ − TS(q̃, t))

(
∑

j∈S

Aj(‖qj(t)− q̃‖2)
)2

φ(q̃)dq̃

−2

∫

D

h′ (C∗ − TS(q̃, t))

(
∑

i∈S

∂Ai(s
2)

∂(s2)

∣∣∣∣
s=‖qi(t)−q̃‖

(qj(t)− q̃) · ui

)
φ(q̃)dq̃

=

∫

D

h′′ (C∗ − TS(q̃, t))

(
∑

j∈S

Aj(‖qj(t)− q̃‖2)
)2

φ(q̃)dq̃

+2
∑

i∈S

k̄i

[∫

D

h′ (C∗ − TS(q̃, t))

(
∂Aj(s

2)

∂(s2)

∣∣∣∣
s=‖qj(t)−q̃‖

· (qj(t)− q̃)

)
φ(q̃)dq̃

]2

are the first and second time derivatives ofe(t) along the trajectory generated by the

control lawūi in Equation (2.6). Consider the following condition.

Condition C1. TS(q̃, t) = C∗, ∀q̃ ∈ Wi(t), ∀i ∈ S.

Lemma 2.2.1. If for somet ≥ 0 ConditionC1 holds, thenet(t) = 0. Conversely, if

et(t) = 0 for some timet ≥ 0, then ConditionC1 holds.

24



Proof. By the propertySM3 of the sensor model, ConditionC1 implies that theh′ term

in the integrand in the expression foret is nonzero only outsideW(t) where all coverage

functionsAi are zero. That is,h′ (C∗ − TS(q̃, t)) = 0 precisely insideW(t). Hence,

under ConditionC1 et = 0.

The converse is easily verified by noting that the integrand in the expression foret is

greater than or equal to zero everywhere inD. For et to be zero, the integrand has to be

identically equal to zero everywhere onD, which holds true only if ConditionC1 holds.

This completes the proof. �

From the lemma,̄V = −et ≥ 0, ˙̄V ≤ 0 with equality holding if and only if Condition

C1 holds. This implies that the function̄V is a Lyapunov-type function that guarantees

that the system always converges to the state described in ConditionC1. This proves the

following result.

Lemma 2.2.2. Under the control law (2.6), a MAV system will converge to the state

described in ConditionC1.

Under the control law (2.6), the vehicles are in constant motion withet < 0 (i.e., error

is always decreasing) as long as the ConditionC1 is not satisfied. It utilizes the gradient

of the error distribution insideWi(t) to move in directions with maximum error. Hence it

locally seeks to maximize coverage. However, using the control law (2.6) alone does not

guarantee full coverage of at leastC∗ every where withinD. This is of no concern, since

this lack of full effective coverage implies thate 6= 0, which will induce some vehicle to

return and recover these partially covered regions. Hence,the following control strategy

is proposed.

Control Strategy. Under the control law (2.6), all vehicles in the system are in continuous

motion as long as the state described in ConditionC1 is avoided. Whenever the Condition

C1holds with nonzero errore(t) 6= 0, the system has to be perturbed by switching to some

other control law̄̄ui that ensures violating ConditionC1. Once away from ConditionC1,
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the controller is switched back to the nominal controlūi in Equation (2.6). Only when

both ConditionC1 ande(t) = 0 are satisfied is when there is no need to switch to¯̄ui.

Thus, the goal is to propose a simple linear feedback controller that guarantees driving

the system away from ConditionC1.

Now consider a simple perturbation control law that drives the system away from

ConditionC1. Define the time varying set:

De(t) = {q̃ ∈ D : TS(q̃, t) < C∗} . (2.7)

Let De(t) be the closure ofDe(t). For each vehicleVi, let D̃i
e(t) denote the set of points

in De(t) that minimize the distance betweenqi(t) andDe(t). That is,

D̃i
e(t) =

{
¯̃q ∈ De(t) : ¯̃q = argmin

q̃∈De(t)
‖qi(t)− q̃‖

}
.

This choice is efficient since the perturbation maneuver seeks the minimum-distance for

redeployment.

Let ts be the time at which ConditionC1 holds ande(ts) > 0 while et(ts) = 0. That

is, ts is the time of entry into the state described in ConditionC1 with nonzero error. At

ts, for each vehicleVi, consider a point̃q∗
i (ts) ∈ D̃i

e(ts). Note that the set̃Di
e(ts) may

include more than a single point. Consider the control law

¯̄ui(t) = −¯̄ki (qi(t)− q̃∗
i (ts)) . (2.8)

Under the regime whenet = 0 ande(t) > 0, this control law is a simple linear feedback

controller and will drive each vehicle in the fleet towards its associated̃q∗
i (ts). Note that

it is possible that̃q∗
i (ts) = q̃∗

j (ts) for some pairi 6= j ∈ S. By simple linear systems

theory, the feedback control law (2.8) will result in havingqi(t̂s), for somei ∈ S, be
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inside a ball of radiusε < ri at some timêts > ts. Hence the pointq∗
i is guaranteed to lie

strictly inside the sensory range of vehicleVi.

The above discussion proves the following result.

Theorem 2.2.1.Under sensor model propertiesSM1-3 andIC1, the control law

u∗
i (t) =





ūi if Condition C1does not hold

¯̄ui if Condition C1holds
, (2.9)

drives the errore(t) → 0 ast→ ∞.

2.2.3 Underwater Coverage Control with Vision-Based AUVs

In this section, the dynamic coverage control problem is utilized for underwater appli-

cations, such as sampling, surveillance, and search and rescue/retrieval, using a fleet of

cooperative submarines. A sensor model based on a vision-based camera is presented.

Underwater exploration is important for many scientific andindustrial applications.

However, the literature on multi- and single-vehicle underwater application is relatively

new due to recent advances in autonomous underwater vehicles (AUVs) and underwater

positioning and communication technologies. Cooperativeunderwater MAVs have a wide

range of applications that include sampling, oceanography, weather prediction [37, 75],

studying aquatic life [56], mine countermeasure and hydrographic reconnaissance [129],

search and rescue/retrieval [67], and archaeology [89]. Furthermore, due the the rapid

attenuation of light and sound in sea water, advanced underwater survey technologies and

AUV motion control strategies are of great interest.
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Figure 2.2: Underwater sampling using a fleet of cooperativesubmarines.

2.2.3.1 Sensor Model

In underwater applications, domains of interest are generally three-dimensional (3D)

volumes in the ocean with AUVs moving in all three directions. Figure2.2 shows the

scenario of underwater sampling using a fleet of cooperativesubmarines with cone-like

vision-based cameras.

Unlike laser-based sensors and radars, vision-based camera sensors acquire data in a

non-invasive way. They can be used for some specific applications for which visual infor-

mation plays a basic role. This is especially suitable for underwater missions. Moreover,

there is no interference among sensors of the same type, which could be critical for a large

number of vehicles moving simultaneously in the same environment [11].

For the sake of simplicity, consider a simpler case where allthe submarines move

along a horizontal line (the configuration spaceQ) and thus the sampling domainD be-

comes an area (that is, a rectangle) below this line of motion(see Figure2.3). In this

scenario, each submarine looks in the vertically downward (or upward) direction. There-

fore, domainD could also be aboveQ or both above and belowQ, depending on which

direction(s) the cameras are pointed. All vehicles are assumed linear kinematics given by
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Figure 2.3: One-dimensional configuration space scenario

Equation (2.1), whereui = (uix, uiy) ∈ R
2 is the control velocity of submarineVi. Note

that there is no control in the verticalz direction other than control forces that maintain

buoyancy of the submarine. The results obtained from this simple scenario can easily be

generalized to two-dimensional horizontal motions. For the three-dimensional configura-

tion space case, however, the gravitational and buoyancy forces in the vertical direction

need to be included, which introduces nonlinearities in theequations of motion.

In the general case whereD ⊂ R
3, the sensor is a vision-based camera whose sensing

domain is a three-dimensional cone. In the simpler case whereQ = R
1 andD is a com-

pact subset ofR2, the sensing domain becomes a sector, and one can use polar coordinates

to define the instantaneous coverage function of the camera sensor model. For brevity and

simplicity of exposure, the sensor model for theD ⊂ R
2 case is described in the following

paragraphs. Extension to the three-dimensional cone modelis easily performed by work-

ing with spherical coordinates (introducing an additionalangular component) instead of

polar coordinates.

In polar coordinates, let a point̃q ∈ D be represented by(ρi, θi) with respect to

submarineVi’s positionqi. As shown in Figure2.4, here the radial coordinateρi repre-

sents the radial distance from the camera positionqi to q̃, andθi is the counterclockwise

angular coordinate angle from the vertical axis passing through the camera attached to

submarineVi.

The sensor modelSM in Section2.2.1 is modified as follows: The sensing ability

of each digital camera declines along the radial distance and the radial angle. That is,

when the value ofρi and|θi| increases, the sensing ability of the camera decreases until
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Figure 2.4: Camera Sensor Model.

it becomes zero at the maximum sensing rangeρ̄ and the maximum sensing direction

Θ. Here the same maximum radial distance and maximum radial angle is assumed for

each camera on all submarines asρ̄ andΘ. This is done without loss of generality as the

ensuing results can be easily modified to reflect different maximum ranges and directions

ρ̄i andΘi, respectively. Hence,Ai is a function of both the radial distanceρi and radial

angle angleθi. Mathematically, the sensory domainWi of each submarine is given by

Wi(t) = {q̃ ∈ D : ρi = ‖qi(t)− q̃‖ ≤ ρ̄ and

|θi| =
∣∣∣∣arctan

(
qix − q̃x
qiz − q̃z

)∣∣∣∣ ≤ Θ}. (2.10)

The minimum sensing ability is given by

0 = Ai((qix + ρi sin Θ, qiz + ρi cosΘ), (qix, qiz))

= Ai((qix + ρ̄ sin θi, qiz + ρ̄ cos θi), (qix, qiz)).

Note that they andz components,qiy, qiz, of qi are constant in the linear configuration

space case.
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Figure 2.5: Instantaneous coverage function for vision-based sensor model.

An example of a sector-like instantaneous coverage functionAi is a two-variable sec-

ond order polynomial function of

di = ‖qi − q̃‖2, αi = arctan2

(
qix − q̃x
qiz − q̃z

)
.

within the sensor range and zero otherwise. In particular, consider the function

Ai(di, αi) =






Mi(di−R2)2(αi−Θ2)2

ρ̄4Θ4 if di ≤ ρ̄2, αi ≤ Θ2

0 otherwise
(2.11)

An example for the instantaneous coverage function (2.11) is given by Figure2.5 with

qi = 0,Mi = 1, ρ̄ = 12, andΘ = 5π
18

in planar field.

A three-dimensional model can easily be obtained from this model by adding an ad-

ditional angular variableψi and restricting the angular extent of the model to some maxi-

mum valueΨ similar to the treatment ofθi above.

Remark. 2.2.1. This sensor model is similar to the one which combines cameraand

ultrasonic sensor used in the YAMABICO robot [98]. For a vision-based sensor model

applied to a 3D configuration space scenario with 9 viewpoints, see [18] for more details.

•
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2.2.3.2 Control Law

In this section, the control law (2.6) in Section2.2.2is adopted and the domain search

strategies are developed according to the modified vision-based sensor model presented

in the above section.

Consider the following nominal control law1

ūi(t) = −k̄i
∫

D

h′(C∗ − TS(q̃, t))

(
∂Ai

∂di

∂di
∂qi

+
∂Ai

∂αi

∂αi

∂qi

)
φ(q̃)dq̃, (2.12)

wherek̄i > 0 are fixed feedback gains.

Using the same perturbation control law as Equation (2.8) and following similar

derivation as in Section2.2.2, a similar theorem as Theorem2.2.1can be derived. This

guarantees that every point within the underwater search domain will be sampled byC∗.

The performance of the proposed search strategy is demonstrated by the following simu-

lation results.

2.2.3.3 Simulation

In this section a numerical simulation is provided to illustrate the performance of the cov-

erage control strategy with the perturbation control law that ensures the global coverage.

As previously mentioned, the configuration spaceQ is a closed interval (all sub-

marines move on a line). The domainD should be the area obtained by “extruding” the

intervalQ downwards to a depth of̄ρ (the maximum radial distance of the vision-based

sensor). However, according to the sensor model, the sensing ability at the maximum

radial distance is zero, which means that the domain to be covered has to be shallower

than the distancēρ from where the submarines are located. Therefore, in the simulations

1For brevity, the two-dimensional sensor model is assumed whereAi is a function of the two variables
di andαi. For the general three-dimensional conic sensor model case, the results can easily be extended
by adding the additional termψi in the model ofAi and adding one more term (∂Ai

∂ψi
) when taking the

derivatives ofAi.
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shown here, the domainD is defined as a rectangle region whose size is(ρ̄− z̄)× l units

length, wherel is the length of the intervalQ andz̄ > 0 is a fixed variable. The quantity

z̄ is chosen as4 in the following simulations.

The maximum radius of the vision-based cameraρ̄ is chosen as 12 andl is 40. There

are 4 submarines (N = 4) with a randomly selected initial deployment as shown in Figure

2.6(a). Let the desired effective coverageC∗ be 40. Here the control law in Equation

(2.12) is used with control gains̄ki = 1 × 10−5, i = 1, . . . , 4. Assume that there is no

prior information as to the accuracy of the underwater sampling and, hence,φ(q̃) is set as

1 for all q̃ ∈ D. For the sensor model, letMi = 1,Θ = 2π
5

for all i = 1, . . . , 4. A simple

trapezoidal method is used to compute integration overD and a simple first order Euler

scheme to integrate with respect to time.

The results are shown in Figures2.6 and2.7. Figure2.6(a) shows the fleet motion

along the line where each submarine is denoted by a differentcolor. Figure2.6(b) shows

the control effort as a function of time. Figure2.6(c) shows the global errore(t) with

switching control and can be seen to converge to zero. Figure2.7 shows the effective

coverage (dark blue for low and yellow for full coverage) andfleet configuration att =

0, 90, 180, 270, 360, 450 with the perturbation control law.

2.2.4 Underwater Acoustic Imaging using AUVs

This section studies the underwater acoustic imaging problem using AUVs. The integra-

tion of a guidance/control scheme and acoustic imaging process is discussed. A sensor

model based on an acoustic sensor’s beam pattern is presented. The goal is to obtain

an accurate enough image of an underwater profile. Acoustic imaging is an active re-

search field devoted to the study of techniques for the formation and processing of images

generated from raw signals acquired by an acoustic system [63,93].

33



0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

position of submarine

t

(a) Fleet motion along the line

t

t

‖u
i(
t)
‖,
i
∈
S

(b) Control effort‖ui(t)‖, i ∈ S

e(
t)

(c) Errore(t)

Figure 2.6: Fleet motion, control velocity, and error for underwater applications.
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2.2.4.1 Integration of Guidance, Control and Acoustic Imaging

The system is composed of two main tasks: vehicle motion guidance for coverage control

and acoustic image processing for seafloor mapping.

The basic goal of the control part is to use a fleet of AUVs to collect enough imag-

ing data at each location in an underwater domain. The assumptions of 1D configuration

space and linear kinematics for the AUVs still hold here. While collecting imaging data

during the guidance and motion control part, the technologyof acoustic imaging is re-

quired to process the images and estimate the profile of the seabed simultaneously. In

underwater imaging, generally, the scene under investigation, the seabed in our case, is

first insonified by an acoustic signalS (t), then the backscattered echoes acquired by the

system are processed to create the profile. This process can be performed by two dif-

ferent approaches: use of an acoustic lens followed by a retina of acoustic sensors, or

acquisition of echoes by a two-dimensional array of sensorsand subsequent processing

by adequate algorithms, such as the beamforming or the holography class. In this section,

the beamforming algorithm [63] is adopted to process the acoustic image. Each vehicle

is mounted with a sensor array. It is assumed that an acousticpulseS (t) is emitted and a

spherical propagation occurs inside an isotropic, linear,absorbing medium. Beamforming

is a spatial filter that linearly combines the temporal signals spatially sampled by the sen-

sor array. The system arranges the echoes in such a way as to amplify the signal coming

from a fixed direction (steering direction) and to reduce allthe signals coming from the

other directions. More details of the beamforming method will be presented in Section

2.2.4.2.

When considering the integration of the guidance/control scheme and the acoustic

imaging process, two different options are available for the guidance system: either a

stochastic or a deterministic approach.
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Image Quality Feedback Based Error Guidance. The image quality (i.e., estimated

error) may be used to guide the vehicles. For example, use theKalman filter to estimate

the field and on the filter’s prediction step to solve for the vehicle’s best next move [58].

The algorithm presented therein guarantees that the vehicles move to the direction that

maximizes the quality of the estimated field.

Sensor Model Based Feedback Guidance.The sensor model (given by the beam pat-

tern function, see next section) may also be used for vehicleguidance. In this section,

this deterministic guidance approach will be adopted together with the beamforming al-

gorithm.

2.2.4.2 Mathematical Summary of Acoustic Imaging

Beamforming Data Acquisition. Assume that the imaged scene is made up ofms point

scatterers, theith scatterer is placed at the positionri = (xi, zi), as shown in Figure2.8.

Define the planez = 0 as the plane that receives the backscattered field. The acoustic sig-

nalS (t) is emitted by an ideal point source placed in the coordinate origin (i.e., at vehicle

location). ConsiderNs point like sensors that constitute a receiving 2-D array, numbered

by indexl, from 0 to Ns − 1. The steering direction of a beam signal is then indicated

by the angleϑ measured with respect to thez axis. By applying the Fourier/Fresnel

approximation, one can obtain the following expression forthe beam signal:

b(t, ϑ) =

ms∑

i=1

S (t− 2ρi
c
)CiBPBMF(ω, θi, ϑ), (2.13)

BPBMF(ω, θ, ϑ) =
sin[ωNsd(sinθ − sinϑ)/2c]

sin[ωd(sinθ − sinϑ)/2c]
, (2.14)

whereCi is some constant related to theith scatterer,c is the speed of sound, BPBMF(ω, θ, ϑ)

is called beam pattern, which depends on the arrival angleθ, the steering angleϑ, and the
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angular frequencyω. It is also assumed that the array is equispaced and centeredin the

coordinate origin, andd is the inter-element spacing. Figures2.9(a)and 2.9(b)show the

beam pattern for aNs = 40 element array withd = 1.5mm spacing as a function of the

arrival angleθ (visualized on a logarithmic scale normalized to0 dB) for fixed frequency

f = 500KHz and steering angleϑ = 0◦C andϑ = 30◦C, respectively [63].

Imaging Processing. The analysis of beam signals allows one to estimate the rangeto a

scene. A common method to detect the distance of the scattering object is to look for the

maximum peak of the beam signal envelope. Denoting byt∗ the time instant at which the

maximum peak (whose magnitude is denoted bys∗) occurs, the related distance,R∗, is

easily derivable from it (i.e.,R∗ = c · t∗/2, if the pulse source is placed in the coordinate

origin). Therefore, for each steering directionϑ, a triplet (ϑ,R∗, s∗) can be extracted. The

set of triplets can be projected to get a range image in which the point defined in polar

coordinates byϑ andR∗ is converted into a Cartesian point (x∗, z∗) [94].
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Figure 2.9: Beam pattern.

2.2.4.3 Control Law

The beam pattern BP given by Equation (2.14) is used as a sensor model to describes how

effective the vehicle surveys a pointq̃ ∈ D. The effective coverage of the group indexed

by K at timet at the point̃q becomes:

TK(q̃, t) =

∫ t

0

∑

i∈K

BP2
i (τ)dτ

Assume BPi is a function ofθi here only, that is, the steering directionϑ and angular

frequencyω are fixed. Since BPi is a function ofθi which varies with time because of the

change of vehicle position, BPi is implicitly a function of time.

Consider the following nominal control law

ūi(t) = k̄i

∫

D

h′(C∗ − TS(q̃, t))

(
∑

i∈S

BPi

)
∂BPi

∂θi

∂θi
∂qi

φ(q̃)dq̃, (2.15)

wherek̄i > 0 are fixed feedback gains.

Together with the perturbation control law̄̄ui(t) given by Equation (2.8), the overall

control strategy guarantees full coverage of every point within the domain. This can be
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Figure 2.10: Fleet motion along the line in acoustic imaging.

proved following a same fashion as Theorem2.2.1.

2.2.4.4 Simulation

This section provides a set of numerical simulations. Definethe length ofD as l = 20

meters in the following simulation. The seabed profile is given by a simple piecewise

linear function

y =






−gx if x ≤ 0

gx if x > 0

wherex is the discretization along the seabed length andg = 2.5 is the slope of the

linear function. Assume there are 2 submarines (N = 2) with a randomly selected initial

deployment as shown in Figure2.10. Let the desired effective coverageC∗ be 6000. Here

the control law in Equation (2.15) is used with control gains̄ki = 0.05, i = 1, 2. For the

beam pattern sensor model, setf = 500kHz,ϑ = 0, d = 1.5mm,Ns = 40, c = 1500m/s

for all i = 1, 2. The sensor has a Gaussian random noise with zero mean and a standard

deviation of0.5.

The control effort‖ui‖, i ∈ S is shown in Figure2.11. The global errore(t) is shown

in Figure2.12. It can be seen to converge to zero. Note that the error is normalized by
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Figure 2.11: Vehicle control effort in acoustic imaging.
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Figure 2.12: Global errore(t) in acoustic imaging.

dividing (C∗)2 × l so that the initial error is1. Figure2.13shows the effective coverage

at t = 367, 734, 2152 with perturbation control laws.

The acoustic image measured by the vehicles using the algorithm discussed in Section

2.2.4.2is shown in Figure2.14. It compares the actual seabed profile with the simulated

curve. The result shows that even with sensor noise, the proposed algorithm efficiently

estimates the actual profile.
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Figure 2.13: Effective coverage in acoustic imaging.
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Figure 2.14: Actual versus simulated profile

2.3 Deterministic Awareness-Based Approach

In the previous section, a Lyapunov-based coverage controlstrategy is proposed to guar-

antee the completion of a domain search mission under a deterministic framework. Re-

maining in the deterministic framework, in this section, anawareness-based dynamic

model is developed, which describes how “aware” a system of networked, limited-range

MAVs is of events occurring at every point over a given domain. The approach aims at

modeling the dynamic information loss over time within the search domain. This formu-

lation can be applied to a wide variety of problems, including large-scale and complex

domains, that may be disconnected (surveillance over adversarial pockets in a region), or

hybrid discrete and continuous (surveillance over urban environments and inside build-

ings, where roads and hallways are the continuous part of thedomain, and buildings and

rooms are discrete nodes).

The proposed awareness model will be first applied to the coverage control over large-

scale task domains using decentralized MAVs with intermittent communications and/or

faulty sensors. For each vehicle, an individual state of awareness is defined. The indi-

vidual vehicle’s state of awareness continuously evolves based on the vehicle’s motion

and is updated at discrete instants whenever the vehicle establishes a communication link
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with other vehicles. This information sharing update step aids in reducing the amount of

redundant coverage. The hybrid nature of the “awareness” dynamic model and the in-

termittent communications between the vehicles result in aswitching closed-loop control

law. Based on this awareness model, a decentralized controlstrategy is proposed that

guarantees that every point within the task domain will be covered with a satisfactory

state of awareness under intermittent communications and/or faulty sensors.

The intermittent communication structure is desirable because in most cases it is not

energy efficient or even possible for the vehicle fleet to maintain open communication

channels during the entire mission. This is especially truefor large-scale task domains,

where vehicles may need to disperse (and, hence, lose connectivity with other vehicles)

in order to cover the domain. In [121], smooth control laws using potential functions

are developed for stable flocking motion of mobile agents. A similar flocking problem is

studied in [122] and [123] under a connected (but with arbitrary dynamic switching) de-

centralized networks. Both discrete-time and continuous-time consensus update schemes

are proposed in [107] for distributed multi-agent systems in the presence of switching

interaction topologies. In [5], a distributed Kalman consensus algorithm is proven to

converge to an unbiased estimate for both static and dynamiccommunication networks.

In [143], the authors investigate distributed mobile robots in a wireless network under

nearest neighbor communications. In [83], local undirected communication is used in

fully distributed multi-agent systems. Both [143] and [83] demonstrate improvements in

global behavior made by exchanging local sensing information.

For the sake of completeness, the dynamics of an individual state of awareness is

generalized to the total awareness achieved by a fleet of MAVs. The corresponding cen-

tralized search strategies are proposed where all the vehicles share awareness information.
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2.3.1 Problem Formulation

A description of large-scale domains has already been givenin Chapter1. Here, a rigorous

mathematical definition is given as follows: A large-scale domain is one where, under the

best case scenario when all the sensory domainsWi are disjoint, there exists a setΞ ⊂ D

of non-zero measure such that for everyq̃ ∈ Ξ, q̃ /∈ Wi for all i ∈ S. Note that the results

derived in the following sections also apply to non-large-scale domains. The first-order

kinematic equation of motion (2.1) and the sensor modelSM (2.3) are assumed for each

vehicle. The limited-range sensor models the practical difficulty in real implementation,

especially for missions over large-scale domains.

State of Awareness. An individual vehicle’s state of awareness is a distribution x̃i(q̃, t) :

R
2 × R → R that is a measure of how “aware” the vehicleVi is of events occurring at a

specific locatioñq at timet. Here, without loss of generality, assume thatx̃i(q̃, t) ∈ [0, 1],

that the initial state of awareness is zero (i.e., no awareness), and that the desired state of

awareness is given by1 (full awareness), whilẽxi(q̃, t) < 1 corresponds to insufficient

awareness. Fixing a pointq̃ ∈ D, the state of awareness of a particular vehicleVi at time

t is assumed to satisfy the following differential equation

˙̃xi(q̃, t) = − (Ai(‖qi − q̃‖)− ζ) (x̃i(q̃, t)− 1) , x̃i(q̃, 0) = x̃i0 = 0, i ∈ S, (2.16)

whereζ ≥ 0 is a constant parameter which models the loss of awareness over a time

period during which no vehicles cover a point of interest inD. Having ζ > 0, sets a

periodical re-visit requirement to maintain desired awareness levels.

Let xi(q̃, t) = x̃i(q̃, t) − 1 be the transformed state of awareness. The dynamics of
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the transformed state of awareness is then given by

ẋi(q̃, t) = − (Ai(‖qi − q̃‖)− ζ)xi(q̃, t), xi(q̃, 0) = xi0 = −1, i ∈ S. (2.17)

Therefore, the transformed state of awarenessxi(q̃, t) ∈ [−1, 0]. The initial transformed

state of awareness is−1, which reflects the fact that at the outset of the surveillance

mission the fleet has poor awareness levels. One may set a nonuniform initial distribu-

tion for xi(q̃, t) to reflect any prior awareness knowledge. The nonuniform distribution

xi(q̃, 0) may reflect regions where objects may be able to camouflage themselves better

than in other regions ofD (e.g., dense forests versus open fields). A more negative value

of xi(q̃, 0) reflects areas with less awareness levels, and vice versa. However, the ini-

tial value is always restricted to be greater than−1, with −1 representing the worst case

scenario (which is the assumption made here).

For the transformed state of awareness, the desired equilibrium awareness level is

zero, that is,xi(q̃, t) = 0, t > 0, i ∈ S, ∀q̃ ∈ D.

A control law will be developed to guarantee the convergenceof xi(q̃, t) to a neigh-

borhood of 0:‖xi(q̃, t)‖ < ξ for someξ > 0, which corresponds tõxi(q̃, t) approaching

unity and a state of full domain awareness. Note that under the dynamics (2.17), the

maximum value attainable byxi(q̃, t) is zero if the initial awareness level is negative. In-

specting Equation (2.17), the system state of awareness is degrading except over regions

whereAi − ζ has a positive value (i.e.,0 ≤ ζ ≤ Ai).

One can also define the overall transformed awareness dynamics:

ẋ(q̃, t) = −
N∑

i=1

(Ai(‖qi − q̃‖)− ζ)x(q̃, t) (2.18)

with negative initial conditions as discussed above forxi(q̃, t). Here
∑N

i=1Ai(‖qi − q̃‖)
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is the total instantaneous coverage achieved by all the vehicles at timet. The overall

awareness dynamics will be utilized to develop the centralized search control laws. If

one wishes to consider the state of awareness achieved by a set K ⊂ S, then one can use

Equation (2.18) but summing only over elements inK. Note thatxi ≤ x. That is, the

overall awareness of the sensors in a centralized system is better than that of the individual

sensors in a decentralized system. Note that for the case where all the vehicles are set to be

fixed, if enough resources are available (i.e., enough vehicles and/or large enough sensor

ranges) the entire domain can be covered with
∑N

i=1(Ai − ζ) > 0 and the awareness

level is everywhere increasing and converging to the desired value:x(q̃, t) → 0 for all

q̃ ∈ D. This is guaranteed to occur using a static sensor network and a sufficiently small

domainD (the small-scale domain case). This is true because for eachpoint q̃, the term
∑N

i=1(Ai − ζ) in Equation (2.18) is a positive constant since each vehicle is assumed to

be fixed. This means that, for eachq̃, the dynamics (2.18) is a linear differential equation

in x(q̃, t), which leads to asymptotic convergence ofx(q̃, t) to zero. For large-scale

domains, a static sensor is guaranteed not to meet the desired zero transformed state of

awareness because, by definition, there exists a set of non-zero measureΞ ⊂ D which is

not covered by some sensor. It is aimed to develop a decentralized control strategy that

stabilizes the state of awareness under intermittent communications and/or faulty sensors

over a large-scale domain.

Remark. 2.3.1.Letxi(q̃, t) = 0 for all q̃ /∈ D and all t ≥ 0. This remark will be useful

for the validation of a lemma developed later. •

2.3.2 State of Awareness Dynamic Model

State of Awareness Updates. Consider the case where the vehicles communicate only

when they are within a rangeλ > 0 of each other. If a communication channel is estab-

lished, vehicles exchange their awareness information. Let Gi(t) = {j ∈ S : ‖qj −qi‖ <
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λ}, i ∈ S, be the set of vehicles that neighbor vehicleVi (including vehicleVi itself) at

time t. Whenever new vehiclesVj are added to the setGi, vehicleVi will instantaneously

exchange all the available awareness information with new neighbors in a discrete aware-

ness update step. If no or more than one vehicle drop fromGi(t) (possibly faulty sensors),

the individual state of awareness of vehicleVi does not change. Lettc be the time instant

at which vehiclesVj,Vk, . . . become members ofGi. That isVj, Vk . . . 6∈ Gi(t
−
c ) but

Vj , Vk . . . ∈ Gi(t
+
c ). Hence, the following update equation takes place whenevera set of

vehiclesḠi(t) ⊂ S \ Gi(t) gets added toGi(t) at timet:

xi(q̃, t
+) = (−1)n̄i(t)xi(q̃, t) ·

∏

j∈Ḡi(t)

xj(q̃, t), (2.19)

wheren̄i(t) is the number of vehicles in̄Gi(t). Hence, the transformed state of awareness

evolves according to the continuous dynamics given by Equation (2.17) and undergoes a

discrete update step given by Equation (2.19) whenever new vehicles becomeVi’s neigh-

bors. Figure2.15illustrates the awareness model for the continuous dynamics (2.17) and

the discrete awareness state update (2.19). Note that there is one continuous mode (2.17)

and one switching condition̄Gi(t) 6= ∅. When the switching condition is satisfied, the

initial condition of the system is reset according to the reset map (2.19). If Ḡi(t) = ∅

(i.e., no new vehicles become neighbors ofVi), then the awareness state of vehicleVi

obeys the continuous differential equation (2.17). This includes the case when vehicles

drop fromGi(t) (e.g., faulty sensors) or when existing neighbors retain theirVi neighbor-

hood status. If the number of new vehiclesn̄i(t) in Ḡi(t) is nonzero at timet, then the

value of the transformed state of awareness of vehicleVi will be discretely substituted

with the product of the awareness states of all the vehicles in Ḡi(t) and itself. According

to Equation (2.19), if the number of newly added vehicles is even, then the multiplication

of their states of awareness will be a non-negative number because the termxi is always
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ẋi(q̃, t) = −(Ai − ζ)xi(q̃, t)

xi(q̃, t
+) 7−→ (−1)n̄i(t)xi(q̃, t)

∏
j∈Ḡi(t) xj(q̃, t)

Ḡi(t) 6= ∅

Figure 2.15: Continuous and discrete awareness state update model.

less than or equal to zero. In this case, the newly updated state of awareness will stay

negative after multiplying the state of awareness of vehicleVi itself. However, when the

number of newly added vehicles is odd, the multiplication ofall these states of awareness

together with the state of awareness of vehicleVi will be a positive number. Hence, the in-

troduction of(−1)n̄i(t) makes sure that the updated state of awareness is always negative.

Moreover, this product reflects the improvement in the stateof awareness of vehicleVi.

For example, assume that all the vehicles in the mission fleethave an initial transformed

state of awareness of−1 and their coverage goal is to achieve a transformed awareness

value close to zero everywhere within the domain. IfVi has a transformed awareness

of −0.5 at somẽq at timet, and it updates its transformed state of awareness based on

the transformed state of awareness of another neighbor vehicle of −0.5, then the new

awareness at̃q is now−0.25 according to the update Equation (2.19). The two extremes

are:

1. if the second vehicle has no awareness atq̃ (i.e., a value of -1), then the new aware-

ness is still−0.5 since the second vehicle did not “add any awareness” at that point.

2. if the second vehicle has perfect awareness atq̃ (i.e., a value of 0), then the new

awareness is now0 since the second vehicle had perfect awareness level there.
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Awareness Metric. Let the awareness metric be given by

egi(t) =

∫

D

1

2
x2
i (q̃, t)dq̃, i ∈ S, (2.20)

which is the global error over the entire mission domain achieved by vehicleVi. It is said

to be global since the integration is performed over the entire domainD. The coverage

goal of each vehicle is to guarantee that the above metric (2.20) decreases with time and

ultimately converges to a small neighborhood of zero.

Further, define

eg(t) =

∫

D

1

2
x2(q̃, t)dq̃ (2.21)

as the global error over the entire mission domain achieved by all the MAVs.

Let the local awareness error function associated with vehicleVi be

eiWi
(t) =

∫

Wi(t)

1

2
x2
i (q̃, t)dq̃ ≥ 0, i ∈ S, (2.22)

with eiWi
(t) = 0 if and only if xi(q̃, t) = 0 for every pointq̃ inside the sensory domain

Wi(t). This is a decentralized awareness metric associated with vehicleVi that reflects the

quality of the state of awareness withinWi(t) achieved by vehicleVi alone. This metric

will be used for the development of the decentralized control law. Note that the metric is

a function of the position of vehicleVi because of the integral domainWi(t).

Moreover, define the centralized awareness metric associated with the entire search

fleetS(t) by

eWi
(t) =

∫

Wi(t)

1

2
x2(q̃, t)dq̃. (2.23)
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This is a centralized awareness metric associated with vehicleVi that reflects the quality

of the state of awareness withinWi(t) achieved by all vehicles inS. This metric will be

used to develop the control law for the centralized search problem.

2.3.3 Awareness Coverage with Intermittent Communications

Overall Description of Control Strategy. In this section, a decentralized control law

u∗
i is developed based on the awareness metric (2.20) and the local awareness error func-

tion (2.22) over a large-scale domain using MAVs with intermittent communications

and/or faulty sensors. The control lawu∗
i is inspired by Equation (2.9) in Section2.2.2for

deterministic Lyapunov-based coverage control. It is composed of a nominal control law

ūi and a perturbation control law̄̄ui. Initially, a vehicleVi is deployed and is governed by

a nominal control law̄ui developed based on the error function (2.22), which drives it in

the direction that maximizes its local state of awareness (since the error function (2.22)

is defined within the sensory domainWi(t)) by moving in the direction of low awareness

levels. The nominal control law̄ui will eventually driveeiWi
(t) to a neighborhood of zero.

Whenever the transformed state of awareness is such that‖xi(q̃, t)‖ ≤ ξ, whereξ is some

threshold to be defined later, for allq̃ ∈ Wi(t) (i.e., eiWi
(t) → 0), the vehicle is said

to have converged to a local minimum, and the control law is switched to a perturbation

control law ¯̄ui that drives the vehicle out of this local minimum to the nearest point with

less than full awareness, which guarantees that every pointwithin the domainD with in-

sufficient awareness will be covered. Once away from the local minimum, eiWi
(t) is no

longer in a small neighborhood of zero since not every point within the sensory domain

Wi(t) has‖xi(q̃, t)‖ ≤ ξ, and the controller is switched back to the nominal controller.

The switching between the nominal control law̄ui and the perturbation control law̄̄ui

is repeated until the entire domainD has a full state of awareness. That is, the global

error egi(t) given by Equation (2.20) converges to a neighborhood of zero. Figure2.16
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illustrates the overall control strategy applied on a single vehicle for the awareness cov-

erage control over a square domain. Green represents low awareness, yellow for higher

awareness and red for full awareness. The black dot represents the position of the vehicle,

while the circle indicates the limited range of the sensor. Figure2.16(a) shows an initial

deployment of the vehicle under the nominal control lawūi at the outset. The control

law ūi moves the vehicle towards the direction of lower awareness levels. Figure2.16(b)

demonstrates an instance when the vehicle is trapped in a local minimum with full aware-

ness and the perturbation control law̄̄ui is applied. Figure2.16(c) corresponds to full

awareness, i.e., the mission is completed whenegi −→ 0.

Nominal Control Law. Between discrete jumps in awareness due to intermittent shar-

ing of awareness information with other vehicles, the vehicle kinematic equation (2.1)

and state of awareness equation (2.17) constitute two first order differential equations.

In this section, these two equations together with the individual vehicle error function

(2.22) are used to derive a nominal control law that seeks to reducethe value ofeiWi
for

each vehicle. The nominal control law itself does not guarantee convergence ofxi(q̃, t)

to a neighborhood of zero over the entire domainD. Instead, it only guarantees that

xi(q̃, t) → 0 within the sensory domainWi for each vehicle. A perturbation control law

will be deployed along with the nominal control law to guarantee that‖xi(q̃, t)‖ < ξ over

the entire domainD.

Without any loss of generality, the following assumption for the initial state of aware-

ness will be made.

IC2 The initial state of awareness is given by:

xi(q̃, 0) = xi0 = −1, i ∈ S.

Assumption 2.3.1.Assume thatζ = 0.
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Figure 2.16: Illustration of the overall control strategy.
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With Assumption2.3.1, the ensuing results are applicable to problems in search and

rescue/retrieval problems (especially with static victims or objects of interests), domain

monitoring, and “low level” surveillance.

Consider the following nominal control law:

ūi(t) = k̄i

∫

Wi(t)

x2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)

︸ ︷︷ ︸
memory term

dq̃, (2.24)

wherek̄i > 0 is a feedback gain. It will be proved that control law (2.24) guarantees the

convergence ofxi(q̃, t) to zero at every point̃q in the sensory domainWi(t).

Remark. 2.3.2. In the expression for̄ui(t), the time integral “memory” term under the

spatial integration is an integration of historical data that translates into the reliance on

past search history for vehicle motion planning. Note that the memory term is multiplied

by x2
i (q̃, t) before being integrated over the sensory domain at the current timet. This

indicates that historical data as well as up-to-date awareness levels within the vehicle’s

sensor domain are compounded to decide on the motion. •

First consider the following lemma, which will be used shortly.

Lemma 2.3.1.For any functionF : R2 × R → R, the following equation holds,

d

dt

∫

Wi(t)

F (q̃, t)dq̃ =

∫

Wi(t)

[
(grad

q̃
F(q̃, t)) · ui +

∂F(q̃, t)

∂t

]
dq̃,

whereui is the velocity of vehicleVi and grad̃
q

is the gradient operator with respect tõq.

Proof. This is a direct consequence of Equation (3.3) in [38], where note thatui is the

velocity of any point within the (rigid) domainWi (including the boundary). �

Next, consider the following condition, whose utility willalso become obvious shortly.

Condition C2. xi(q̃, t) = 0, ∀q̃ ∈ Wi(t).

54



This condition corresponds to the case where the set of points withinWi have perfect

coverage and the local erroreiWi
is zero.

Lemma 2.3.2.For anyt ≥ 0, if ConditionC2holds for vehicleVi, theneiWi
(t) = 0, i ∈ S.

Conversely, ifeiWi
(t) = 0 for some timet ≥ 0, then ConditionC2 holds for vehicleVi.

Proof. The proof of this lemma is similar to that of Lemma2.2.1in Section2.2.2. �

Theorem 2.3.1.Under Assumption2.3.1, the control lawūi(t) given by Equation (2.24)

driveseiWi
(t) −→ 0 asymptotically between awareness state switches.

Proof. Consider the function̄Vi = eiWi
(t) ≥ 0. From Lemma2.3.2, V̄i = 0 if and only if

ConditionC2 holds for vehicleVi. According to Lemma2.3.1,

˙̄Vi = ėiWi
(t) =

d

dt

∫

Wi(t)

1

2
x2
i (q̃, t)dq̃

=

∫

Wi(t)

grad(
1

2
x2
i (q̃, t)) · ūidq̃+

∫

Wi(t)

∂(1
2
x2
i (q̃, t))

∂t
dq̃. (2.25)

Note that according to Remark2.3.1, the integration regionWi(t) always holds even when

Wi(t) lies outside ofD. First consider the spatial gradient term in Equation (2.25):

∫

Wi(t)

grad(
1

2
x2
i (q̃, t)) · ūidq̃ =

∫

Wi(t)

∂(1
2
x2
i (q̃, t))

∂q̃
· ūidq̃

=

∫

Wi(t)

xi(q̃, t)
∂(xi(q̃, t))

∂q̃
· ūidq̃.

Next, an expression for∂(xi(q̃,t))
∂q̃

needs to be derived. From Equation (2.17) and assuming

ζ = 0, it follows that

xi(q̃, t) = e−
∫ t
0 Ai(q̃,qi(σ))dσxi0.
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Hence,

∂xi(q̃, t)

∂q̃
= −e−

∫ t
0
Ai(q̃,qi(σ))dσxi0

∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

= −xi(q̃, t)

∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ.

Therefore,

∫

Wi(t)

grad(
1

2
x2
i (q̃, t)) · ūidq̃ = −

∫

Wi(t)

x2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)
· ūidq̃.

Note that̄ui(t) is a function of time but not̃q, so it can be pulled outside of the integration.

Substitutēui(t) in Equation (2.24) into the above equation, it follows that

∫

Wi(t)

grad(
1

2
x2
i (q̃, t)) · ūidq̃ = −k̄i

[∫

Wi(t)

x2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)
dq̃

]2
≤ 0.

Next, consider the integral of the time derivation term in Equation (2.25). According to

Equation (2.17) and assuming no information loss, that is,ζ = 0,

∫

Wi(t)

∂(1
2
x2
i (q̃, t))

∂t
dq̃ = −

∫

Wi(t)

x2
i (q̃, t)Ai(‖q̃− qi‖)dq̃ ≤ 0.

Therefore,

˙̄Vi = −k̄i
[∫

Wi(t)

x2
i (q̃, t)

(∫ t

0

∂(Ai(q̃,qi(σ)))

∂q̃
dσ

)
dq̃

]2

︸ ︷︷ ︸
first term

−
∫

Wi(t)

x2
i (q̃, t)Ai(‖q̃− qi‖)dq̃

︸ ︷︷ ︸
second term

≤ 0.

Note that equality holds if and only if ConditionC2 holds. This can be seen as follows.

First, note that if ConditionC2 holds, ˙̄Vi is clearly equal to zero becausexi(q̃, t) = 0 for
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∀q̃ ∈ Wi(t). Secondly, if ˙̄Vi is zero, butxi(q̃, t) 6= 0 within Wi(t), the second term will

always be non-zero becauseAi(‖q̃− qi‖) > 0 within the sensory domainWi(t). Hence,

for ˙̄Vi = 0, the only possibility is thatxi(q̃, t) = 0, which also makes the first term zero.

Then ˙̄Vi = 0 only if ConditionC2 holds. This and Lemma2.3.2complete the proof. �

Perturbation Control Law. Before introducing the perturbation control law, consider

the following condition.

Condition C3. ‖xi(q̃, t)‖ ≤ ξ, ∀q̃ ∈ Wi(t), whereξ > 0 is the awareness tolerance.

This condition corresponds to the case where the local error(i.e., overWi) is in a

neighborhood of zero, that is, the situation when the vehicle is making very little progress

(almost “stuck”).

Using the nominal control law in Equation (2.24), each vehicle will be guaranteed to

have a state of awareness‖xi(q̃, t)‖ ≤ ξ at each point̃q ∈ Wi(t) for a givenξ > 0,

i.e., ConditionC3. However, this does not necessarily mean that the erroregi(t) of each

vehicle over the entire domain given by Equation (2.20) will converge to a neighborhood

of zero. If ConditionC3 holds but withegi(t) > ξ̄ (to be precisely defined), the pertur-

bation control law given by Equation (2.8) in Section2.2.2is used to perturb the system

away from the ConditionC3, however, herẽq∗
i ∈ D is chosen such that‖xi(q̃

∗
i , ts)‖ > ξ.

Define the following sets in a same fashion as in Section2.2.2, i.e.,

Di
e(t) := {q̃ ∈ D : ‖xi(q̃, t)‖ > ξ} ,

let Di

e(t) be the closure ofDi
e(t) and we have,

D̃i
e(t) =

{
¯̃q ∈ Di

e(t) : ¯̃q = argmin
q̃∈D

i
e(t)

‖qi(t)− q̃‖
}
.

Here the superscriptsi is used to indicate that the sets are associated with vehicleVi.
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Note thatq̃∗
i is chosen based on coverage information available to vehicleVi only, which

is appropriate in the setting here since the control law is decentralized.

Theorem 2.3.2.If the system is at the state described by the ConditionC3 and the set

D̃i
e(t) at timet is nonempty, then the control law̄̄ui(t) given by Equation (2.8) drives the

system away from ConditionC3.

Proof. If ConditionC3 holds and the set̃Di
e(t) at timet is nonempty, it follows from the

linearity of the closed-loop system:q̇i(t) = −¯̄ki(qi(t) − q̃∗
i (ts)) that the vehicleVi will

converge asymptotically to a neighborhood ofq̃∗
i (ts). Hence, there will exist a time such

that‖qi − q̃∗
i ‖ < ri, at which time ConditionC3 no longer holds. �

Overall Control Strategy. Theorems2.3.1and2.3.2give us the following result.

Theorem 2.3.3.Under limited sensory range modelSM and initial conditionIC2, the

control law

u∗
i (t) =





ūi if ConditionC3 does not hold

¯̄ui if ConditionC3 holds
, (2.26)

drives the erroregi(t), i ∈ S, to a neighborhood of zero value.

Proof. Under the control law (2.24), each vehicle moves in the direction that improves its

own local (since integration is performed over the sensor domainWi(t)) awareness level

and is in continuous motion as long as the state described in Condition C3 is avoided.

Whenever the ConditionC3 holds with global erroregi(t) > ξ̄, i ∈ S, the system is per-

turbed away from the ConditionC3 by switching to the perturbation control law (2.8).

Once away from the ConditionC3, the controller is switched back to the nominal con-

troller. This procedure is repeated until the point in time when there does not existq̃∗
i

whenever ConditionC3 holds. The non-existence of such aq̃∗
i guarantees thategi(t) is
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sufficiently close to zero (since‖xi(q̃, t)‖ is not larger thanξ everywhere). That is to say,

only when both ConditionC3 holds and‖xi(q̃, t)‖ ≤ ξ, (‖x̃i(q̃, t)‖ → 1), for all q̃ ∈ D,

the mission is said to be accomplished and no further switching is performed.

To complete the proof, one has to show that infinite switchingbetween (1) the continu-

ous awareness evolution (2.17) and discrete awareness update (2.19), and (2) the nominal

control lawūi (2.24) and the perturbation control law̄̄ui (2.8) can never happen. For the

former, note the fact that whenxi(q̃, t) undergoes a discrete update step, no instabilities

are introduced. This is true since the update equation results in a discrete change from

a continuous distributionxi(q̃, t) over D to another continuous distributionxi(q̃, t
+).

Moreover,‖xi(q̃, t
+)‖ ≤ ‖xi(q̃, t)‖ for eachq̃ at each switching instant. Hence, the re-

setting ofxi(q̃, t) can not introduce unbounded divergence by design and can only result

in the decrease in the norm ofxi(q̃, t).

Secondly, infinite switching between̄ui and ¯̄ui is impossible because (a) during the

application ofūi the value ofegi decreases by an amount of non-zero measure, and (b) if

ConditionC3 occurs and the control law̄̄ui is applied, once the vehicle is within a range

less thanri from q̃∗
i , egi decreases by an amount of non-zero measure. These two facts

guarantee that a finite number of switches will be performed to reachegi ≤ ξ̄, whereξ̄ is

an upper bound given by

egi(t) =

∫

D

1

2
x2
i (q̃, t)dt =

∥∥∥∥
∫

D

1

2
x2
i (q̃, t)dt

∥∥∥∥ =

∫

D

1

2

∥∥x2
i (q̃, t)

∥∥dt ≤ ξ2AD

2
= ξ̄,

whereAD is the area ofD.

Finally, it also needs to show that the control velocityu∗
i (t) can never be infinite.

Whenxi(q̃, t) undergoes resetting, the control lawūi undergoes a finite drop in magnitude

(sincex2
i (q̃, t) itself experiences a finite drop in magnitude, see Equation (2.24), and

since the memory term indicated in Equation (2.24) does not change across switches)
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and, hence, no infinite control inputs are encountered across awareness state switches.

In between switches, the controlūi is also finite (but, in this case, continuous in time)

because the memory term is finite (since the coverage function Ai is at leastC1) for any

finite time and since‖xi(q̃, t)‖ converges to a neighborhood of zero. The perturbation

control law¯̄ui(t) is clearly bounded in magnitude since the feedback gain is finite and the

vectorqi(t)− q∗
i (ts) has a finite magnitude (due to boundedness ofD). �

Remark. 2.3.3.The search approach proposed herein requires computationsat the order

of O(n̄2 + 2) at each time step, wherēn is the number of cells in the discretized sensory

domainWi. While alternative approaches, such as Voronoi-partitioning and stochastic-

based SLAM methods, are computationally more burdensome (Refer to [60] for more

details). •

Remark. 2.3.4.As a matter of implementation, if the condition for the resetmap and the

ConditionC3 occur at the same instant, checking of the ConditionC3 is performed after

the reset map is performed. •

Remark. 2.3.5. Note thatūi relies on the properties of the sensor coverage functionAi.

Hence, the coverage control law relies on the given sensor model to guide the vehicle

during the coverage mission. •

Remark. 2.3.6. Redundant coverage (overlapping paths) would be expected among the

vehicles. The main reasons for the overlapping of paths are:

• Decentralization and the fact that communications are established only intermit-

tently, meaning that a vehicle may not have the actual overall history of coverage

information. A main difference between the approach introduced here and [59]

or [24] is that every sensor only considers a local error functioneiWi
(t) that is

independent of what other sensors may do. In other words, thesensor metrics pre-
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sented here are independent of each other and do not capture the property of “co-

operation in sensing.” That is, cooperation is establishedin terms of interchange of

information through communication only.

• Sometimes a vehicle has to traverse an already covered region in order to get to an

uncovered region. •

2.3.4 Generalization to Centralized Coverage Control

In this section, the above decentralized coverage control laws for MAVs are generalized

to centralized coverage control laws, where the awareness information is shared over all

vehicles inS. Consider the following conditions.

IC3 The initial state of awareness is given by:x(q̃, 0) = x0 = −1.

Condition C4. x(q̃, t) = 0, ∀q̃ ∈ Wi(t).

Here, the dynamics ofx(q̃, t) follows Equation (2.18). Following similar procedures

as above, the global awareness metric (2.21) and the local awareness error function (2.23)

based on all the MAVs are utilized to develop a centralized control lawu∗
i .

u∗
i (t) =





ūi(t) if Condition C4 doesn′t hold for Vi ∈ S
¯̄ui(t) if Condition C4 holds for Vi ∈ S

(2.27)

where

ūi(t) = k̄i

∫

Wi(t)

x2(q̃, t)

(∫ t

0

∂Ai(q̃,qi(σ))

∂q̃
dσ

)

︸ ︷︷ ︸
memory term

dq̃ (2.28)

is the centralized nominal control law, and the choice of thepoint q̃∗
i in the central-

ized perturbation control law is based on centralized awareness information such that

‖x(q̃, t)‖ > ξ.
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Theorem 2.3.4.Under limited sensory range modelSM and initial conditionIC3, the

control lawu∗
i (t) given by Equation (2.27) drives the erroreg(t) to a neighborhood of

zero value.

This theorem can be proved following similar derivations asTheorem2.3.3without

difficulty.

2.3.5 Simulation

In this section a numerical simulation is provided to illustrate the performance of the

control strategy (2.26). Define the domainD as a square region whose size is64 × 64

units length and thus naturally discretize it into64 × 64 cells, whereq̃ represents the

centroid of each cell. The domain has no information loss, that is,ζ = 0. Assume there

are 4 vehicles (N = 4) with a randomly selected initial deployment as shown by thegreen

dots in Figure2.17(a). Figure2.17(a)shows the fleet motion in the plane (start at green

dot and end at red dot). Let the initial statexi0, i = 1, 2, 3, 4, be−1 and the desired state

for xi(q̃, t) be 0, which correspond tõxi0 = 0 and the desired actual state of awareness

x̃i(q̃, t) = 1. Here the nominal control law in Equation (2.24) is used with control gain

k̄i = 8 and the perturbation control law in Equation (2.8) is used with control gain̄̄ki = 1,

i = 1, . . . , 4. A vehicle is set to switch to the linear feedback control lawwhenever

ConditionC3 applies to it withξ = 1e−3. For the sensor model, setMi = 1, ri = 12 for

all i = 1, . . . , 4. For the intermittent communication range, it is set as the same as the

sensory rangeλ = ri = 12. The control velocities for all vehicles are shown in Figure

2.17(b). The global erroreg(t) plotted in Figure2.17(c)is the actual total performance

achieved by the entire vehicle fleet and can be seen to converge to zero.

Figure 2.18 shows the variation of the transformed state of awarenessx(q̃, t) dur-

ing the coverage mission, which is the equivalent awarenesslevel as achieved by all the

MAVs. Note that the minimal transformed state of awareness is about−5.2 × 10−3 over
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Figure 2.17: Fleet motion, control effort, and error for awareness coverage control.
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the entire domain att = 325 and that the global error metric converges to a neighborhood

of zero as predicted by Theorem2.3.3.

2.4 Probabilistic Bayesian-Based Approach

In this section, the coverage control strategies are developed under a probabilistic frame-

work, which guarantee full certainty over the mission domain based on Bayes analysis

and information theory. In practice, no matter how high the quality of a vehicle sensor

is, its sensing capability is limited and erroneous observations are bound to occur due

to noise and sensor failure [124]. Hence, false or missed detections of object existence

are inevitable and the system performance is indeterministic. Therefore, a probabilistic

framework is desirable as it takes into account sensor errors, as well as allows for future

incorporation of other tasks such as object tracking, data association, data/decision fusion,

sensor registration, and clutter resolution.

In the stochastic setting, Bayes filters are used extensively for dynamic surveillance

of a search domain. In [58], the author uses the Kalman filter for estimating a spatially-

decoupled (i.e., it does not satisfy a partial differentialequation, or a PDE) field and using

the prediction step of the filter for guiding the vehicles to move in directions that improve

the field estimate. The control algorithm is modified to guarantee satisfactory global

coverage of the domain. Other stochastic dynamic coverage approaches include SLAM

[21,28,74,90] and information-theoretic methods [49,50]. A similar filter-based coverage

problem is addressed in [49] (for spatially decoupled processes) from an information-

theoretic perspective.
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Figure 2.18: Transformed state of awarenessx(q̃, t).

65



2.4.1 Setup and Sensor Model

The grid-based method is used to develop the coverage control problem under probabilis-

tic frameworks. The search domain is discretized intoNtot cells. Letc̃ be an arbitrary cell

in D, and point̃q is the centroid of̃c, which is consistent with the definition ofq̃ under de-

terministic Lyapunov-based and aware-based frameworks. Assume that the discretization

is fine enough such that at most one object can exist within a cell. The work presented

in this section is analogous to the binary Bayes filter and theoccupancy grid mapping

algorithm [124], which are very popular mapping techniques to deal with observations

with sensor uncertainties in robotics.

For the sake of clarity of ideas, first consider the case wherethere exists a single

autonomous sensor-equipped vehicle that performs the search task. This scenario is an

extreme case in which the resources available are at a minimum (a single sensor vehicle as

opposed to multiple cooperating ones). The extension to MAVs domain search is provided

in Section2.4.5.

A Bernoulli-type sensor model is used, which gives binary outputs: object “present”

or “absent”. This is a simplified but reasonable sensor modelbecause it abstracts away

the complexities in sensor noise, image processing algorithm errors, etc. [12,13].

LetX(c̃) be the binary state random variable, whereX(c̃) = 0 corresponds to object

absent andX(c̃) = 1 corresponds to object present. Let the position of objectOk bepk

andP is the set of all object positions (unknown and randomly generated). The number

of objectsNo is a Binomial random variable with parametersNtot and Prob(c̃ ∈ P),

where Prob(c̃ ∈ P) is the probability of object presence at cellc̃ (identical for allc̃ and

independent). Hence, the probability ofk cells in the domain containing an object is

Prob(No = k) =

(
Ntot

k

)
Prob(c̃ ∈ P)k(1− Prob(c̃ ∈ P))Ntot−k,
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wherek = 1, 2, · · · , Ntot. The expectation ofNo equals to the number of total cells inD

multiplied by Prob(c̃ ∈ P), that is,

E[No] = NtotProb(c̃ ∈ P). (2.29)

Note that the realization ofX(c̃) depends on the position of the observed cell, that is,

X(c̃) =






1 c̃ ∈ P,

0 otherwise.

SinceP is unknown and random,X(c̃) is a random variable with respect to everyc̃ ∈ D.

Similarly, letY (c̃) be the binary observation random variable, whereY (c̃) = 0 cor-

responds to the observation indicating object absent andY (c̃) = 1 corresponds to the

observation indicating object present, respectively. Theactual observation is taken ac-

cording to the probability parameterβ of the Bernoulli distribution.

Given a stateX(c̃) = j, the conditional probability mass functionf of the Bernoulli

observation distribution is given by

fY (c̃)(Y (c̃) = k|X(c̃) = j) =





β if k = j

1− β if k 6= j
, j, k = 0, 1. (2.30)

Because the statesX(c̃) are spatially i.i.d., the observationsY (c̃) taken at every cell̃c

within the mission domainD are spatially i.i.d. and hence the probability distribution for

everyc̃ ∈ D follows the same structure.

Therefore, the general conditional probability matrixB is given as follows

B =




Prob(Y (c̃) = 0|X(c̃) = 0) = β Prob(Y (c̃) = 0|X(c̃) = 1) = 1− β

Prob(Y (c̃) = 1|X(c̃) = 0) = 1− β Prob(Y (c̃) = 1|X(c̃) = 1) = β


 ,(2.31)
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whereProb(Y (c̃) = i|X(c̃) = j), i, j = 0, 1, describes the probability of measuring

Y (c̃) = i given stateX(c̃) = j. For the sake of simplicity, it is assumed that the sen-

sor capabilities of making a correct measurement are the same. That is,Prob(Y (c̃) =

0|X(c̃) = 0) = Prob(Y (c̃) = 1|X(c̃) = 1) = β as the detection probability of the

sensor.

The following two sensor models are assumed in this work. However, note that the

specific formulation will not affect the analysis of the subsequent search methods. Both

of the sensor models capture the key feature of limited sensory range and will be used

interchangeably throughout this dissertation.

Unit Sensory Range For the sake of illustration clarity, assume that the sensoris only

capable of observing one cell at a time. That is, the sensor model assumes a limited unit

sensory range. Therefore,β is set as a constant value.

Limited Circular Sensory Domain To be consistent with the sensor models used in the

deterministic frameworks in Sections2.2 and2.3, let the detection probabilityβ to be a

function of the relative distance between the sensor and thecentroid of the observing cell

c̃. Similar as the sensor modelSM proposed in Section2.2, here a limited-range circular

sensor domain is assumed and a fourth order polynomial function of s = ‖q(t) − q̃‖ is

used within the sensor ranger andbn = 0.5 otherwise,

β(s) =





M
r4
(s2 − r2)

2
+ bn if s ≤ r

bn if s > r
, (2.32)

whereM + bn gives the peak value ofβ if the cell c̃ being observed is located at the sen-

sor vehicle’s location, which indicates that the sensor’s detection probability is highest

exactly where it is. The sensing capability decreases with range and becomes0.5 out-

68



side ofW, implying that the sensor returns an equal-likely observation of “absence” or

“presence” regardless of the truth.

2.4.2 Bayes Updates

Next, Bayes’ rule is employed to update the probability of object existence at̃c. Given

an observationYt(c̃) = i taken at time stept, Bayes’ rule gives, for each̃c, the posterior

probability of object existence (X(c̃) = j) as:

P (X(c̃) = j|Yt(c̃) = i; t+ 1) =
P (Yt(c̃) = i|X(c̃) = j; t)P (X(c̃) = j; t)

P (Yt(c̃) = i)
, (2.33)

whereP (Yt(c̃) = i|X(c̃) = j; t) is the probability of the particular observationYt(c̃) = i

being taken given stateX(c̃) = j, which is given by theβ function (2.32), P (Yt(c̃) =

i|X(c̃) = j; t) is the prior probability ofX(c̃) = j at t, andP (Yt(c̃) = i) gives the total

probability of having observationYt(c̃) = i regardless of the actual state.

According to the law of total probability,

P (Yt(c̃) = i) = P (Yt(c̃) = i|X(c̃) = j; t)P (X = j; t)

+ P (Yt(c̃) = i|X(c̃) = 1− j; t)P (X = 1− j; t), i, j = 0, 1.(2.34)

Substitute Equation (2.34) into Equation (2.33), the posterior probability of object absent

is P (X(c̃) = 0|Yt(c̃) = i; t + 1) and object present isP (X(c̃) = 1|Yt(c̃) = i; t + 1)

whenever there is a new observationYt(c̃) = i taken.

2.4.3 Uncertainty Map

Based on the updated probabilities, an information-based approach is used to construct the

uncertainty map for everỹc within the search domain. The uncertainty map will be used
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to guide the vehicle towards regions with highest search uncertainty in the domain. The

information entropy function of a probability distribution is used to evaluate uncertainty.

Let PHs = {P (X(c̃) = 0), P (X(c̃) = 1)} be the probability distribution of the search

process for the two distinct realizations of the state in ourcase. Define the information

entropy at̃c at timet as:

Hs(PHs, c̃, t) = −P (X(c̃) = 0) lnP (X(c̃) = 0)− P (X(c̃) = 1) lnP (X(c̃) = 1)(2.35)

If P (X(c̃) = 0) = 0, the termP (X(c̃) = 0) lnP (X(c̃) = 0) is set to 0 by convention

because there is no uncertainty about object existence or lack thereof. It also follows that

limP (X(c̃)=0)→0 P (X(c̃) = 0) lnP (X(c̃) = 0) = 0. The same applies forP (X(c̃) =

1) lnP (X(c̃) = 1) whenP (X(c̃) = 1) = 0. Figure2.19shows the information entropy

(2.35) as a function ofP (X(c̃) = 1). Note thatHs(PHs, c̃, t) ≥ 0 and the maximum

value attainable byHs(PHs, c̃, t) isHs,max = 0.6931 whenP (X(c̃) = 1) = 0.5. This im-

plies that the equal-likely case results in the most uncertain information. The information

entropy distribution at time stept over the domain forms an uncertainty map at that time

instant.

The greater the value ofHs, the bigger the uncertainty is. The desired uncertainty

level isHs(PHs, c̃, t) = 0 overD. The initial “uncertainty” distribution is assumed to
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be the maximum valueHs,max∀c̃ ∈ D reflecting the fact that at the outset of the search

mission there is a poor search certainty level everywhere within the domain.

2.4.4 Bayesian-Based Coverage Control

Now consider a search strategy for the coverage control problem in the Bayesian-based

probabilistic framework. In general, the controlu(t) is restricted to a setU . For example,

U could be the set of all controlsu(t) ∈ R
2 such that‖u(t)‖ < umax, whereumax is the

maximum allowable control velocity. First consider a setQW(t). Let

QW(t) = {c̃ ∈ W : q̃− q(t) ∈ U}.

In other words,QW(t) is the set of cells within the sensory domain where the vehicle

could reach given the restrictions on control.

Consider the following condition, whose utility will become obvious shortly.

Condition C5. Hs(PHs, c̃, t) ≤ Hu
s , ∀c̃ ∈ QW(t), whereHu

s > 0 is a preset threshold

of some small value.

Following the same structure as the deterministic Lyapunov-based and awareness-

based control laws (2.2.1,2.26), the Bayesian-based probabilistic search strategy is given

as follows:

u∗(t) =





ū(t) if Condition C5 does not hold

¯̄u(t) if Condition C5 holds
. (2.36)

Let c̃? be the cell that has the highest search uncertainty withinQW(t), that is,

c̃?(t+ 1) = argmax̃
c∈QW(t)Hs(PHs, c̃, t). (2.37)
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The nominal control law is then set to be

ū(t) = q̃?(t+ 1)− q(t) ∈ U ,

whereq̃? is the centroid of cell̃c?.

If ConditionC5 holds, then the perturbation controller¯̄u(t) is used, and̃q∗ is chosen

as the centroid of̃c∗ ∈ QD(t) = {c̃ ∈ D : q̃− q(t) ∈ U} such thatHs(PHs , c̃
∗, t) > Hu

s .

The choice of̃c∗ by the vehicle can be made several ways. Here provides one example

of many possible perturbation control approaches, which isconsistent with the scheme

presented in Section2.2.2. This maneuver seeks the minimum distance for redeployment,

and hence is efficient energy-wise than other possibilities. Let

De(t) := {c̃ ∈ QD(t) : Hs(PHs , c̃, t) > Hu
s } ,

which is a set of all̃c for which Hs(PHs, c̃, t) is larger than the preset valueHu
s . Let

D̃e(t) be the set of cells inDe(t) that minimize the distance between the position vector

of vehicleV, q, and the setDe(t):

D̃e(t) =
{
c̃∗ ∈ De(t) : c̃

∗ = argmin
c̃∈De(t) ‖q̃− q(t)‖

}
.

The control law (2.36) guarantees that the uncertainty functionHs(PHs, c̃, ts) for all

c̃ ∈ D is belowHu
s at some timets. A formal proof will be given as part of the Bayesian-

based decision-making strategy in Section4.3in Chapter4.

Remark. 2.4.1.Note that according to Equation (2.37), c̃?(t + 1) might be a set of cells

holding the same maximum search uncertainty value. If thereare multiple such cells, then

one can define a rule that picks the “best” one according to some metric (e.g., the cell

with its centroid that is closest to the vehicle’s current position). Currently, assume there
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is only one such cell for the sake of simplicity. •

Remark. 2.4.2.The reasons that the choice ofc̃? is restricted toW (as opposed toD) in

the definition ofQW(t) (causingū to become a local controller) are as follows:

1. UsingW instead ofD avoids unnecessary extra computational burden during the

search for̃c? by using a smaller space and, hence, is more computationallyefficient.

It is especially true in the case of large-scale domains, where much of the domain

D is unreachable from where the vehicle is because of the restriction onu to be in

the control setU .

2. Although in this dissertation it is assumed that the vehicle has full knowledge of the

domainD and the search uncertainty functionHs(PHs, c̃, t) for all c̃ ∈ D, D may

not be known in real time. In this case, all the information the vehicle could obtain

is within its limited sensory domainW. •

Remark. 2.4.3. HavingU arbitrary (i.e., such thatQD(t) may not be equal toD), our

algorithm may get stuck in regions whereHs < Hu
s and no control can take outside this

region and no overall coverage can be guaranteed. This is a shortcoming of the current

proposed control strategy but as long as there is no global centralized computer that sees

the entireD, there is very little any control policy will ever be able to do. •

2.4.5 Extension to MAVs with Intermittent Information Shar ing

In this section, the Bayesian-based domain search strategies are extended to distributed

MAVs with intermittent information sharing. Multi-sensorfusion based on observations

from neighboring vehicles is implemented via binary Bayes filter. It will be proved that,

under appropriate sensor models, the belief of whether objects exist or not will converge

to the true state. Different motion control schemes are numerically tested to illustrate the

effectiveness of the proposed strategy.
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In order to reduce the uncertainty due to sensor errors, or equivalently, to maximize

the probability of finding an object of interest, all the available observations a vehicle has

access to (i.e., taken by the vehicle itself and its neighboring vehicles) should be fused

together and utilized as a combined observation sequence. It will be proved that given

sensors with a detection probability greater than 0.5, the search uncertainty will converge

to a small neighborhood of zero, i.e., all unknown objects ofinterest are found with100%

confidence level. This is a nontrivial problem given limitedtheoretical results existing in

the literature and its significance for effective sensor management, especially when the

sensing and communication resources are limited.

2.4.5.1 Bayes Updates for MAVs with Intermittent Communications

Let the detection probability of each vehicle sensorVi be denoted asβi. Clearly,βi ∈

[0, 1]. In this section, the binary Bayes filter is employed to update the probability of

object presence at̃c of vehicleVi based on all the observations available at the current

time step and the prior probability. DefinēY i
t (c̃) = {Vj ∈ Gi(t) : Yj,t(c̃)} as the

observation sequence taken by all the vehicles in vehicleVi’s neighborhoodGi(t) at time

t. GivenȲ i
t (c̃), Bayes’ rule gives, for each vehicleVi,

Pi(X(c̃) = 1|Ȳ i
t (c̃); t+ 1) = ηiPi(Ȳ

i
t (c̃)|X(c̃) = 1)Pi(X(c̃) = 1; t),

wherePi(X(c̃) = 1|Ȳ i
t (c̃); t + 1) is the posterior probability of object presence at cell

c̃ updated by vehicleVi after the observation sequence has been taken at time stept.

The quantityPi(Ȳ
i
t (c̃)|X(c̃) = 1) is the probability of the particular observation se-

quenceȲ i
t being taken given that the actual state at cellc̃ is object present. Because

the observations taken by different vehicles are i.i.d., itfollows thatPi(Ȳ
i
t (c̃)|X(c̃) =

1) = Πj∈Gi(t)Prob(Yj,t(c̃)|X(c̃) = 1), where Prob(Yj,t(c̃)|X(c̃) = 1) is given by the
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conditional probability matrix (2.31) and the Bernoulli observation distribution (2.30).

The quantityPi(X(c̃) = 1; t) is the prior probability of object presence at timet, andηi

serves as a normalizing function which ensures that the posterior probabilitiesPi(X(c̃) =

j|Ȳ i
t (c̃); t+ 1), j = 0, 1 sum to one.

According to the law of total probability, the posterior probability of object presence

at c̃ updated according to all the observations available to vehicle Vi is given by the

following equation, whereyj,t(c̃) is the dummy variable for the random variableYj,t(c̃).

Pi(X(c̃) = 1|Ȳ i
t (c̃); t+ 1)

=
Pi(X(c̃) = 1; t)

Pi(X(c̃) = 1; t) + Πj∈Gi(t)

(
( 1
βj

− 1)2yj,t(c̃)−1
)
(1− Pi(X(c̃) = 1; t))

. (2.38)

Note that the probability of object absence is given by

Pi(X(c̃) = 0|Ȳ i
t (c̃); t+ 1) = 1− Pi(X(c̃) = 1|Ȳ i

t (c̃); t+ 1).

2.4.5.2 Convergence Analysis

In this section, the conditions for convergence of the sequence{Pi(X(c̃) = 1|Ȳ i
t (c̃); t +

1)} is discussed whenβi, i = 1, 2, · · · , N is a deterministic parameter within[0, 1].

For the sake of simplicity, denotePi(X(c̃) = 1|Ȳ i
t (c̃); t + 1) asPt+1, Pi(X(c̃) =

1; t) asPt, andΠj∈Gi(t)

(
( 1
βj

− 1)2yj,t(c̃)−1
)

asSt, Equation (2.38) then simplifies to the

following non-autonomous nonlinear discrete-time system

Pt+1 =
Pt

Pt + St(1− Pt)
. (2.39)

Note thatSt is a random variable dependent on the observation sequenceȲ i
t (c̃). Let

|Gi(t)| be the cardinality of the setGi(t), i.e., the number of neighboring vehicles of ve-
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hicleVi and itself, then the binary observation sequenceȲ i
t (c̃) has2|Gi(t)| possible com-

binations at each time stept for cell c̃. Let s1t , s
2
t , · · · , s2

|Gi(t)|

t be the realizations ofSt

corresponding to each of the2|Gi(t)| different observation sequences. The probability of

having each particular observation sequenceȲ i
t (c̃) = {Yj,t(c̃) = yj,t(c̃), Vj ∈ Gi(t)}

given object present is:Πj∈Gi(t)(β
j)yj,t(c̃)(1− βj)(1−yj,t(c̃)).

Consider the following conditional expectation

E[1− Pt+1|Pt] = E[
St(1− Pt)

Pt + St(1− Pt)
|Pt = pt]

= E[
St(1− pt)

pt + St(1− pt)
|Pt = pt]

=

2|Gi(t)|∑

m=1

smt (1− pt)

pt + smt (1− pt)
Prob(St = smt |Pt = pt), (2.40)

wherept is the dummy variable forPt. The substitution law and the law of total proba-

bility are used in the above derivation. Because the observation sequence taken at each

time step is a property of the sensors, and is not affected by the probability of object pres-

ence at the previous time step,St is independent ofPt. Therefore, Equation (2.40) can be

reduced to

E[1− Pt+1|Pt] =

2|Gi(t)|∑

m=1

smt (1− pt)

pt + smt (1− pt)
Prob(St = smt ). (2.41)

Investigate the value ofsmt and the corresponding Prob(St = smt ) fromm = 1 to 2|Gi(t)|.

• m = 1 corresponds to the observation sequence{1, 1, · · · , 1}, it follows thats1t =

Πj∈Gi(t)(
1
βj

− 1) and Prob(St = s1t ) = Πj∈Gi(t)β
j

• m = k + 1, k = 1, · · · , |Gi(t)| correspond to the observation sequence where

only thekth vehicle in vehicleVi’s neighborhood observes a0. DefineCn
k as the

binomial coefficients, i.e., the number of combinations that one can choosek ob-
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jects from a set of sizen. Because there areC |Gi(t)|
1 such observation sequences

with different orders out of the totally2|Gi(t)| combinations, the value ofk is in the

set [1, |Gi(t)|]. Hence, it follows thatsk+1
t =

(
Πj∈Gi(t), j 6=k(

1
βj

− 1)
)(

βk

1−βk

)
and

Prob(St = sk+1
t ) =

(
Πj∈Gi(t), j 6=kβ

j
)
(1− βk)

• m = k+1+|Gi(t)|, k = 1, · · · , C |Gi(t)|
2 correspond to the the observation sequences

where two of the vehicles, e.g., theqth andrth vehicle, observe a0. Because there are

C
|Gi(t)|
2 such observation sequences in this case,k is within [1, C

|Gi(t)|
2 ]. Therefore,

it follows that

s
k+1+|Gi(t)|
t =

(
Πj∈Gi(t), j 6=q,r(

1

βj
− 1)

)( βq

1− βq

)( βr

1− βr

)

and

Prob(St = s
k+1+|Gi(t)|
t ) =

(
Πj∈Gi(t), j 6=q,rβ

j
)
(1− βq)(1− βr)

• And so on for other values ofm

• m = 2|Gi(t)| correspond to the observation sequence{0, 0, · · · , 0}, it follows that

smt = Πj∈Gi(t)

(
βj

1−βj

)
and Prob(St = smt ) = Πj∈Gi(t)(1− βj)

Supposept = 1 − ε, whereε ∈ [0, 1
2
) is some constant, Equation (2.41) can be

rewritten as the follows if not all sensing parametersβj = 1, andE[1 − Pt+1|Pt] = 0

when allβj = 1, j ∈ Gi(t).

E[1− Pt+1|Pt] =



 Πj∈Gi(t)(1− βj)

1− ε+Πj∈Gi(t)(
1
βj − 1)ε

+

|Gi(t)|∑

k=1

Πj∈Gi(t)(1− βj)

( 1
βk − 1)(1− ε) + Πj∈Gi(t), j 6=k(

1
βj − 1)ε

+ . . .+

C
|Gi(t)|

2∑

k=1

Πj∈Gi(t)(1− βj)

( 1
βq − 1)( 1

βr − 1)(1− ε) + Πj∈Gi(t), j 6=q,r(
1
βj − 1)ε

+ . . .+
Πj∈Gi(t)(1− βj)

Πj∈Gi(t)(
1
βj − 1)(1− ε) + ε


 ε.(2.42)

Consider the following condition:

Sensing Condition 1:βi ∈ (1
2
, 1], i = 1, 2, · · · , N .
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This condition requires that all vehicle sensors are more likely to take correct mea-

surements.

Under Sensing Condition 1, it follows thatΠj∈Gi(t)(
1
βj

−1) ∈ [0, 1). Now assume that

ε is a small number in the neighborhood of zero, givenΠj∈Gi(t)(
1
βj

− 1)ε is also a small

number close to zero, hence, the conditional expectation given by Equation (2.42) can be

approximated as

E[1− Pt+1|Pt] ≈
(
Πj∈Gi(t)(1− βj) +

|Gi(t)|∑

k=1

Πj∈Gi(t), 6=k(1− βj)βk

+ . . .+

C
|Gi(t)|
2∑

k=1

Πj∈Gi(t), 6=q,r(1− βj)βqβr + . . .+Πj∈Gi(t)β
j

)
ε. (2.43)

Observe the expression within the bracket in Equation (2.43), it gives the total prob-

ability of all possible observation sequences taken by the vehicles in setGi(t) given that

there is an object withiñc, and is therefore equal to1. If βj = β, ∀Vj ∈ Gi(t), the expres-

sion gives the total probability of a binomial distributionwith parameterβ and|Gi(t)|.

Hence, the conditional probabilityE[1 − Pt+1|Pt = 1 − ε] ≈ ε and the following

lemma holds.

Lemma 2.4.1. Under Sensing Condition 1, if an object is present, given that the prior

probability of object presencePi(X(c̃) = 1; t) of vehicleVi is within a small neigh-

borhood of radiusε from 1 at time stept, then the conditional expectation of the poste-

rior probability Pi(X(c̃) = 1|Ȳ i
t (c̃); t + 1) will remain in this neighborhood at the next

time step. If all the sensors are “perfect” with zero observation error probability, i.e.,

βj = β = 1, then the conditional expectation ofPi(X(c̃) = 1|Ȳ i
t (c̃); t+ 1) is 1.

Following a similar derivation as above, a lemma holds for the posterior probabil-

ity of object absencePi(X(c̃) = 0|Ȳ i
t (c̃); t + 1) given there is no object at cell̃c.

Note that in this case, if abusing notation and still denoting Pi(X(c̃) = 0|Ȳ i
t (c̃); t + 1)

78



asPt+1 andPi(X(c̃) = 0; t) asPt, it follows that St = Πj∈Gi(t)

(
βj

1−βj

)2yj,t(c̃)−1

and

the probability of having each particular observation sequence given object absent is

Πj∈Gi(t)(1− βj)yj,t(c̃)(βj)(1−yj,t(c̃)).

To summarize the above results, the following theorem holds.

Theorem 2.4.1.For βi ∈ (1
2
, 1], i = 1, 2, · · · , N , if there is an object absent (respec-

tively, present), given thatPi(X(c̃) = 0; t) (respectively,Pi(X(c̃) = 1; t)) is within

a small neighborhood of1 at time stept, the conditional expectation ofPi(X(c̃) =

0|Ȳ i
t (c̃); t+1) (respectively,Pi(X(c̃) = 1|Ȳ i

t (c̃); t+1)) will remain in this neighborhood

at the next time step. Ifβi = β = 1, then the conditional expectation is1.

This theorem gives a weak result because it implies that onlyif the initial prior prob-

ability is close to the true state, given “good” sensors withdetection probabilities greater

than0.5, the belief of whether objects exist or not will remain near the true state. Next,

a stronger result is derived for the case of homogeneous sensor properties across the net-

work.

Next, consider the following condition.

Sensing Condition 2:βi = β ∈ (1
2
, 1], i = 1, 2, · · · , N .

This condition implies that all the vehicles have identicalsensors with the same de-

tection probabilityβ ∈ (1
2
, 1].

Under Sensing Condition 2, the term within the bracket in Equation (2.42) is equiva-

lent to the following expression:

g(β, ε, |Gi(t)|) =
|Gi(t)|∑

k=0

C
|Gi(t)|
k (1− β)|Gi(t)|

( 1
β
− 1)k(1− ε) + ( 1

β
− 1)|Gi(t)|−kε

, β 6= 1. (2.44)

Lemma 2.4.2.The functiong(β, ε, |Gi(t)|) is less than1 for β ∈ (1
2
, 1), ε ∈ (0, 1

2
), and

|Gi(t)| ≥ 1. Moreover,g(β, ε, |Gi(t)|) = 1 for ε = 0, β ∈ (1
2
, 1), and|Gi(t)| ≥ 1.
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Before providing a rigorous proof, the results shown in Figure2.20confirm the above

lemma. Figure2.20showsg(β, ε, |Gi(t)|) as a function ofε ∈ [0, 1
2
) andβ ∈ (1

2
, 1) for (a)

|Gi(t)| = 1, (b) |Gi(t)| = 20, (c) |Gi(t)| = 50, and (d)|Gi(t)| = 100. It can be seen thatg

is less than or equal to1 for ε ∈ [0, 1
2
) andβ ∈ (1

2
, 1).
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Figure 2.20:g(β, ε, |Gi(t)|) as a function ofε andβ.

The following gives the proof for Lemma2.4.2.

Proof. For brevity, letn = |Gi(t)|. Proving thatg(β, ε, |Gi(t)|) is less than 1 is equivalent

to prove that

n∑

k=0

Cn
k (1− β)n

( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

<
n∑

k=0

1

n+ 1
, or,
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n∑

k=0

(n+ 1)Cn
k (1− β)n −

[
( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

]

[
( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

]
(n + 1)

< 0.

Becauseβ ∈ (1
2
, 1), or ( 1

β
− 1) ∈ (0, 1), it follows that

n∑

k=0

(n+ 1)Cn
k (1− β)n −

[
( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

]

[
( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

]
(n + 1)

<

n∑

k=0

(n+ 1)Cn
k (1− β)n −

[
( 1
β
− 1)k(1− ε) + ( 1

β
− 1)n−kε

]

[
( 1
β
− 1)n(1− ε) + ( 1

β
− 1)nε

]
(n + 1)

.

Since
[
( 1
β
− 1)n(1− ε) + ( 1

β
− 1)nε

]
(n+ 1) > 0 for all k = 0, · · · , n, if

n∑

k=0

(n+ 1)Cn
k (1− β)n −

[
(
1

β
− 1)k(1− ε) + (

1

β
− 1)n−kε

]
< 0,

theng(β, ε, n) is less than 1. Note that

n∑

k=0

(n+ 1)Cn
k (1− β)n = (n+ 1)(2− 2β)n,

and

n∑

k=0

(
1

β
− 1)k =

n∑

k=0

(
1

β
− 1)n−k =

1− ( 1
β
− 1)n+1

2− 1
β

,

Therefore, to prove the lemma, it only needs to prove that

(n+ 1)(2− 2β)n −
1− ( 1

β
− 1)n+1

2− 1
β

< 0. (2.45)

Next, the principle of mathematical induction is used to prove the inequality in Equation

(2.45).
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Whenn = 1, the left hand side of Equation (2.45) is given by−(2β−1)2

β
and is hence

less than0.

Assume that forn = m,

(m+ 1)(2− 2β)m −
1− ( 1

β
− 1)m+1

2− 1
β

< 0,

therefore, whenn = m+ 1, the left hand side of Equation (2.45) is given by

(m+ 2)(2− 2β)m+1 −
1− ( 1

β
− 1)m+2

2− 1
β

< (m+ 2)(2 − 2β)
1− ( 1

β
− 1)m+1

(m+ 1)(2− 1
β
)
−

1− ( 1
β
− 1)m+2

2− 1
β

(2.46)

Skipping all the detailed derivations, it follows that the right hand side of Equation (2.46)

is equal to the following expression,

(1− 2β)m+ (3− 4β) + ( 1
β
− 1)m+2 [(1− 2β)m+ (1− 4β)]

(m+ 1)(2− 1
β
)

,

and it can be shown that the numerator is always less than0 and the denominator is always

larger than0 for β ∈ (1
2
, 1) andm ≥ 1.

To see why this is true, first whenm = 1 andβ ∈ (1
2
, 1), the numerator equals to the

following expression

(4− 6β) +

(
1

β
− 1

)3

(2− 6β) < 0.

Next, take derivative of the numerator with respect tom, which gives

(1− 2β) + (m+ 2)

(
1

β
− 1

)m+1

[(1− 2β)m+ (1− 4β)] +

(
1

β
− 1

)m+2

(1− 2β) < 0.

Therefore, the numerator is a monotonically decreasing function form ≥ 1 with a nega-

tive value atm = 1.
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Whenε = 0, g(β, ε, n) reduces to

n∑

k=0

Cn
k (1− β)n

( 1
β
− 1)k

=
n∑

k=0

Cn
k β

k(1− β)n−k = 1.

This completes the proof. �

Therefore, from Lemma2.4.2, the expectationE[1 − Pt+1|Pt = 1 − ε] is always less

thanε. Hence, the following lemma holds.

Lemma 2.4.3. Under Sensing Condition 2, if there is an object present, given that the

prior probability of object presencePi(X(c̃) = 1; t) is within a neighborhood of one with

radiusε ∈ [0, 1
2
), then the conditional expectation of the posterior probability Pi(X(c̃) =

1|Ȳ i
t (c̃); t+ 1) converges to1.

Same lemma follows for the update sequenceE[Pi(X(c̃) = 0|Ȳ i
t (c̃); t + 1)]. There-

fore, the following theorem holds.

Theorem 2.4.2.For βi = β ∈ (1
2
, 1], i = 1, 2, · · · , N , if an object is present (respec-

tively, absent), thenE[Pi(X(c̃) = 1|Ȳ i
t (c̃); t+ 1)] converges to 1 (respectively, 0).

2.4.5.3 Uncertainty and Coverage Metric

From Theorem2.4.1, it is known that given the true state, the expected posterior proba-

bility of object presence/absence∀c̃ ∈ D will be bounded within a small neighborhood

of 1 with radiusε if the priors are given by1 − ε. This corresponds to an upper bound

on the search uncertainty levelHu
i,s = −ε ln ε − (1 − ε) ln(1 − ε). Here, the information

entropy functionHi,s follows the same form as Equation (2.35) and the subscripti is used

to indicate that this is the uncertainty level attained by vehicleVi. Moreover, from Theo-

rem2.4.2, it is guaranteed that the expected posterior probability converges to1, which is

equivalent toHi,s → 0, ∀c̃ ∈ D.
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Now, define the coverage metric to evaluate the progress of the search task. Associate

each vehicleVi with the following search cost function:

Ji(t) =

∑
c̃∈DHi,s(Pi,Hs, c̃, t)

Hs,maxAD
. (2.47)

The costJi(t) is proportional to the sum of search uncertainty overD. Ji(t) is normalized

by dividing the sum over all cells by the area of the domainAD multiplied byHs,max.

According to this definition, it follows that0 ≤ Ji(t) ≤ 1. Initially, Ji(t = 0) =

Hi,s(Pi,Hs ,c̃,t)

Hs,max
≤ 1. If Hi,s(Pi,Hs, c̃, ts) = 0 at somet = ts for all c̃ ∈ D, thenJi(ts) = 0

and the entire domain has been satisfactorily covered and itis 100% certainty that there

are no more objects yet to be found.

2.4.5.4 Vehicle Motion Control Scheme

General Motion Control Scheme. According to the search metric (2.47), the upper

bound on the uncertainty levelHu
i,s results inJ u

i (tf ) =
Hu
i,s

Hs,max
= δ ≥ 0 at some time

tf > 0. This is equivalent to say that the attained accuracy of the domain search task is

1 − δ. Furthermore,100% certainty can be obtained if Sensing Condition 2 is satisfied

according to Theorem2.4.2. Therefore, under any vehicle motion control scheme that

covers all the cells within the entire mission domainD, the cost functionJi → δ, i.e.,

all the objects of interest will be guaranteed to be found with desired uncertainty. This

section seeks vehicle motion control strategies that take advantage of the uncertainty map

and perform the search mission efficiently. Two different vehicle motion control schemes

that utilize the uncertainty map will be presented, and their performance is compared in

simulations. The limited-range circular sensor model is used to modelβi in these control

schemes. This sensor model guarantees the realization of Sensing Condition 1. To satisfy

Sensing Condition 2, one may assume an identical valueβ > 0.5 within Wi and0.5
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outside of it for all the vehicles.

Memoryless Motion Control Scheme. In this section, first consider a motion control

scheme that guides the vehicles based on only the uncertainty map at current time step,

that is, the control scheme is memoryless. For the sake of simplicity, assume that there is

no speed limit on the vehicles, i.e., a vehicle is able to moveto any cell withinD from its

current location.

Consider the set

Qi
H(t) = {c̃ ∈ D : argmax̃

c
Hi,s(Pi,Hs, c̃, ts)}, (2.48)

which is the set of cells with highest search uncertainty levelHi,s of vehicleVi within D

at timet. Next, letq̃i
c(t) be the centroid of the cell that vehicleVi is currently located at

and define the subsetQi
d(t) ⊆ Qi

H(t) as

Qi
d(t) = {c̃ ∈ Qi

H(t) : argmiñ
c
‖q̃i

c(t)− q̃‖}, (2.49)

whereq̃ is the centroid of̃c. The setQi
d(t) contains the cells which have both the shortest

distance from the current cell and the highest uncertainty.

At every time step, a vehicleVi takes observations at all the cells within its sensory

range. In general,βi 6= βj, j ∈ Gi(t), if Vi and its neighborVj have same distance to the

centroid of a certain cell̃c, it follows thatβi = βj, i 6= j. The posterior probabilities at

these cells are updated according to Equation (2.38) based on all the fused observations.

The uncertainty map is then updated. At the next time step, the vehicle will choose the

next cell to go to fromQd(t) based on the updated uncertainty map. Note thatQd(t)

may have more than one cell. LetNHd be the number of cells inQd(t), the sensor will

randomly pick a cell fromQd(t) with probability 1
NHd

. This process is repeated until
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Hi is within a small neighborhood of zero with radiusε for every cellc̃ ∈ D, which is

equivalent to finding all the unknown objects with a desired certainty level.

Motion Control Scheme with Memory. This section develops a motion control scheme

that takes into account both the current probability information, uncertainty map and the

sensing history. First consider the following condition:

Condition C6: Hi,s(Pi,Hs, c̃, ts) ≤ Hu
i,s, ∀c̃ ∈ Wi(t), whereHu

i,s = −ε ln ε − (1 −

ε) ln(1− ε) > 0 is a preset threshold of some small value.

For every vehicleVi, the motion control scheme with memory is given as follows:

u∗
i (t) =





ūi(t) if Condition C6 does not hold

¯̄ui(t) if Condition C6 holds
(2.50)

where

ūi(t) = k̄i
∑

c̃∈Wi(t)

([
(2Pi(X(c̃) = 1; t)− 1)2 − 1

]2
·

t∑

τ=0

(
βi(τ + 1)− βi(τ)

)

︸ ︷︷ ︸
Memory Term

)
,

is the nominal control law, where both the current probability of object presencePi(X(c̃) =

1; t) and the sensing capabilityβi up to the current time step are used, and the perturba-

tion control law chooses the centroid̃q∗
i of cell c̃∗i from the setQi(t) = {c̃ ∈ D :

Hi,s(Pi,Hs, c̃, ts) > Hu
i,s}, which is based on the uncertainty information at the current

time step and only available to vehicleVi itself.

Simulation-based Performance Comparison. Now a set of numerical simulations are

provided to illustrate and compare the performances of bothmotion control schemes.

Assume a square domainD with size50 × 50, and discretize it into2500 unit cells. The

parameterMi of the vehicle sensor is set as0.4, which gives the highest value forβi as
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Figure 2.21: Deployment of objects and vehicles, and probability of object presence.

0.9, i.e., there is90% chance that the sensor is sensing correctly at the location of the

vehicle. The sensing capability gradually decreases tobn = 0.5. The desired uncertainty

level isHu
i,s = 0.02, corresponding toε = 0.0002. There are10 objects with a randomly

selected deployment as indicated by the magenta dots in Figure2.21(a). The position and

radius for each of the6 vehicle sensors is shown by the black dot and circle.

Figure 2.21(b)shows the probability of object presence according to vehicle V1 at

time stept = 1200 under both control schemes. All the peaks represent the position of

the objects detected with probability1. The probability of object presence as estimated

by other vehicles is similar to that shown in Figure2.21(b). This indicates that all the

unknown objects of interest have been found.

Figure2.22(a)shows the trajectories of all the vehicles during the entiremission under

the motion control scheme without memory. The green dots represent for vehicles’ initial

positions and red dots for final positions. Figure2.22(b)shows the trajectories of all the

vehicles under the motion control scheme with memory.

Figure2.23(a)shows the the cost functionJi(t) for vehiclesV1 to V6, respectively

under the motion control scheme without memory. Figure2.23(b)shows the the cost

functionJi(t) under the motion control scheme with memory. Here the control law in

Equation (2.50) is used with control gain̄ki = 1, ¯̄ki = 0.025. In both cases, all the cost
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Figure 2.22: Fleet motion under search control scheme without and with memory.

functions converge to zero at time stept = 1200, which is consistent with the result shown

in Figure2.21(b)and equivalent to the detection of all the 10 unknown objectsof interest.

Comparing the simulation results, there is more redundancyin vehicle trajectories

under the memoryless motion control scheme. This is becausethe controller is only

dependent on the current uncertainty map and does not take into account the history of

the paths that the vehicles traveled before. However, the reduction of uncertainty is faster

under the memoryless control scheme because it is a global controller that always seeks

the cell with highest uncertainty within the entire search domain. On the other hand, under

the motion control scheme with memory, the nominal controller is a local controller which

drives the vehicle towards the cell with higher uncertaintywithin the sensory domain, and

a perturbation controller is used whenever the vehicle is trapped in a local minimum.

Under both motion control schemes, all the unknown objects of interest are found with

desired uncertainty level. If fuel efficiency is a priority,one may want to avoid using a

memoryless motion controller that spreads all over the domain. On the contrary, if time

is a limited resource, one may prefer a memoryless motion controller in order to achieve

the desired detection certainty quicker.
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Figure 2.23: Cost function under motion control scheme without and with memory.
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Chapter 3

Awareness-Based Decision-Making

Strategy

In the previous chapter, both deterministic and probabilistic coverage control schemes

were developed for domain search problems, which serve as the foundation for the decision-

making strategies developed in the subsequent chapters. This chapter presents determin-

istic awareness-based decision-making strategies for thesearch and classification of mul-

tiple unknown objects of interest using MAVs. This is based on the awareness model

developed in Section2.3.

The chapter is organized as follows. Section3.1 introduces the problem setup. In

Section3.2, both search and classification metrics are introduced and justified. Both

centralized and decentralized decision-making strategies are developed in Section3.3.

The decision-making strategies guarantee: (1) the full coverage of a domain of interest,

and, equivalently, the detection of all objects of interestin the domain with probability

one, and (2) the classification of each object’s “state” for aminimum guaranteed amount

of timeτc.
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3.1 Problem Setup

In the search task, all objects of interest in a search domainare required to be found. In

the classification task, each found object has to be classified for at least an amount of time

equal toτc, which is the critical minimum information collection timethat is needed to

characterize the state of an object. Here the objects are assumed to be static.

Let No ≥ 0 be the number of objects to be found and classified. BothNo and the

locations of the objects inD are unknown beforehand. At timet, let the setA = S(t) ∪

T (t) = {1, . . . , Na}, which is the set of indices of all the vehicles in the sensor fleet, and

where the setS(t) contains indices of vehicles carrying out the search mission, and where

the setT (t) contains indices of vehicles carrying out an object classification mission.

Here assume that vehicles can either be searching or classifying at any instant timet,

but not both simultaneously, and therefore the setsS(t) andT (t) are disjoint for allt.

Initially, assume that all vehicles are inS(t). When a search vehicle detects an object and

decides to classify its property, this search vehicle turnsinto a classification vehicle and,

hence, there is one fewer vehicle in the setS(t) and one more vehicle in the setT (t).

Assuming some search versus classification decision-making strategy that guarantees

coverage of the entire domain and that avoids the assignmentof multiple vehicles to the

classification of a single object, for the case whenNo ≤ Na, after a certain amount of

time, each object will be guaranteed to be detected and its property satisfactorily classi-

fied by some vehicle. However, for the worst case scenario whereNo > Na in a large-

scale domain and with a poor choice of decision-making strategy, one may end up with

S(t) = ∅ while there may still exist unfound objects. For example, a strategy where once

an object is found it is classified for all time from that pointforward would likely lead

to some objects never being detected when there are more objects than vehicles. This

section investigates strategies that guarantee that each object will be found and classified,
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especially under the worst case scenario, while simultaneously providing a lower bound

for the amount of classification time.

It is assumed that each vehicleVi ∈ A satisfies the awareness dynamics (2.17). The

state of awareness of the set of search agentsS(t) in surveyingq̃ then satisfies the differ-

ential equation (2.18).

3.2 Search and Classification Metrics

Similar to the probabilistic counterpart (2.47) proposed for MAV search mission in Sec-

tion 2.4.5.3, here, the cost associated with a decision not to carry out further searching,

J1(t), is chosen to be proportional to the size of the un-searched domain. A uniform

probability distribution is assumed for the locations of objects inD, hence,J1(t) is pro-

portional to the probability of finding another object beyond time t. The cost associated

with a decision not to classify found objects,J2(t), is chosen to be proportional to the

time spent not classifying a found object.

Define the search cost function to be

J1(t) =
eg(t)

eg,max
, (3.1)

whereeg(t) is given by Equation (2.21). Under Assumption2.3.1 and considering a

uniform probability distribution for the locations of the objects inD, the maximum value

of eg(t) is given by

eg,max = eg(0) =
AD

2

becausexi0 = −1. According to this definition, it follows that0 ≤ J1(t) ≤ 1. Initially,

J1(0) = 1 describes the fact that it is known with probability1 that there exists at least
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one object which has not been detected. This comes from the assumption thatNo > 0.

If No happens to be zero, assuming that there exists at least one object of interest over

the domain will guarantee verifying that there is none. Under Assumption2.3.1, when

J1(ts) = 0 for some timets > 0, the entire domain has been satisfactorily covered and it

is sure that there are no objects yet to be found. At this point, the search process is said

to be completed.

For the classification metricJ2(t), let N̄o(t) ≤ No be the number of objects found by

the sensor fleet up to timet. Define the classification cost functionJ2(t) to be

J2(t) =

∫ t

0

N̄o(τ)∑

j=1

gj(τ)dτ, (3.2)

where

gj(t) =





1 if pj(t) /∈ Wi(t) for all i ∈ A

0 if pj(t) ∈ Wi(t) for some i ∈ A.

If a search vehicle detects an objectOj a functiongj(t) is assigned to the object (unless

it has already been assigned one if detected in the past). A value of 0 is assigned togj as

long as some agent classifiesOj , and the classification cost associated withOj is zero. In

this case,Oj will be labeled as “assigned”. Once the search vehicle decides not to classify

Oj ,Oj is now labeled “unassigned”, andgj(t) switches its value to1, implying that a cost

is now associated with not classifying the found objectOj . According to Equation (3.2),

this cost is equal to the amount of time during which a found object is not classified.

Remark. 3.2.1.A remark on the case with some information loss. If relaxing Assumption

2.3.1, the parameterζ in the awareness model reflects loss of spatial information over

time. It essentially sets a periodicity to how often the entire area must be re-surveyed. On

the other hand,gj reflects loss of information associated with a specific object over time.
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It is important to realize this distinction between the domain-awareness loss nature ofζ

(and, hence,J1) and the specific-object awareness loss nature ofgj (and, hence,J2). •

3.3 Search versus Classification Decision-Making

Under Assumption2.3.1, a search and classification decision-making strategy willbe

developed to guarantee, in both its centralized and decentralized implementations, finding

all objects inD and classifying each object for some time with a lower bound on the

classification time.

3.3.1 Centralized Strategy

Since it is assumed thatNo > Na, whenever a vehicle detects an object, it has to decide

whether to classify it or to continue searching. If it does decide to classify, it has to decide

on how much time it can afford to classify before it continuesthe search process.

Before deriving one possible way to determine the amount of classification time, first

consider a search strategy. The goal in the search strategy is to attain an awareness level

of ‖x(q̃, t)‖ ≤ ξ for all q̃ ∈ D and allt ≥ ts for somets > 0. For the search process,

the control law (2.27) is used to drive the state of lack of awareness to a neighborhood

of zero. It guarantees coverage of the entire domainD with J1(t) converging to a small

neighborhood of zero, which implies that all objects have been found and the search

process is complete. The classification strategy discussedbelow will guarantee that all

objects will be classified for a minimum ofτc amount of time. The search control law

(2.27) and the tracking strategy, together, will guarantee the detection of all objects of

interest and their classification for at leastτc amount of time.

If a search vehicle finds object(s) within its sensory range,then it will classify the
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object(s) for aT time period from the time of detection, where

T =
τc

J1(td)
, (3.3)

td being the time of object detection, and whereτc > 0 is the desired critical minimum

amount of classification time. This is the amount of time thatis needed to characterize the

property of an object. The larger the value ofJ1(td) is (i.e., the less aware the vehicle is

of the domain), the less time the vehicle will spend classifying the object. As the degree

of awareness increases at detection time, the more time the vehicle spends classifying the

object. Note thatJ1(td) can not be zero unless the mission is completed, at which point

there is no need to computeT .

Hence, once a vehicle detects an object and decides to classify this particular object,

it becomes a classification vehicle and will not carry out anysearching for a period of

T seconds. Note that while the vehicle is classifying, other vehicles may be searching.

In the centralized implementation, the amount of centralized system awarenessx(q̃, t) is

available to all vehicles. So is the value ofJ1(td). It is assumed that each object will

only be classified once by only one vehicle during the mission. After a time period of

T , the classification vehicle will switch back to become a search vehicle and leave its

classification position to find new objects. At this point in time, the object will be labeled

“assigned” and will not be classified by any other vehicle if found.

Theorem 3.3.1.Under Assumption2.3.1, the centralized search and classification decision-

making strategy given by Equations (2.27) and (3.3) will guarantee thatJ1 converges

asymptotically to zero, which is equivalent to guaranteeing that all objects be found. The

minimum amount of time spent classifying any object is givenby τc.

Proof. The proof for guaranteed detection of all object follows directly from Theorem

2.3.4.
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The minimum classification time comes from the fact that oncean object is found, it

will be classified for at leastτc/J1(td). J1(td) assumes a maximum value of 1 iftd = 0.

In the extreme scenario where an object is found att = 0, the value ofT is exactlyτc. If

an object is found at a time other thant = 0, J1(td) has to be less than 1 and, hence,T is

greater thanτc. �

Remark. 3.3.1. For the case whenNo is known beforehand andNo ≤ Na, under the

centralized search, and assuming that if some vehicle finds an object it will classify this

object for all future time, each object will be guaranteed tobe detected and its property

permanently classified by some vehicle. Proof of complete coverage of the domain, and,

hence, detection of each object, follows directly from the proof of Theorem3.3.1. Since

No ≤ Na and each object can only be classified by one vehicle, assigning a unique

vehicle to a single object whenever an object is detected is feasible (i.e., there are enough

resources to do so) and every object will be satisfactorily classified.

A simulation result is provided in Figures3.1and3.2, whereNo = 6 andNa = 4 for

some choice of controller gains and coverage sensor parameters. The domainD is square

in shape and discretized intoNtot = n × n = 32 × 32 cells, wherẽq ∈ R
2 represents

the centroid of each cell. Hence,x(q̃, t) can be written as a vector of dimension2n.

Figures3.4(a)and3.4(b) show the evolution ofJ1(t) andJ2(t) under this centralized

control strategy. Figures3.1(c)and3.1(d)show the control force and fleet motion under

the centralized implementation. Figure3.2 shows the state of awareness distribution at

three different time instances. The circular dots indicatethe positions of the vehicles, and

the square dots indicate the objects. The magenta circles are the vehicles’ sensor ranges.

Table3.1 shows the classification time of each object, which is guaranteed to be at least

τc = 5 seconds.
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Figure 3.1: Centralized implementation (awareness-baseddecision-making).

Object1 Object2 Object3 Object4 Object5 Object6
T, (s) 8.0583 50.2437 7.5215 5.2552 10.3786 6.6144

Table 3.1: Classification timeT for each object.
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Figure 3.2: State of awareness at different time instances (Centralized).
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3.3.2 Decentralized Strategy

Now assume that the sensor fleet is completely decentralized. That is, each vehicle is

aware of coverage achieved by itself alone. Each object it finds will be assumed to be

found for the first time. This represents a scenario where communications between ve-

hicles is not possible (for example, due to security reasons, the sensor vehicles have to

remain “silent” otherwise they themselves may be detected by adversary vehicles).

In the decentralized formulation, the search control strategy (2.26) is employed. For

the classification strategy, when a search vehicleVi finds object(s) within its sensory

range, it classifies the objects for a time period ofT , defined by

T =
τc

J1i(td)
(3.4)

where

J1i(t) =
egi(t)

egi,max
, (3.5)

and whereegi(t) (Equation (2.20)) is the global error over the entire mission domain

achieved by the vehicleVi only, with egi,max = egi(0) being half of the area ofD if the

initial statexi(q̃, t = 0) = −1 is as assumed from the outset. Moreover, define the cost

of not classifying an object found by vehicleVi by

J2i(t) =

∫ t

0

N̄ i
o(τ)∑

j=1

gj(pj(τ))dτ, (3.6)

whereN̄ i
o(t) is the number of objects found by vehicleVi up to timet. Assume that each

object will only be classified once by each vehicle during themission.

Similar to Theorem3.3.1, the following results hold:
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T, (s) Object1 Object2 Object3 Object4 Object5 Object6
Agent1 7.0090 5.8723 5.1221 5.3971 6.1709 5.6022
Agent2 5.5974 7.0428 5.1835 5.0000 5.6022 6.1474
Agent3 8.7574 7.9469 5.1609 5.6027 5.3634 5.1281
Agent4 5.7563 5.1835 7.0981 6.3030 5.9109 6.5911

Table 3.2: Classification time of each object by each vehicle.

Theorem 3.3.2.Under Assumption2.3.1, the decentralized search and tracking strategy

given by Equations (2.26) and (3.4) will guarantee thatJ1 converges asymptotically to

zero, which is equivalent to guaranteeing that all objects has found. The minimum amount

of timeτc spent on classifying any object is also achieved by each vehicle.

The proof of this theorem is similar to the proof provided forthe centralized case.

The only important aspect of the proof that needs highlighting is that, along the same

lines as the proof for the centralized case,J1i is guaranteed to converge to zero for all

Vi ∈ A. It is not immediately clear that the global costJ1 will also converge to zero as

the Theorem3.3.2states. However, note thategi(t) ≥ eg(t) because the more vehicles

and sensors available to us, at least the same or higher overall global coverage is achieved

by the system. SinceJ1 andJ1i (for all Vi ∈ A) are both initialized to be 1, then

J1i(t) ≥ J1(t), for all time t, becauseegi(t) ≥ eg(t). If J1i(t) is guaranteed to converge

to zero under the control law (2.26), then so doesJ1(t).

A simulation result is provided in Figures3.3and3.4. Figures3.3(a)and3.3(b)show

the evolution of the individualJ1i(t) andJ2i(t), i = 1, 2, 3, 4 under the decentralized

control strategy. Figures3.3(c)and3.3(d)show the control force and fleet motion under

the decentralized implementation. Figure3.4shows the state of awareness distribution at

three different time instances. Table3.2 shows the classification time of each object by

each vehicle, which is guaranteed to be at leastτc = 5 seconds.
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Figure 3.3: Decentralized Implementation (awareness-based decision-making).
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Chapter 4

Bayesian-Based Decision-Making

Strategy

In the previous chapter, the deterministic awareness-based decision-making strategies for

search and classification are developed assuming perfect sensing under both centralized

and decentralized system architectures. This chapter focuses on the development of real-

time decision-making criteria given limited sensory resources under probabilistic frame-

works. The uncertainties in sensor perception is taken intoaccount during MAV decision-

making. Bayesian-based and information-theoretic searchversus classification decision-

making strategies are developed that result in guaranteed detection and classification of

all the unknown objects in the domain.

The basic problem setup is first introduced in Section4.1. In Section4.2, the proba-

bilistic counterparts of the task metrics are provided. Based on the problem formulation

and task metrics, a Bayesian-based decision-making strategy is developed in Section4.3.

Both a simulation example and Monte-Carlo simulation experiments are presented in Sec-

tion 4.4to study the performance of the proposed decision-making strategy.
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4.1 Problem Setup

To illustrate the ideas while avoiding additional computation complexities, in this and

the subsequent chapters, it is assumed that there is a singleautonomous vehicle perform-

ing the search and classification tasks under the probabilistic frameworks. This reflects

the case of extremely limited sensing resources, i.e., a single autonomous vehicle as op-

posed to cooperative MAVs. The extension to MAV decision-making can follow the

formulation presented in Section2.4.5via sensor fusion. Section5.4 in Chapter5 dis-

cusses the extended application of risk-based sequential decision-making to the Space

Situational Awareness (SSA) problem using a Space-Based Space Surveillance (SBSS)

system, which consists of both ground-based sensors and orbiting satellites.

For both the search and classification processes, the Bernoulli-type limited-range sen-

sor model (2.31,2.32) in Section2.4.1is used, however, with different observation con-

tents:X(c̃) = 0 for object “present” andX(c̃) = 1 for object “absent” in search, and

Xc(pk) = 0 for objectOk having property ‘F’ andXc(pk) = 1 for objectOk having

property ‘G’ in classification. Here, an object can be assigned as many property types as

needed, but without loss of generality, it is assumed that anobject can have one of two

properties, either Property ‘F’ or Property ‘G’. LetYc(pk) be the corresponding classifi-

cation observation random variable, whereY (pk) = 0 corresponds to the observation in-

dicating that there is an objectOk with property ‘F’ present at positionpk andY (pk) = 1

corresponds to property ‘G’, respectively. The actual observation is taken according to the

probability parameterβc of the Bernoulli distribution. The general conditional probability

matrixBc for the classification process is then given as follows

Bc =


Prob(Yc(pk) = 0|Xc(pk) = 0) = βc Prob(Yc(pk) = 0|Xc(pk) = 1) = 1− βc

Prob(Yc(pk) = 1|Xc(pk) = 0) = 1− βc Prob(Yc(pk) = 1|Xc(pk) = 1) = βc



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Similar as in Section2.4.1, two types of sensor models can be assumed for classification.

For the unit-range sensor model,βc is set as a constant value. For the limited circular

range sensor model, the following example is in a same fashion as Equation (2.32),

βc(s) =





Mc

r4c
(s2 − r2c )

2
+ bn if s ≤ rc

bn if s > rc

, (4.1)

whereMc + bn is the maximum sensing capability,s = ‖q(t) − pk‖, k = 1, 2, · · · , No,

andrc is limited classification sensory range. When an object of interest is within the

sensor’s effective classification radiusr̃c < rc, this object is said to be found, and the ve-

hicle has to decide whether to classify it or continue searching. Bayes’ rule is employed

to update the probability of object presence at cellc̃ for the search process. Similar as

Equations (2.34) and (2.33), we use Bayes rule to update the probability of a found ob-

ject Ok having property ‘G’ for the classification process, i.e.,Pc(Xc(pk) = 1). Based

on the updated probability of object existence, define an information entropy function

Hs(PHs, c̃, t) (2.35) as a measure of uncertainty for the search process. For the classifi-

cation process, define a similar information entropy functionHc(PHc ,pk, t) as Equation

(2.35) for every found objectOk to evaluate its classification uncertainty:

Hc(PHc ,pk, t)

= −Pc(Xc(pk) = 0) lnPc(Xc(pk) = 0)− Pc(Xc(pk) = 1) lnPc(Xc(pk) = 1),

where the probability distributionPHc for the classification process is given byPHc =

{Pc(Xc(pk) = 0), Pc(Xc(pk) = 1)}. There are as many scalarHc’s as there are found

objectsOk up to timet. The initial value forHc for every found objectOk can also be set

asHc = Hc,max = 0.6931.
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4.2 Task Metrics

This section develops metrics to be used for the search versus classification decision-

making process. For the search process, a same metric as Equation (2.47) is presented

when applied to a single vehicle sensor. In the event of object detection and a decision

not to proceed with the search process, but, instead, to stopand classify the found object,

the associated cost is defined as

J (t) =

∑
c̃∈DHs(PHs, c̃, t)

Hs,maxAD
. (4.2)

For the classification process, let̄No(t) be the number of objects found by the au-

tonomous sensor vehicle up to timet. For each found objectOk ∈ {1, 2, · · · , N̄o(t)},

define the classification metricHd(pk, t) to be

Hd(pk, t) = Hu
c J (t), (4.3)

where the weighting parameterHu
c ∈ (0, 1) is a preset upper bound on the desired uncer-

tainty level for classification. This metric couples the search and classification processes

and allows decision-making based on the real-time progressof the mission.Hd depends

on how uncertain the vehicle is of the presence of more unfound objects inD through

J . If the vehicle finds an objectOk (i.e., within the effective classification radiusr̃c) and

decides to classify it, the vehicle will continually classify it and compare the classification

uncertaintyHc(PHc,pk, t) to the desired classification uncertaintyHd(pk, t). Only when

the classification condition

Hc(PHc ,pk, t) < Hd(pk, td) (4.4)

is satisfied, the vehicle stops classifying the found objectand switch to search again. Here,
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td is the time of object detection.

The highest classification uncertainty boundHu
c is motivated by the following. Say

that the vehicle detects an object at the beginning of the mission withtd = 0 and decides

to classify it. Initially,J (0) = 1 and the vehicle will attempt to classify it untilHc < Hu
c .

This is the minimum desired classification accuracy level for any found object. Any

further classification accuracy will come at the cost of not performing the search task and

decrease the potential of finding more critical objects in the domain. If an object is found

at a time other thantd = 0, J (td) has to be less than1 and, hence,Hd(pk, td) is smaller

thanHu
c . On the other end of the spectrum, ifJ (td) = 0, the vehicle can spend as much

time classifying the object since it does not come at any search cost. This is because the

vehicle has achieved100% certainty that it has found all critical and noncritical objects in

the domain.

4.3 Search vs Classification Decision-Making

Now consider a probabilistic Bayesian-based search versusclassification decision-making

strategy that guarantees finding all the unknown objects inD (i.e., achieveJ → 0) and

classifying each object with an upper boundHu
c of the classification uncertainty.

For the search strategy, the control law (2.36) is used and the following lemma holds.

Lemma 4.3.1.AssumeU is such thatD = QD(t), the search strategy (2.36) guarantees

an uncertainty levelHs(PHs, c̃, ts) ≤ Hu
s for all c̃ ∈ D. Therefore, the search cost

J (t) ≤ εs =
Hu
s

Hs,max
for all t ≥ ts for somets > 0. This is equivalent to the detection of

all unknown objects inD with a desired certainty level.

Proof. If ConditionC5 does not hold, the nominal control law̄u(t) is utilized to drive the

vehicle to some cell̃c? that has the highest search uncertainty inQW(t).

When the uncertaintyHs of all the cellsc̃ ∈ QW(t) converges toHu
s , ConditionC5
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holds, and the vehicle gets trapped in regions ofHs ≤ Hu
s by applying only the nominal

control lawū while the entire domainD has not been fully searched yet.

At this moment, the perturbation control law̄̄u is used to drive the vehicle out of the

regions with low uncertaintyHu
s to somec̃∗ ∈ QD(t) such thatHs(PHs, c̃

∗, t) > Hu
s

if such a point exists. Under the perturbation control law,‖q− q̃∗‖ will eventually be

smaller thanr and, hence, ConditionC5 will not hold. At this point in time, the control

is switched back to the nominal control law. Note that¯̄u is always inU by definition of

QD(t).

Given thatQD(t) ⊆ D(t) according to definition, ifU is such that anỹq ∈ D(t) is

also inQD(t), viz.,D = QD(t), then every cell inD is reachable from where the sensor

is. The switching between̄u and ¯̄u is repeated until whenever ConditionC5 holds there

does not exist̃c∗. The non-existence of such ãc∗ at some timets > 0 guarantees that

J (ts) is sufficiently close to zero. BecauseHs(PHs, c̃, ts) is smaller thanHu
s everywhere

within D, it follows thatJ (ts) ≤ Hu
s

Hs,max
= εs according to the search cost function (4.2).

The search mission is then said to be completed. �

Next, consider the following classification strategy: A sensor vehicle will stop search-

ing and begins to classify an object whenever the object is within its effective classifica-

tion rangẽrc. If the classification condition (4.4) is satisfied, the vehicle will switch back

to become a search vehicle and leave its classification position to find new objects. The

vehicle can resume classifying an object that has been detected and classified in the past

if it finds it again during the search process.

Lemma 4.3.2.The classification strategy guarantees that each found object inD will be

classified with an upper bound uncertaintyHu
c .

Proof. Once the vehicle finds objectOk within its effective classification rangẽrc and

decides to classify it, it switches to a classification task and will not carry out any search

until Hc(PHc ,pk, t) < Hd(pk, td). After achieving at least the desired upper bound of
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classification uncertaintyHu
c , the vehicle switches back to search again. When the vehicle

left the object, the classification uncertainty for this object will remain constant until

the vehicle comes back to classify it when possible. At that time, the value ofHd will

be smaller because more regions have been searched since thelast time the vehicle has

found the object. This process will be repeated until each object inD has a classification

uncertainty of at mostHu
c , or equivalently, the classification task is completed. �

Theorem 4.3.1.According to Lemma4.3.1and4.3.2, the search and classification decision-

making strategy guarantees thatJ converges asymptotically to zero, which is equivalent

to guaranteeing that all the unknown objects within the domain will be found. The maxi-

mum acceptable classification uncertaintyHu
c is achieved by every found object.

Remark. 4.3.1. The priority of each task during the mission is based on the real-time

progress, that is, the corresponding task metrics at each time instant. In the current set-

ting, whenever the object is within a sensor vehicle’s effective classification rangẽrc,

the vehicle will begin to classify the object. At that moment, the classification task pos-

sesses higher priority. The vehicle will switch back to search again when the classification

uncertaintyHc is less than the desired classification uncertainty levelHd, which is time-

varying and depends on the search uncertainty levelHs at the detection timetd according

to the classification metric (4.3) and the search cost function (4.2). At this point in time,

the search task is given a higher priority. BecauseHs is decreasing with time,Hd also

decreases. Therefore, a vehicle will be able to spend more time classifying a found ob-

ject when more unknown objects have been found than at the outset of the mission. This

can be interpreted as that more priority will be assigned to the classification task as time

increases. •
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4.4 Simulation

This section provides A) a detailed numerical simulation that illustrates the performance

of the decision-making strategy, and B) a Monte-Carlo simulation study to demonstrate

the properties of the proposed algorithms. All the simulations are implemented by means

of a 2.27-GHz, i3-350m processor with 4GB RAM, and Matlab-compiled codes.

4.4.1 Simulation Example

Assume a square domainD with size32× 32 units length, thus the domain is discretized

into 1024 cells. There areNo = 5 objects. Let objects 1, 3 and 5 have property ‘F’,

and objects 2 and 4 have Property ‘G’, with a randomly selected initial deployment as

shown by the green and magenta crosses, respectively, in Figure 4.1. Figure4.1 shows

the evolution of search uncertaintyHs (dark red for highest uncertainty and dark blue

for lowest uncertainty) and the vehicle motion att = 1, 250, 475 and700. The maximum

radiusr of the search sensor is chosen to be8 and the classification radiusrc is also chosen

as8, as shown by the magenta circle in Figure4.1. The effective classification radius̃rc

is set as6 as shown by the green circle in the figure. The black dot represents the position

of the vehicle. The parameterM =Mc of the sensor is set as0.4, which gives the highest

value forβ as0.9, i.e., there is90% chance that the sensor is sensing correctly at the

location of the vehicle. The sensing capability gradually reduces to 0.5 according to the

models discussed above (Equations (2.32) and (4.1)). The initial position of the vehicle is

also selected randomly (see Figure4.1(a)). Let the desired upper bound for classification

uncertaintyHu
c be0.01. Here the control law in Equation (2.36) is used with control gain

¯̄k = 0.2. The setU is chosen to beD, so thatQW(t) is given by the intersection ofU and

W, i.e.,D ∩W andQD(t) = D which guarantees the full coverage of the entire domain.

From Figure4.1(d), it can be concluded that the desired zero search uncertainty has been
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achieved everywhere withinD. The actual maximum achieved search uncertainty turns

out to be2.6× 10−3 according to the simulation results.
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Figure 4.1: Search uncertainty map (Bayesian-based decision-making).

Figure4.2(a)shows the evolution of the search costJ (t) under the control strategy

(2.36) and can be seen to converge to zero. All the objects have beenfound with the

probabilities of object presence as1 and zero search uncertainty. Those cells that do not

contain an object end up with zero search probability and uncertainty. Figure4.2(b)shows

the posterior probabilities for everỹc within D at t = 700, where all the unknown objects

are detected and all the empty cells are also identified.

For all the5 found objects, objects2, 4 have been classified with probability of having

Property ‘G’ as1 and zero classification uncertainty. Objects1, 3, 5 have been classified

with probability of having property ‘G’ as0 and zero classification uncertainty. Figure
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Figure 4.2: Search cost functionJ (t) and posterior probabilities for search att = 700.

4.3shows that, for example, object2 has property ‘G’ and object3 has property ‘F’ with

zero classification uncertainty. The classification results of other objects can be shown

like Figure4.3without difficulty.
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Figure 4.3: Classification results for object2 and3 (Bayesian-based decision-making).

4.4.2 Monte-Carlo Simulation

In this section, a Monte-Carlo simulation-based study is provided to investigate the per-

formance of the proposed strategy. Four metrics are used to evaluate the algorithms, i.e.,

the average CPU time for mission completion, the average simulation stepst for mis-

sion completion, the achieved mean search uncertainty overthe domain, and the achieved
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mean classification uncertainty of all found objects and their corresponding standard de-

viations. The mission is said to be complete when a desired search and classification

uncertainty of at most0.01 has been achieved. The algorithms is tested by varying the

mission domain size, search and classification sensory ranges (r, rc, r̃c), peak sensory ca-

pabilityM , and the total number of objectsNo. 100 runs are implemented for each case

with a fixed combination of the above parameters. The statistical results are listed in

Tables4.1-4.4.

Table4.1 shows the average CPU time for mission completion, the average simula-

tion stepst for mission completion, the achieved mean search uncertainty E[Hs] over

the entire domain, and the achieved mean classification uncertaintyE[Hc] for all found

objects with their corresponding standard deviations (in parentheses) of100 runs under

domain sizes16× 16, 24× 24, 32× 32, 40× 40, respectively, using a fixed set of object

positions under each case and same parameters as in Section4.4.1. As expected, the time

for mission completion grows with the domain size. An interesting observation is that

as the domain size increases, the final achieved average search and classification uncer-

tainty levels decreases. This is because in larger domains,more regions will have to be

revisited in order to cover the entire domain. Moreover, note that the deviation of classi-

fication uncertainty is larger than the search uncertainty because every object is detected

at a different time step and the correspondingHd is time-varying.

Table4.2shows the four metrics of100 runs under sensory range (r = rc = 6, r̃c = 4),

(r = 8, r̃c = 6), (r = 10, r̃c = 8), (r = 10, r̃c = 7), respectively, using the same parame-

ters as in Section4.4.1. Since smaller sensory range is equivalent to larger domainsize,

it is expected that this case leads to more mission completion time. With the same search

range, smaller classification range causes reduction in themission completion time be-

cause the probability of object detection decreases with smaller sensory range. However,

the final achieved uncertainty is higher under less mission completion time.
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Size CPU t E[HS] E[Hc]
16 1.33 311.72 2.73E-05 1.53E-04

(0.66) (120.67) (9.16E-06) (3.38E-04)
24 4.96 489.58 1.34E-05 1.17E-04

(1.63) (118.65) (4.09E-06) (4.52E-04)
32 13.25 695.53 8.13E-06 3.93E-05

(3.29) (113.22) (1.94E-06) (1.09E-04)
40 34.81 1043.4 5.76E-06 1.44E-05

(6.74) (121.77) (2.08E-06) (5.02E-05)

Table 4.1: Varying mission domain size.

Range CPU t E[HS] E[Hc]
r = 6 20.66 916.35 8.68E-06 4.00E-05
r̃c = 4 (3.07) (64.33) (1.28E-06) (1.77E-04)
r = 8 13.25 695.53 8.13E-06 3.93E-05
r̃c = 6 (3.29) (113.22) (1.94E-06) (1.09E-04)
r = 10 12.96 680.68 7.86E-06 3.01E-05
r̃c = 8 (4.26) (166.89) (2.00E-06) (6.60E-05)
r = 10 8.13 452.15 8.01E-06 4.47E-05
r̃c = 7 (1.44) (57.39) (1.67E-06) (1.62E-04)

Table 4.2: Varying sensory range.
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M CPU t E[HS] E[Hc]
0.2 96.31 2837.31 9.30E-06 2.82E-05

(21.34) (320.35) (6.88E-07) (1.99E-04)
0.3 30.37 1275.09 8.69E-06 1.74E-05

(7.29) (169.55) (1.17E-06) (4.62E-05)
0.4 13.25 695.53 8.13E-06 3.93E-05

(3.29) (113.22) (1.94E-06) (1.09E-04)
0.5 7.90 421.60 6.20E-06 2.58E-05

(1.97) (80.12) (3.12E-06) (3.69E-05)

Table 4.3: Varying peak sensing capability.

Table 4.3 shows the four metrics of100 runs under peak sensory capabilityM =

Mc = 0.2, M = 0.3, M = 0.4, M = 0.5, respectively, using the same parameters as in

Section4.4.1. The largerM is, the shorter the mission completion time and the lower the

search uncertainty becomes. Note that whenM = 0.5, the vehicle has perfect sensing,

i.e., 100% detection probability, at its location. This leads to a big reduction in mission

completion time and final achieved uncertainty.

Table4.4 shows the four metrics of100 runs under3, 5, 10, 20 objects, respectively,

using a fixed set of object positions under each case and the same parameters as in Section

4.4.1. The mission completion time increases with the number of objects. The achieved

search uncertainty does not differ much in each case becausethe total number of cells

is the same. However, the achieved classification uncertainty increases as the number of

objects grows since the sensing resources get distributed.

From the above simulation results, it is concluded that the proposed algorithm is scal-

able for large-scale domains and a large number of objects, which is the incentive for this

work.
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No. CPU t E[HS] E[Hc]
3 13.25 656.22 8.52E-06 1.16E-05

(2.75) (97.63) (1.48E-06) (2.55E-04)
5 13.33 695.53 8.13E-06 3.93E-05

(3.29) (113.22) (1.94E-06) (1.09E-04)
10 21.94 957.84 8.15E-06 4.66E-05

(5.98) (183.64) (1.71E-06) (1.01E-04)
20 36.74 1360.51 7.68E-06 1.21E-04

(13.22) (294.06) (2.33E-06) (1.67E-04)

Table 4.4: Varying number of objects.
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Chapter 5

Risk-Based Sequential Decision-Making

Strategy

This chapter focuses on the development of a risk-based sequential decision-making strat-

egy based on the probabilistic Bayesian-based decision-making strategy in Chapter4.

To accomplish competing tasks under limited sensory resources with minimum risks, a

real-time decision-making strategy is developed to dynamically choose the task to be per-

formed based on an overall risk assessment associated with the decision. Risk is defined

as the expected cost of decision errors as well as observation costs. The proposed strat-

egy seeks to find and classify all unknown objects within the domain with minimum risk

under limited resources.

Section5.1 reviews some related literature on sequential detection and risk analysis.

The binary risk-based sequential decision-making strategy using a single autonomous

vehicle is then investigated in detail in Section5.2. In Section5.3, the binary results

are extended to the more general ternary setting, which enables concurrent search and

classification observations. The ternary decision-makingstrategies are then applied to the

SSA problem in Section5.4.
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5.1 Literature Review on Sequential Detection

The proposed approach relies on the technologies of Bayesian risk analysis. To be more

specific, consider the following scenario. Imagine there are a fleet of distributed sensor-

equipped MAVs with limited sensory range over a large-scalemission domain. The sen-

sors are assumed to have measurement errors, or perception uncertainties. The goal is to

detect and classify all the unknown objects within the domain with minimum risks in the

presence of the noisy measurements. To achieve this objective, each vehicle sequentially

updates its knowledge about object existence over the entire domain and the classification

property for each found object through its own observation,which are used to compute

the risks via Bayesian sequential detection method.

The key feature of sequential detection [105] is that it allows the number of observa-

tions to vary in order to achieve an optimal decision. The Bayesian sequential detection

method used in this chapter is such that the Bayes risk (to be formally defined in Sec-

tion 5.2.2) is minimized at each time step [133]. This method was formulated by Wald

and Wolfowitz in [133] and provides a strong theoretical background for detection risk

analysis. Two types of costs are taken into account in the risk calculation: 1) the cost of

making a wrong decision, i.e., the probability of missed/false detection, or incorrect clas-

sification, and 2) the cost of taking more observations for a possibly better decision. The

observation cost is computed in real time based on the progress of the task. Due to the ran-

domness of observations and the dynamic observation cost, adecision may be made with a

few observation samples to reduce measurement cost, whereas for other cases one would

rather take more samples to reduce decision uncertainty andthus minimize the overall

risk. In [148], a sequential Bayes classifier is utilized for the real-time classification of

detected targets under a neural network based framework, however, without consideration

of observation costs. Another sequential detection methodis the Sequential Probability
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Ratio Test (SPRT) [105, 131] based on binary Neyman-Pearson formulation where no

prior probability information is needed. On average, a smaller number of observations

are needed to make a decision using SPRT compared with an equally reliable method

with a predetermined fixed number of observations [132]. The change-point detection

theory [7, 113] is a generalization and modification of SPRT. It detects a change in the

probability distribution of a stochastic process or time series. Existing techniques include

the Shyriaev-Roberts (SR) [109,113] and the Cumulative Sum Control Chart (CUSUM,

a.k.a. Page test) [103] tests.

In the literature, sequential decision-making via tradeoffs between exploration and

exploitation has been investigated in a risk-neutral context. The work in [115, 124] and

references therein provide an overview of techniques that trade off between expected in-

formation gain (or equivalently, rewards) and the cost incurred by applying a control ac-

tion for Partially Observable Markov Decision Process (POMDP). The planning problem

is addressed under no constraints of decision error, and is hence, risk-neutral.

5.2 Decision Making for Search and Classification

For the sake of illustration, Figure5.1 is provided to show the block diagram of the

proposed strategy and the organization of the section. At time t, the sensor takes an

observation at a cell̃cj in the search domain based on the sensor model proposed in

Section2.4.1. Next, the posterior probability of object existence or itsclassification at

c̃j gets updated via the Bayes update equations formulated in Sections2.4.2and4.1. In

Section5.2.2, the Bayesian sequential detection method is introduced for a single cell̃cj,

which depends on the sensor model as well as the dynamic observation cost. Its output

is the minimum Bayes risk surface at cellc̃j. Combined with the updated probabilities,

the sensor makes a decision (whether or not to take one more observation at̃cj) that
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Figure 5.1: Block diagram of cost-aware Bayesian sequential decision-making.

minimizes the Bayes risk at timet. An uncertainty map is constructed based on the

updated probabilities of every cell within the domain according to Sections2.4.3and4.1.

If the desired certainty level has not been achieved yet, a task metric is developed to

formulate the dynamic observation cost. Finally, the results are combined: if the decision

is to stop taking observation at the current cellc̃j, a sensor motion control scheme is

provided, which drives the sensor to the cellc̃k that has the maximum uncertainty in

the domain. This process is repeated over time until both thesearch and classification

uncertainties are satisfactorily low.

5.2.1 Problem Setup and Sensor Model

The sensor model proposed in Section2.4.1is assumed here. Conditioned on the state

X(c̃) at a particular cell̃c, let t be time index, the observationsYt(c̃) taken along time

are temporally i.i.d. Therefore, if a sensor takes an observation at each time step atc̃,

for a window ofL time steps, there areL+ 1 different combinations of unordered scalar

observations, that is, ranging from zero positive observation toL positive ones. Let the
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variableZ(c̃) be the number of times that observationY (c̃) = 1 is taken at cell̃c, which

is a number in the set{0, · · · , L}. The following(L + 1) × 2 matrix gives the general

conditional probability matrix for the search task overL observations:

B =




Prob[Z(c̃) = 0|X(c̃) = 0] Prob[Z(c̃) = 0|X(c̃) = 1]

Prob[Z(c̃) = 1|X(c̃) = 0] Prob[Z(c̃) = 1|X(c̃) = 1]

...
...

Prob[Z(c̃) = L|X(c̃) = 0] Prob[Z(c̃) = L|X(c̃) = 1]




,

with
∑L

l=0 Prob[Z(c̃) = l|X(c̃) = j] = 1, j = 0, 1. Because the sensor follows the

Bernoulli distribution for a single observation, Prob[Z(c̃) = l|X(c̃) = j] follows a bi-

nomial distribution with parameterβ andL, which describes the probability of havingl

positive observations given stateX(c̃) = j. Hence, the general conditional probability

matrix can be written as follows:

B =




βL (1− β)L

L(1− β)βL−1 Lβ(1− β)L−1

...
...

(1− β)L βL




. (5.1)

The value ofβ can be either the unit or the limited circular sensory range discussed in

Section2.4.1.

As stated in Section4.1, the sensor model for the classification process follows a

similar fashion withXc(pk), Yc(pk) representing the state and observation variables for

objectpk, k = 1, 2, · · · , No. The general conditional probability matrix is denoted asBc

with detection probabilityβc.
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5.2.2 Risk-based Sequential Decision-Making

This section takes the search process as an example to illustrate the Bayesian sequential

risk analysis procedure at a single cellc̃. The method can be adopt to the risk-based

classification of a found objectpk in a straightforward manner via changing parameters.

Instead of deriving an optimal detector given a fixed number of observations as in classical

Bayesian, Minimax or Neyman-Pearson hypothesis testing methods [105,112,126,142],

the Bayesian sequential detector takes observations untila decision can be made with

minimum Bayes risk. This results in a random number of total observations taken.

5.2.2.1 Conditional Bayes Risk without Observation Cost

First, assuming a Uniform Cost Assignment (UCA), define the decision cost matrix as

Cij =





0 if i = j

1 if i 6= j
,

wherei = 0, 1 represent0: object absent and1: object present,j = 0, 1 correspond to

stateX(c̃) = 0 andX(c̃) = 1. HenceCij is the cost of decidingi when the state is

X(c̃) = j. C can be written in the matrix form as

C =




0 1

1 0


 .

Let R̃j(c̃, L,∆), j = 0, 1, L ≥ 1, be the conditional risk of decidingX(c̃) 6= j at c̃

given that the actual state isX(c̃) = j over at least one observation,

R̃j(c̃, L,∆) = cj∆bj , (5.2)
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where

1. cj = [C0j C1j ] is thejth column of the decision cost matrixC and contains the

costs of deciding object absent and present given stateX(c̃) = j.

2. ∆ = [∆(i, j)] is the deterministic decision rule. The matrix element∆(i, j), i =

0, 1, j = 0, · · · , L− 1 can be either0 or 1, and
∑1

i=0∆(i, j) = 1. When∆(i, j) =

1, it means that decisioni is made given that the observationZ = j corresponds to

thejth column of∆. ForL ≥ 1, the dimension of∆ is 2× L because there are two

possible realizations of the states. ForL = 0, i.e., there are no observations taken,

∆ could be ‘always decide there is no object’, ‘always decide there is an object’,

regardless of the observations, and there will be no explicit matrix form.

3. bj is thejth column of the general conditional probability matrixB = [Bij ], i =

0, 1, · · · , L−1, j = 0, 1 for L ≥ 1. The elementBij gives the probability of having

observationZ = i given statej. According to the probability axiom,
∑L−1

i=0 Bij =

1, j = 0, 1. ForL ≥ 1, B is aL× 2 matrix.

Therefore, under UCA, there is no cost if the decision is the actual state, and the

conditional riskR̃j can be interpreted as the error probability of making a wrongdecision,

i.e., decidingX(c̃) 6= j given that the actual state isX(c̃) = j under a certain decision

rule∆ overL observations for cell̃c.

Remark. 5.2.1. “Reasonable” Deterministic Decision Rules.Here, the sensor is as-

sumed to be a “good” one, that is to say, the detection probability is higher than the

error probability of the sensor, i.e.,β > 0.5. Therefore, there are only a small number of

“reasonable” deterministic decision rules. GivenL observations, the set of “reasonable”
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deterministic decision rules is the set of all rules of the type

∆l
1 =






1 l ≥ v

0 otherwise

wherel ∈ {0, . . . , L} is the total number of positive observations andv ∈ {0, . . . , L+1}

is the threshold where a positive decision is made. This means one only needs to consider

decision rule matrices that look like

∆ =



1 1 0 0 0

0 0 1 1 1




and not like

∆ =



1 0 1 1 0

0 1 0 0 1


 .

When the thresholdv = 0, the vehicle sensor will always decide object present and ignore

the observations. Similarly, whenv = L + 1, it will always decide object absent. Note

that “reasonable” decision rules grows linearly withL and dominates any other type of

decision rules with the same value ofL. •

5.2.2.2 Conditional Bayes Risk with Observation Cost

Now assign an observation costcobs each time the sensor makes a new observation. This

cost could be based on energy, amount of observation time, etc. For the sake of clarity,

first assume it is a constant when deriving the formulation below. A dynamic cost function

cobs(t) is then developed to relate the observation cost with the task metrics for real-time

decision-making in multi-cell domains.
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Defineφ = {φk}∞k=0 as the stopping rule andδ = {δk}∞k=0 as the intermediate de-

cision rule. Ifφk = 0, the sensor takes another measurement, ifφk = 1, the sensor

stops taking further observations. At every time stepk, δk can be either one of three

intermediate decisions: (i) deciding object absent, (ii) deciding object present, or (iii)

taking one more observation and postpone making a decision to the following time step.

Let the stopping time be the minimum amount of time it takes tomake a final decision,

i.e.,N(φ) = min{k : φk = 1}, which is a random variable due to the randomness of

the observations. The expected stopping time under stateX(c̃) = j is then given by

Ej [N(φ)] = E[N(φ)|X(c̃) = j].

Since now a costcobs is assigned for each observation, the conditional Bayes risk (5.2)

under UCA overL ≥ 0 observations can be modified as:

Rj(c̃, L,∆) = Prob(decideX(c̃) 6= j|X(c̃) = j) + cobsEj [N(φ)], j = 0, 1. (5.3)

If L ≥ 1, ∆ has explicit matrix form and the above equations can be rewritten as:

Rj(c̃, L,∆) = cj∆bj + cobsEj [N(φ)], j = 0, 1. (5.4)

5.2.2.3 Bayes Risk

Now define the Bayes risk as the expected conditional Bayes risk under decision rule∆

overL observations at cell̃c:

r(c̃, L, 1− π0,∆) = π0R0(c̃, L,∆) + (1− π0)R1(c̃, L,∆), L ≥ 0, (5.5)

whereπ0 = P (X(c̃) = 0; t = tv) is the prior probability of state beingX(c̃) = 0 at time

instanttv when an observation is taken at cellc̃. At each cell̃c at every time stept, given a

fixedπ0 under the constraintsπ0 ∈ [0, 1], the sensor chooses a combination of(L ≥ 0,∆)
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that yields the minimum value of the Bayes riskr. This same procedure is repeated until

the cost of making a wrong decision based on the current observation is less than that of

taking one more observation for a possibly better decision.

5.2.2.4 Bayesian Sequential Detection

The following elaborates on the decision-making procedure. If the sensor does not take

any observations (L = 0) and directly make a decision, according to Equations (5.3) and

(5.5), the Bayes risks of2 different decision rules∆ are as follows

r(c̃, L = 0, 1− π0,∆ = always decide object absent) = π0,

r(c̃, L = 0, 1− π0,∆ = always decide object present) = 1− π0.

If the sensor decides to take an observation (L ≥ 1), the minimum Bayes risk over all

possible choices of∆ with L observations is

rmin(c̃, L ≥ 1, 1− π0) = min
∆∈GL

π0R0(c̃, L ≥ 1,∆) + (1− π0)R1(c̃, L ≥ 1,∆) ≥ Lcobs

whereGL is defined as the set of all deterministic decision rules thatare based on exactly

L observations.

Following similar procedure, the overall minimum Bayes risk functionsr∗min under all

possible combinations of(∆, L ≥ 0) is computed,

r∗min(c̃, 1− π0) = minL=0,1,2,...rmin(c̃, L, 1− π0).

The basic procedure of Bayesian sequential detection is summarized as follows: With

initial priors πj = P (X(c̃) = j; t = 0), j = 0, 1, check the correspondingr∗min value.

If r∗min is given by the risk function withL ≥ 1, the sensor takes an observationYt=0(c̃).
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Compute the posteriorsP (X(c̃) = j|Yt=0(c̃); t = 1) according to Equation (2.33) and

again checkr∗min to make decisions. The process is repeated using these posteriors as the

new priors. The key is that an observation is taken if and onlyif rmin(c̃, L ≥ 1, 1− π0) <

min(1−π0, π0).Whenr∗min = rmin(c̃, L = 0, 1−π0), the sensor stops taking observations

and a decision is made atc̃.

5.2.2.5 Simulation for a Single Cell

The following preliminary simulation for a single cell illustrates the proposed scheme.

Fix a cell c̃, chooseβ = 0.8 (i.e.,M = 0.3 and the sensor is right located at the centroid

of this cell), and set the observation cost as a fixed numbercobs = 0.05 to demonstrate the

Bayesian sequential detection method. Figure5.2(a)shows all the Bayes risk functionsr

under0 (black lines),1 (blue lines) and2 (green lines) observations withπ0 ∈ [0, 1]. In

Figure5.2(b), the red segment indicates the overall minimum Bayes riskr∗min(c̃, 1− π0).

The overall minimum Bayes risk curver∗min(c̃, 1−π0) is constructed by taking the smallest

value of all rmin(c̃, L, 1 − π0), L = 0, 1, 2, · · · under each fixed prior probabilityπ0.

Figure5.2(c) shows the construction of the minimum Bayes risk (the red dot) under a

fixed priorπ∗
0. Here, only the lines of decision rules that constitute the red segment are

shown with the corresponding equations listed. The Bayes risk functions under more than

3 observations (L ≥ 3) have largerr values and do not contribute tor∗min(c̃, 1 − π0) for

the particular choice ofβ andcobs here.

Each of the lines is interpreted as follows.

Line 1. This line represents the decision rules without any observation. Always decide

there is an object at the cell regardless of the observations. According to Equation (5.5),

r(c̃, L = 0, 1− π0,∆ = always decide there is an object)

= π0 × 1 + (1− π0)× 0 = π0;
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Figure 5.2: Bayes risk, minimum Bayes risk, and construction of minimum Bayes risk.
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Line 2. This line also represents the decision rules without any observation. Always

decide there is no object regardless of the observations:

r(c̃, L = 0, 1− π0,∆ = always decide there is no object)

= π0(0 + cobs× 0) + (1− π0)(1 + cobs× 0) = 1− π0.

Line 3. The blue line corresponds to the decision rule 3 after takingone observation:

decide the actual state according to the only one observation, that is, ifZ = 1, decide

there is actually an object. It follows that

r(c̃, L = 1, 1− π0,∆ = ∆11)

= π0(1− β + cobs) + (1− π0)(1− β + cobs) = 1− β + cobs.

Line 4. This line gives the decision rules after two observations. Line 4 corresponds to the

decision rule that decides there is actually an object if andonly if all the two observations

are positive (Z = 2). Following the same procedure as above, it follows that

r(c̃, L = 2, 1− π0,∆ = ∆21)

= (1− β)2π0 + (2β(1− β) + (1− β)2)(1− π0) + 2cobs;

Line 5. This line also gives the decision rules after two observations. Line 5 corresponds

to the decision rule that decides there is no object if and only if none of the two observa-

tions is object present,

r(c̃, L = 2, 1− π0,∆ = ∆22)

= (2β(1− β) + (1− β)2)π0 + (1− β)2(1− π0) + 2cobs.
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Thus, the red segment gives the minimum Bayesian riskr∗min(c̃, 1 − π0) over 0,1,2

observations.

The intersection of lines 1, 5 is the lower prior probabilityπL = 0.2059. When the

posterior probabilityP (X(c̃) = 0, t) updated through Equation (2.33) is belowπL, the

vehicle sensor stops taking observation and decides that the actual state is object present.

This is because the minimum Bayesian risk is determined by line1 instead of line5 when

P (X(c̃) = 0, t) ∈ [0, πL]. The intersection of lines 2, 4 is the upper prior probability

πU = 0.7941. WhenP (X(c̃) = 0, t) is aboveπU (i.e.,P (X(c̃) = 1, t) ≤ πL), the sensor

decides that there is actually no object.

The following simple example illustrates how to utilize theminimum Bayes risk

curver∗min for decision-making. At a cell̃c, assume the initial priorP (X(c̃) = 0, t) =

P (X(c̃) = 1, t) = 0.5. The corresponding minimum Bayes risk for the prior 0.5 is given

by Line 3. So the sensor takes one observation, and if the observation isYt=1(c̃) = 1

indicating there is an object, the posterior probability isupdated according to the new

observation and the Bayes update rules (2.33). The posterior probability isP (X(c̃) =

1, t) = 0.8, P (X(c̃) = 0, t) = 0.2 ≤ πL. Now r∗min is given by Line 1. Therefore, the

sensor decides not to take any more observation and determine there is actually an object

at this cell with Bayes riskr = 0.2.

5.2.3 Extension to Full-Scale Domain

The mechanics of the Bayesian probability updates (Section2.4.2) and Bayesian sequen-

tial detection (Section5.2.2) have been discussed for a single cell. This section defines

an uncertainty map based on these posterior probabilities and the metrics for the search

and classification tasks in general multi-cell domains. Thesearch task metric is related

with a dynamic observation cost for the Bayesian sequentialdecision-making strategy in

multi-cell domains. Based on these, the sensor motion control laws in Section2.4.4 is
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used, which seeks to find and classify all objects inD with a desired confidence level.

As stated in Sections2.4.2and4.1, Bayes rule is used to update 1) the probability of

object present at each cellc̃ in D and 2) the probability of object having Property ‘G’

for each found objectpk. These updated posterior probabilities are then used to con-

struct the uncertainty functions (2.35) and (4.2) for the search and classification process,

respectively.

The search and classification metrics (4.2) and (4.3) developed in Section4.2 are

used here for the risk-based decision-making for search versus classification. Define the

classification conditions as follows:






‖q(t)− pk‖ ≤ rc (a)

Hc(PHc ,pk, t) > Hd(pk, t) (b)

Hs(PHs,pk, t) ≤ HU
s (c)

No Decision at pk at t (d)

, (5.6)

whereHU
s is some upper bound on the search uncertainty to be met beforea classification

task can be carried on. Only when all the classification conditions are satisfied, i.e., (a)

the objectOk is within the vehicle’s classification sensory range, (b) the classification

uncertainty ofOk is larger than the desired uncertainty, (c) the search uncertainty ofOk

is relatively low (It is to some extent sure thatOk is an object), and (d) no decision has

been made about the property ofOk yet at previous time step, then the vehicle will start

to classifyOk. If any one of the above condition fails, the vehicleV stop classifying the

found object and switch to searching again. It can resume classifying an object that has

been detected and completely or partially classified in the past if it finds it again during

the search process. When this occurs, the value ofHd will be smaller than the last time

the objected has been detected.
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Now associate a dynamic observation costcobs(t) with the search cost functionJ (t),

cobs(t) = γJ (t), (5.7)

whereγ > 0 is some positive weighting parameter. At the outset of the mission, few

regions in the domain have been covered, therefore, the cost, J , of not searching any-

where else is high. Equivalently, taking an observation at the current cell is “expensive”,

i.e.,cobs(t) is large. In this case, the risk-based sequential decision-making strategy tends

to make a decision with a few observations, which may yield large number of wrong

decisions (however, it still gives the minimum Bayes risk over all decisions given the lim-

ited available observations), but increase the potential of rapidly detecting and classifying

more critical objects in the domain. When the sensor stops taking observations, makes a

decision, and leaves the current cell, it will move to another cell and again take an obser-

vation there. Because the uncertainty level associated with that cell changes (Equations

(2.33),(2.35)), the values forJ (Equation (4.2)) andcobs (Equation (5.7)) over the entire

domain differ accordingly. Additional information is gained by changing the cell to be

observed. When the sensor has surveyed more regions in the domain, the uncertainty level

at all the visited cells is reduced with respect to the initial uncertainty, and hence bothJ

andcobs decrease. The process will be repeated untilJ (t) → 0 andHc → 0, ∀pk, i.e., all

the unknown objects of interest within the domain have been found and classified with a

desired uncertainty level in a small neighborhood of zero. Note that the observation cost

is assigned according to the real-time progress of the search and classification tasks and

facilitates real-time decision-making based on the available observations.

Remark. 5.2.2.A small value ofγ corresponds to the case where the sensor will stay in

a cell until a high certainty about object existence or its classification is achieved before

moving on. A large value gives the opposite case, i.e., the sensor will not linger long in
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any cell until it has had a chance to survey more regions in thedomain. •

5.2.4 Simulation

In this simulation, consider all the cellsc̃ within a20×20 square domainD. For each̃c ∈

D, an i.i.d. prior probability of object presence is assumed,which equals toP (X(c̃) =

1, 0) = E[No]
Ntot

= 0.2, whereE[No] = 80 is the expected number of objects. For the

classification process, let the desired upper bound for classification uncertainty beHu
c =

0.01 andHU
s = 0.3. The priorsPc(Xc(pk) = 0, 0) = 0.5, ∀k and all the objects with

even number have property ‘G’. The locations of the objects are randomly generated. The

number of objects generated for this simulation turns out tobe83. The locations of objects

with Property ‘F’ are indicated by the42 green crosses and the locations of the objects

with Property ‘G’ are indicated by the41 magenta crosses in Figure5.3. Figure5.3shows

the evolution of the search uncertainty mapHs (dark red for highest uncertainty and dark

blue for lowest uncertainty) at (a)t = 1, (b) t = 200, (c) t = 400, and (d)t = 800. The

radiusr of the search sensor is chosen to be8 and the classification radiusrc is chosen to

be6, as shown by the magenta and green circles in Figure5.3. Set the maximum sensing

capacity asM = 0.5. The parameterγ = 0.05. The black dot represents the position of

the vehicle. Here the control law in Equation (2.36) is used with control gain̄̄k = 0.2.

The setU is chosen to beD. From the simulation results, it can be concluded that at most

Hs = 1.1× 10−6 has been achieved everywhere withinD.

Figure 5.4(a) records the number of false detections and missed detections versus

time. It can be seen from the figure that the number of missed detections (18) is much

larger than that of the false detections (2) at the beginning of the task. This is because the

initial prior probability P (X(q̃) = 1, 0) to start with is closer to zero, which makes

it easier to make a wrong decision after taking an erroneous observationY (q̃) = 0

given that the actual state is object present. Figure5.4(b)compares the number of incor-
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Figure 5.3: Evolution of search uncertainty.
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Figure 5.4: Number of false/missed detections, and incorrect classifications.

rect classifications, i.e., deciding Property ‘F’ given Property ‘G’, and deciding Property

‘G’ given Property ‘F’ over all detected objects. These two numbers are similar since

Pc(Xc(c̃), 0) = 0.5. In both figures, it can be shown that as time increases, the number

of missed detections and false detections decrease. Both ofthe error numbers go to zero

with zero uncertainty at the end of the mission. This impliesthat one can balance between

the number of errors within the tolerance range and the limited time to decide when to

stop.

Figure5.5(a)shows the classification results for object1. Its probability of having

Property ‘G’ is zero and the corresponding uncertainty functionHc = 0, i.e., it is100%

sure that object1 has Property ‘F’. Similarly, Figure5.5(b)shows that object2 has Prop-

erty ‘G’ with zero uncertainty. The properties of other objects are also satisfied classified

with the desired uncertainty level and can be shown like Figures5.5(a)and5.5(b)without

difficulty.

5.3 Extension to Three States

In this section, the above standard binary Bayesian sequential detection method is ex-

tended into a ternary risk-based sequential decision-making strategy. This allows concur-
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Figure 5.5: Classification results for objects1 and2.

rent search and classification observations taken by a single autonomous vehicle sensor.

However, the decision to be made here is still the same, i.e.,whether to make a prompt

decision regarding object existence or its classification based on insufficient observations,

or to keep taking observations at the current location until100% certain about the true

state.

5.3.1 Problem Setup and Sensor Model

Now letX(c̃) be a ternary state random variable at cellc̃, where0 corresponds to object

absent,1 corresponds to object having Property ‘F’, and ‘2’ corresponds to object having

Property ‘G’.

For the sake of illustrative clarity, the following assumptions for the sensor model are

made.

1. A sensor is able to observe only one cell at a time. That is, the unit-range sensor

model is assumed in this section. Extension to other sensor models that are capable

of observing multiple cells at the same time (e.g., the sensor models with limited

sensory range proposed in [59–62,135–140]) is straightforward.

2. A sensor is able to move to any cell within the domain. Othermotion schemes, such
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Figure 5.6: Ternary sensor model.

as gradient-based, awareness-based, and information-driven control laws ( [59–62,

135–140]) can be adopted without difficulty.

LetY (c̃) be the corresponding ternary observation random variable.The sensor model

follows a ternary discrete probability distribution. For acell c̃, given a stateX(c̃) = i, i =

0, 1, 2, the probability mass functionf of the observation distribution is given by

fY (y|X(c̃) = i) =





βi0 if y = 0

βi1 if y = 1

βi2 if y = 2

, (5.8)

where
∑2

j=0 βij = 1, Y corresponds to the ternary random variable andy is the dummy

variable. Figure5.6 shows the relationship between the unknown stateX(c̃) and an ob-

servationY (c̃).

Conditioned on the true stateX(c̃), let t be the time index, the observationsYt(c̃)

taken along time are temporally i.i.d. Define an integer random variableZj(c̃), j = 0, 1, 2

as the number of times that observationY (c̃) = j appears during a window ofL time

steps. The quantityZj(c̃) satisfies
∑2

j=0 Zj(c̃) = L, Zj(c̃) ∈ [0, L]. Therefore, given

stateX(c̃) = i, i = 0, 1, 2, the probability of having observation(z0, z1, z2) in a window
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of L time steps follows a multinomial distribution

Prob(Z0(c̃) = z0, Z1(c̃) = z1, Z2(c̃) = z2|X(c̃) = i) =
L!

z0!z1!z2!
βz0
i0 β

z1
i1 β

z2
i2 . (5.9)

The sensor’s probabilities of making a correct observation, i.e., the detection prob-

abilities, areβ00, β11 andβ22. Here it is assumed that the sensor is “good” and restrict

these values to beβ00, β11, β22 > 0.5. More general values within[0, 1] can be consid-

ered, however, introducing extra analytical complexity that does not contribute any new

insights. It is assumed that the sensor’s probabilities of making an erroneous observation,

i.e., the error probabilities,βij , i 6= j, follow a simple linear model under the probability

axiom constraint
∑2

j=0 βij = 1:

βij = νj(1− βii), i 6= j, (5.10)

whereνj is some weighting parameter that satisfies
∑

j 6=i νj = 1, 0 ≤ νj ≤ 1. This

implies that the sensor is able to better distinguish the true state from the other two states

and returns an higher likely observation of the true state atthat location.

5.3.2 Ternary Bayesian Updates for Search and Classification

According to Bayes’ rule, given a single observationYt(c̃) = j taken at cell̃c at time step

t, it follows that

P (X(c̃) = i|Yt(c̃) = j; t+ 1)

= ηjP (Yt(c̃) = j|X(c̃) = i)P (X(c̃) = i; t), i, j = 0, 1, 2. (5.11)

whereP (Yt(c̃) = j|X(c̃) = i) is determined by the ternary sensor model (5.8), and the

βii andβij (i 6= j) function (5.10).
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According to the law of total probability,ηj is given as follows,

ηj =
1

P (Yt(c̃) = j)
=

1

β0jP (X(c̃) = 0; t) + β1jP (X(c̃) = 1; t) + β2jP (X(c̃) = 2; t)
,

and thus the posterior probabilities is given by substituting the value ofηj into Equation

(5.11).

5.3.3 Ternary Risk-Based Sequential Decision-Making

In this section, a ternary risk-based sequential decision-making strategy is used to de-

termine the state at a cellc̃ with minimum Bayes risk. It is extended from the above

standard binary Bayesian sequential detection method [105,106,132] in signal detection

theory [105, 112, 126, 142]. The formulation for Bayes risk in ternary case is similar as

the binary case, however, it ends up with the minimum Bayes risk surface instead of min-

imum Bayes risk curve. Here only the main results are listed and a simulation at a single

cell is used to illustrate the modified methods.

The ternary conditional Bayes risk under UCA overL ≥ 0 observations is as follows:

Rj(c̃, L,∆) = Prob(decideX(c̃) 6= j|X(c̃) = j) + cobsEj [N(φ)], j = 0, 1, 2. (5.12)

If L ≥ 1, ∆ has explicit matrix form and the above equations can be rewritten as:

Rj(c̃, L,∆) = cj∆bj + cobsEj[N(φ)], j = 0, 1, 2. (5.13)

where

1. cj = [C0j C1j C2j].

2. ∆ = [∆(i, n)] is the deterministic decision rule. LetN be the total number of
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possible observation combinations(z0, z1, z2) that the sensor can take according to

the multinomial distribution (5.9) over a window ofL time steps. ForL ≥ 1, the

dimension of∆ is 3 × N . For L = 0, i.e., there are no observations taken,∆

could be ‘always decide there is no object’, ‘always decide there is an object with

Property ‘F” or ‘always decide there is an object with Property ‘G”.

3. bj is thejth column ofB = [Bij ] for L ≥ 1. ForL ≥ 1, B is aN × 3 matrix.

The ternary Bayes risk forL ≥ 0 is given as follows

r(c̃, L, π1, π2,∆) = (1− π1 − π2)R0(c̃, L,∆) + π1R1(c̃, L,∆) + π2R2(c̃, L,∆),(5.14)

whereπj = P (X(c̃) = j; t = tv), j = 0, 1, 2 is the prior probability of state being

X(c̃) = j at time instanttv when an observation is taken at cellc̃.

If the sensor does not take any observations (L = 0) and directly makes a decision,

the Bayes risks of3 different decision rules∆ are as follows

r(c̃, L = 0, π1, π2,∆ = always decide object absent) = π1 + π2,

r(c̃, L = 0, π1, π2,∆ = always decide object having Property ‘F’) = 1− π1,

r(c̃, L = 0, π1, π2,∆ = always decide object having Property ‘G’) = 1− π2.

The overall minimum Bayes risk over all possible combinations of(∆, L) is,

r∗min(c̃, π1, π2) = minL=0,1,2,...,∆∈GLr(c̃, L, π1, π2,∆).

An observation is taken if and only ifmin∆∈GLr(c̃, L ≥ 1, π1, π2,∆) < min(π1 +π2, 1−

π1, 1− π2).

The following preliminary simulation for a single cell is used to illustrate the proposed
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scheme. Fix a cell̃c and assume that the sensor is located at the centroid of this cell. The

sensing parameters are chosen as follows:

β00 = 0.8, β01 = 0.1, β02 = 0.1,

β10 = 0.2, β11 = 0.7, β12 = 0.1, (5.15)

β20 = 0.1, β21 = 0.15, β22 = 0.75.

Figure5.7(a)shows all the Bayes risk functionsr underL = 0, 1 or 2 observations under

the constraintsπi ∈ [0, 1] and
∑2

i=1 πi ≤ 1. Figure5.7(b)shows the overall minimum

Bayes risk surfacer∗min(c̃, π1, π2), which is the minimum value of allr(c̃, L, π1, π2,∆), L ≥

0, under each fixed prior probability pair(π1, π2). The overall minimum risk surface is

composed of several enumerated risk planes, each of which isdescribed briefly in this

section.
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Figure 5.7: Bayes risk surface and minimum Bayes risk surface.

Each of these risk planes in Figure5.7(b)annotated by the numerals1−10 is interpret

as follows.

Risk Plane 1.r(c̃, L = 0, π1, π2,∆ = always decide there is no object) = π1 + π2.

Risk Plane 2.r(c̃, L = 0, π1, π2,∆ = always decide object present with Property ‘F’) =
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1− π1.

Risk Plane 3.r(c̃, L = 0, π1, π2,∆ = always decide object present with Property ‘G’) =

1− π2.

Risk Plane 4. This plane corresponds to the decision rule after taking oneobservation.

The general conditional probability matrix forL = 1 is given as

B(L = 1) =




β00 β10 β20

β01 β11 β21

β02 β12 β22



,

where the rows correspond to the observations(z0 = 1, z1 = 0, z2 = 0), (z0 = 0, z1 =

1, z2 = 0), and(z0 = 0, z1 = 0, z2 = 1), respectively. Risk Plane 4 corresponds to the

following decision rule,

∆11 =




1 0 0

0 1 0

0 0 1



.

That is, decide the state according to the only one observation taken. This is the only

reasonable decision rule forL = 1. Therefore, according to Equation (5.13), it follows

thatR0(c̃, L = 1,∆ = ∆11) = β01+β02+cobs,R1(c̃, L = 1,∆ = ∆11) = β10+β12+cobs,

andR2(c̃, L = 1,∆ = ∆11) = β20 + β21 + cobs. Hence,r(c̃, L = 1, π1, π2,∆ = ∆11) is

given directly by Equation (5.14).

Risk Planes 5-10.These plane give the decision rules after two observations.The general
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conditional probability matrix forL = 2 is given as

B(L = 2) =




β2
00 β2

10 β2
20

β2
01 β2

11 β2
21

β2
02 β2

12 β2
22

2β00β01 2β10β11 2β20β21

2β00β02 2β10β12 2β20β22

2β01β02 2β11β12 2β21β22




,

where the rows correspond to the observations(z0 = 2, z1 = 0, z2 = 0), (z0 = 0, z1 =

2, z2 = 0), (z0 = 0, z1 = 0, z2 = 2), (z0 = 1, z1 = 1, z2 = 0), (z0 = 1, z1 = 0, z2 = 1),

and(z0 = 0, z1 = 1, z2 = 1), respectively. The corresponding decision rules are,

∆21 =




1 0 0 1 1 0

0 1 0 0 0 1

0 0 1 0 0 0



(5), ∆22 =




1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 0 0



(6)

∆23 =




1 0 0 0 0 0

0 1 0 1 0 1

0 0 1 0 1 0



(7), ∆24 =




1 0 0 1 1 0

0 1 0 0 0 0

0 0 1 0 0 1



(8)

∆25 =




1 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1



(9), ∆26 =




1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 1



(10)

The Bayes risks follow according to Equations (5.13) and (5.14).
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Whenr∗min is given by Risk Plane1, 2 or 3, the sensor stops taking observation and

makes the final decision, otherwise, it always takes one moreobservation.

5.3.4 The Uncertainty Map, Task Metric, and Motion Control

Let PH be the probability distribution for object absent and its classification at cell̃c at

time t and is given byPH = {P (X(c̃) = 0; t), P (X(c̃) = 1; t), P (X(c̃) = 2; t)}. Define

its information entropy as:

H(PH, c̃, t) = −
2∑

j=0

P (X(c̃) = j; t) lnP (X(c̃) = j; t). (5.16)

The maximum value attainable byH isHmax = 1.0986 whenP (X(c̃) = j, t) = 1
3
.

Define the associated cost of not carrying further search andclassification as follows:

J (t) =

∑
c̃∈DH(PH, c̃, t)

HmaxAD

. (5.17)

A dynamic observation costcobs(t) is assumed according to Equation (5.7).

Next, consider a control strategy for the sensor motion overthe mission domainD.

Combining with the Bayesian sequential decision-making strategy, it seeks to find and

classify all objects inD with a desired confidence level (i.e., achieveJ → 0) under a

dynamic observation cost and the minimum Bayes risk at everytime step. As mentioned

in Section5.3.1, it is assumed that there is no speed limit on the sensor, i.e., the sensor is

able to move to any cell withinD from its current location.

The memoryless motion control scheme presented in Section2.4.5.4is adopted here,

where the setsQH(t) andQd(t) are obtained by considering a single autonomous vehicle

sensor in Equations (2.48,2.49).
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mean percentage (%) 1− 200 201− 400 401− 600 601− 800
missed detection 40.43 34.51 17.35 7.71
false detection 43.49 25.43 21.64 9.44

incorrect classification 42.09 24.48 18.52 14.91

Table 5.1: Mean percentage of wrong decisions during different time periods.

5.3.5 Full-Scale Domain Simulations

This section provides A) a detailed numerical simulation that illustrates the performance

of the decision-making strategy, and B) a Monte-Carlo simulation comparison between

the proposed strategy and the classical fixed-sample Bayesian hypothesis testings. All the

simulations are implemented on a 2.80-GHz, i7-860m processor with 4.0GB RAM, and

Matlab-compiled codes.

5.3.5.1 Simulation Example

Consider a20 × 20 square domainD. For each̃c ∈ D, assume an i.i.d. prior probability

distribution: P (X(c̃) = 0; t = 0) = 0.7, P (X(c̃) = 1; t = 0) = 0.1, andP (X(c̃) =

2; t = 0) = 0.2. The sensing parametersβij are the same as in Equation (5.15). The

observation cost weighting parameterγ in Equation (5.7) is set as0.05 and the desired

uncertainty for every cell is0.02.

The number of objects generated for this simulation turns out to be125 (the expected

number of objects is120 according to Equation (2.29)) with 64 objects with Property ‘F’

and61 objects with Property ‘G’.

Table5.1 shows the mean percentage of missed detections, false detections, and in-

correct classifications during time period1− 200, 201− 400, 401− 600, and601− 800,

respectively.100 runs are carried out in 800 time steps with the same parametersettings

as above. From the table, most of the errors occur at the earlier stage of the mission and

the number of errors decreases with time.
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5.3.5.2 Monte-Carlo Simulation Comparison

Now a Monte-Carlo simulation is performed to compare the performance of the proposed

Bayesian sequential strategy and the classical fixed-sample Bayesian hypothesis testing

[25,105,112]. Under UCA, the fixed-sample Bayesian hypothesis testing is the maximum

a posterior (MAP) estimator. That is, the optimal decision corresponds to the state that

gives the maximum posterior probability afterL observations. Note that this is an off-line

batch technique where a decision is made if and only if all thefixedL observations have

been taken. Here it is used as a benchmark performance criterion.

From the simulation results, the expected number of observations taken at each cell

under the Bayesian sequential method is1.988. Therefore, it is reasonable to compare

the statistics of this method with1 − 4 fixed sample Bayesian hypothesis testing. Five

metrics are considered: the final achieved maximum uncertaintyHmax,tf ; the final value

for the cost functionJ (tf ); the total number of missed detectionsnm; the total number

of false detectionsnf ; and the total number of incorrect classificationsni. For each case,

100 runs are carried out. For the sake of comparison, same settings are used for object

number, positions, properties and initial position of the vehicle. All the other parameters

are as in Section5.3.5.1.

Figures5.8(a)-5.8(e)show the performance comparison of the five metrics, respec-

tively, between the fixed sample Bayesian hypothesis testings with 1,2,3,4 observations

and the Bayesian sequential detection. Table5.2summarizes the statical results. In order

to achieve similar small amount of decision errors, the fixed-sample hypothesis testing

method requiresL = 4 observations at each cell. The risk-based sequential decision-

making strategy outperforms the classical methods by 1) reducing decision errors, and 2)

minimizing observation numbers. Therefore, according to Equations (5.13) and (5.14),

under UCA, the proposed strategy leads to minimum Bayes riskwithin a same perfor-

mance level.
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Figure 5.8: Performance comparison.

5.4 Application to Space Situational Awareness

This section examines the problem of detecting and classifying objects in Earth orbit

using a Space-Based Space Surveillance (SBSS) network. A SBSS system uses a com-

bination of ground- and space-based sensors to monitor activities over a range of space

orbits from low earth orbits up to an altitude higher than thegeosynchronous orbit. The

ternary risk-based sequential decision-making strategy developed in Section5.3is applied

to object detection and classification using multiple range-angle sensors with intermittent

information-sharing. The objective is to determine whether an object exists at a certain
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Hmax,tf J (tf) nm nf ni

L = 1 1.68E-2 2.85E-3 64.49 30.99 20.51
L = 2 5.08E-3 1.7E-4 18.72 12.09 8.48
L = 3 0 2.55E-5 12.02 7.43 2.91
L = 4 0 4.39E-6 6.41 4.63 2.74

Sequential 1.18E-3 8.86E-5 9.07 3.98 2.15

Table 5.2: Performance comparison.

location (a cell in a discretization of the search space) or not, and, if an object exists, what

type it belongs to. This is a nontrivial extension since, firstly, both the space-based sen-

sors and the objects of interest are now constantly in orbital motion. Secondly, the search

space is non-cartesian and will be discretized using a polarparametrization. Thirdly,

the results for a single sensor vehicle in Section5.3 are extended to a SBSS network in

which multiple sensors share information intermittently whenever sensors come within

each other’s communication range.

The problem is formulated in a simplified two-dimensional setting where the SBSS

system is composed of four ground-based sensors and a space-based orbiting sensor satel-

lite. This is done in order to reduce computational complexity while retaining the basic

nontrivial elements of the problem. It will be shown that direct application of the pro-

posed scheme will result in perfect detection and classification results for any object that

exists in a geosynchronous orbit as long as it (at least) intermittently penetrates the field-

of-regard of at least one sensor in the SBSS network. This is because, as observed in an

earth-fixed coordinate frame, objects in geosynchronous orbit appear to be immobile. For

objects in non-geosynchronous orbits, the assumption of immobility no longer holds and

performance of the proposed approach significantly degrades.
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5.4.1 Literature Review on SSA

Space Situational Awareness (SSA), that is, the monitoringof activities surrounding in-

or through-space operations and the assessment of their implications, has received a great

deal of attention in recent years, which was motivated initially by the publication of the

Rumsfeld Commission Report [111]. More recently, the needs to keep track of all objects

orbiting Earth has greatly increased due to the desire to prevent collisions, increased radio

frequency interference, and limited space resources. NASAwants all objects as little as

1 cm to be tracked to protect the International Space Station, which would increase the

number of tracked object from 10,000 to over 100,000 [3].

There are multiple decompositions of what SSA represents; from a capabilities point

of view, SSA includes such things as:

• the ability to detect and track new and existing space objects to generate orbital

characteristics and predict future motion as a function of time;

• monitoring and alert of associated launch and groundsite activities;

• identification and characterization of space objects to determine country of origin,

mission, capabilities, and current status/intentions;

• understanding of the space environment, particularly as itwill affect space systems

and the services that they provide to users; and

• the generation, transmission, storage, retrieval, and discovery of data and informa-

tion produced by sensor systems, including appropriate tools for fusion/correlation

and the display of results in a form suitable for operators tomake decisions in a

timeframe compatible with the evolving situation.

An excellent summary of the current system used by the UnitedStates to perform

the detection and tracking functions of SSA, the Space Surveillance Network (SSN), is
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Figure 5.9: Planar model of orbital sensor platform.

contained in [88], which includes current methods for tasking the network aswell as

proposed improvements.

5.4.2 System Model and Dynamics

System Model. Assume a uniform, spherical Earth. Figure5.9shows an example of the

planar orbital sensor platform for the detection and classification of space objects used in

this work.

Consider a network ofNa sensors andNo objects. LetS = {V1,V2, ...,VNa} represent

the set of sensors, that is, an entity that will accept the detection and classification tasks

and will produce data and information. LetO = {O1,O2, ...,ONo} represent the set of

objects, that is, an entity that is not controllable or able to be tasked, and furthermore

which it is desired to establish information about.

The ground-based sensors are stationary with respect to an earth-fixed frame. The
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dynamics of motion for ground-based sensors are as follows:

ṙsi = 0, (5.18)

θ̇si = ωE,

wherersi andθsi are the polar coordinates centered at the Earth for sensori, andωE is

the Earth’s angular velocity. The space-based sensors follow Keplerian motion with the

dynamics in polar form given by

ṙsi =

√
µ

asi (1− (esi )
2)
esisin(θsi − ωs

i ), (5.19)

θ̇si =

√
µ

asi (1− (esi )
2)

1 + esicos(θsi − ωs
i )

rsi
,

whereµ is the Earth’s gravitational parameter and equals to398, 600km3/s2, asi is the

semi-major axis,esi is the eccentricity,ωs
i is the argument of perigee, andθsi − ωs

i gives

the true anomaly.

All objects to be detected and classified are assumed to be in orbit, and thus

ṙoj =

√
µ

aoj(1− (eoj)
2)
eojsin(θoj − ωo

j ), (5.20)

θ̇oj =

√
µ

aoj(1− (eoj)
2)

1 + eojcos(θoj − ωo
j )

roj
, j ∈ O .

Here the mission domainD ⊂ R
2 is defined as the planar space domain from the

Earth’s surface up to an altitude higher than the geosynchronous orbit in which objects

to be found and classified are located. The domain is discretized in polar coordinates as

shown in Figure5.9. Defineroj = (roj , θ
o
j ) as the polar position of objectj.

This work focuses on the detection and classification of objects located in geosyn-

chronous orbits, and hence the ternary stateX(c̃) introduced in Section5.3.1is invariant
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with respect to time. For objects not in geosynchronous orbit, X(c̃) will change with

time as objects enter and leave cells. Hence, the actual state with respect to every cell̃c

becomes a random process. To emphasize this time dependence, the state will be denoted

byXt(c̃).

Sensor Model. Assume that the sensors are simple range-angle sensors [34]. First de-

fine

ρ(rsi , r
o
j) = ‖rsi − roj‖, (5.21)

ψ(rsi , r
o
j) = cos−1

(
rsi · (rsi − roj)

rsi ‖rsi − roj‖

)
.

For the sake of brevity, the following shorthand notation will be usedρij , ρ(rsi , r
o
j) and

ψij , ψ(rsi , r
o
j).

For each sensori ∈ A, define its maximum range asΥi and its maximum angle span

asΨi. The sensors are restricted to generate data only within a limited field-of-regard,

e.g., an area around the sensor’s position that it can effectively detect and classify objects

within. Denote this area asΓi and define its boundary as the area swept out by a ray

of lengthΥi relative to the sensor’s current position and an angleΨi measured in both

directions from the local vertical direction at the sensor location. Thus

Γi = {r = (r, θ) : ρ(rsi , r) ≤ Υi andψ(rsi , r) ≤ Ψi}. (5.22)

These quantities are illustrated in Figure5.10. For ground-based sensors, which are lim-

ited by the local horizon,−π
2
≤ Ψi ≤ π

2
. For space-based sensors, assuming they are

allowed to arbitrarily re-orient their sensor payloads, would allow−π ≤ Ψi ≤ π. Each

sensor is assumed to have a ternary discrete probability distribution within its sensory area

Γi. Same detection probability is assumed everywhere withinΓi. Despite this, the simple
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Figure 5.10: Model for the range-angle sensor.

range-angle sensor model presented here is consistent withthe limited-range vision-based

sensor model considered in Section2.2.3.1.

Communication Model. Two sensors can communicate with each other if they are

within the communication region of one another and a line of sight between them ex-

ists. The neighbors of a sensori are all sensors within the communication regionΓc
i of i.

Γc
i can be modeled in a similar way as the sensor’s field-of-regard Γi given by Equation

(5.22). Assume that the communication link is error free whenevera channel is estab-

lished. Future work will focus on the case where the communicated state is subject to

communication channel errors.

In this work, whenever a communication link between two sensors is established,

each sensor is assumed to have access to all the current observations from its neighboring

sensors. Any previous observation from sensori’s neighbors in setGi(t) at the current

time step does not contribute to the state estimate associated with it at that time instant.

The sensor updates its state estimate through data fusion (to be discussed soon) and makes

a decision based on the posterior. Another fusion techniquethat one can apply is the

decision fusion approach [14, 128]. Each sensor sends its neighbors a local decision

derived by independent processing of its own observation. Some optimal decision rule
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is then used to fuse these local decisions. Due to the relatively lower amount of data to

be transmitted, the decision fusion technique results in lower communication cost and

higher data quality. Future work will extend the current results to an optimal decision

fusion framework.

5.4.3 Decision-Making for Detection and Classification in Space

The ternary Bayesian sequential risk analysis developed inSection5.3 is used as the

decision-making strategy for detection and classificationof space objects. The observa-

tion costcobs > 0 is assigned each time the sensor makes a new observation. This is

because when a sensor makes an observation it is active and that withdraws power, which

is a valuable resource, from the satellite. When all cells within a sensor domain are sat-

isfactorily decided upon, the sensor can then be put in standby mode to save energy. In

future work, when allow for the sensors to be non-omnidirectional and have control over

the look direction of the sensor,cobs will include both energy costs and costs associated

with observing one group of cells at the cost of ignoring others.

Bayes’ rule is employed to update the probability of object absence (X(c̃) = 0), object

having Property ‘F’ (X(c̃) = 1), or object having Property ‘G’ (X(c̃) = 2) associated

with a particular sensorVi at cellc̃, based on observation taken by sensors in the setGi(t)

through intermittent communications.

Consider the Bayesian probability update equations given an observation sequence

Ȳ i
t (c̃) = {Vj ∈ Gi(t) : Yj,t(c̃), } available to sensori at time stept. According to Bayes’

rule, for each̃c, it follows that

Pi(X(c̃) = k|Ȳ i
t (c̃); t+ 1) = ηiPi(Ȳ

i
t (c̃)|X(c̃) = k)Pi(X(c̃) = k; t), k = 0, 1. (5.23)

Section2.4.5.1in Chapter2 gives the detailed derivation and final expression for the
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above Bayes update equation. The information entropy function Hi (5.16) is used to

measure the uncertainty level of object detection and classification. Here the subscripti

is used to indicate that this level of uncertainty is associated with vehicle sensorVi.

The ground-based sensors take observations at certain fixedcells within their sensory

area, while the space-based sensors follow the motion dynamics given by Equation (5.19)

and travel through different cells with time. When a space-based sensorVi leaves a cell,

whether it made a decision or not, the uncertainty levelHi at this cell remains constant

until the sensor comes back when possible. This is repeated until the uncertainty of the

cell is within a small neighborhood of zero, i.e, when the detection and classification task

is completed.

5.4.4 Simulation Results

Figure5.11 shows the initial deployment of the space system architecture used in this

simulation. The Earth is indicated by the green solid disc located at the origin of the

polar coordinate system. The radius of the geosynchronous orbit rGEO = 42, 157 km is

represented by the green circle. Discretize the space extending from the Earth’s surface

up to an altitude of43, 629 km into 120 cells as shown in the figure. One space-based

sensor and four ground-based sensors are indicated by the blue stars. The magenta ellipse

shows the orbital trajectory of the orbiting sensor1. For the sake of simplicity in the

simulation, it is assumed thatΓc
i = Γi for all sensors and are indicated by the yellow areas.

The sensors communicate with each other and fuse their observations whenever they are

within each other’s communication region. The objects to bedetected and classified are

indicated by the diamond shapes, where the objects having Property ‘F’ are in black, and

the object having Property ‘G’ is in red.

The orbital motions of the sensors and objects in the space system are simulated for 2

sidereal days. Figure5.12(a)shows the probability of object1 on geosynchronous orbit
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Figure 5.11: Space system architecture.

(cell 19) having property ‘G’P1(X(c̃) = 2|Ȳ 1
t ; t + 1) and its corresponding uncertainty

functionH1(P1(c̃19, t)) associated with the space-based sensor1. Figure5.12(b)shows

P2(X(c̃) = 2|Ȳ 2
t ; t + 1) andH2(P2(c̃19, t)) associated with the ground-based sensor2.

Because object 1 is constantly within the field-of-regard ofsensor2, the probability and

uncertainty converge very quickly as shown by Figure5.12(b). The space-based sensor

1 does not pass through cell19 until after 1 day 11 hours and 37 minutes, hence the

probability and uncertainty begin to evolve right after that time instant and also converge

as shown by Figure5.12(a).

Figure5.13shows the probability of object2 on the geosynchronous orbit (cell59)

having property ‘F’P1(X(c̃) = 1|Ȳ 1
t ; t + 1) and its corresponding uncertainty function

H1(P1(c̃59, t)) associated with the space-based sensor1. Note that the space satellite1

is the only sensor that can have view ofO2 in the SBSS network. BecauseO2 enters its

field-of-regard after 3 hours 50 minutes, the probability and uncertainty converge after

that as shown by Figure5.13. From the above results, it is shown that the objects on

geosynchronous orbit can be detected and satisfactorily classified under the proposed
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Figure 5.12: Detection and classification results ofV1 andV2 for O1.
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Figure 5.13: Detection and classification results ofV1 for O2.

approach because they appear to be immobile as viewed from anEarth-fixed frame.

Now investigate the performance for objects on non-geosynchronous orbits. For ex-

ample, object3 has entered and left cell61 (within sensor1’s field-of-regard) and cell

41 (within sensor3’s field-of-regard) during the entire period. Figure5.14(a)shows the

probability of object absenceP1(X(c̃) = 0|Ȳ 1
t ; t+1) at cell61 and the corresponding un-

certainty functionH1(P1(c̃61, t)) associated with the space-based sensor1. Figure5.14(b)

showsP3(X(c̃) = 0|Ȳ 3
t ; t+ 1) andH3(P3(c̃41, t)) associated with the ground-based sen-

sor3 at cell41. Because object 3 is not on GEO orbit, its position varies with respect to

any discretized cell. The probability of object absence is decreased whenever an object

passes through the cell within a sensor’s field-of-regard and increases when the object is

out of sight as shown by Figure5.14. Once the probability of object absence approaches
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Figure 5.14: Detection and classification results ofV1 andV3 for O3.
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Figure 5.15: Detection and classification results ofV1 andV5 for O4.

1 at a cell, it will not decrease any more even if an object passes through it. Figure5.15

shows similar results for object 4, which is also not on GEO orbit. Therefore, as antic-

ipated, it is concluded that the proposed method does not guarantee good performance

for the detection and classification of non-geosynchronousobjects which are mobile as

viewed from an Earth-fixed frame. A nonidentity transitional probability matrix for a

dynamic Markov chain will be used to model the object mobility in future work.
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Chapter 6

Risk-Based Sensor Management for

Integrated Detection and Estimation

The previous chapters discuss both deterministic and probabilistic decision-making strate-

gies for domain search and object classification given limited sensory resources. In par-

ticular, risk-based sequential analysis is presented for the detection and classification of

unknown objects of interest, where the states of object existence and its classification

are treated as discrete random variables. This chapter develops an optimal sensor man-

agement scheme for integrated detection and estimation under limited sensory resources

in the presence of uncertainties. This work involves both hypothesis testing for discrete

random variables and estimation for continuous random variables. Based on Bayesian

sequential detection for discrete random variables introduced in Chapter5, the results are

extended to Bayesian sequential estimation for continuousrandom variables. Both parts

are integrated into a unified risk-based decision-making scheme, which facilitates optimal

resource allocation across multiple tasks that are competing for the same limited sensory

resources. The objective is to effectively detect and satisfactorily estimate every unknown

state of interest within a mission domain while minimizing the risk associated with the
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sensing allocation decisions.

The organization of this chapter is as follows. Section6.1 reviews the literature on

sensor management and summarizes the contribution of this chapter. Next, a brief review

of the Bayesian sequential detection for discrete random variables is provided in Section

6.2. Its extension to Bayesian sequential estimation for continuous random variables is

developed in Section6.3. The expressions in Section6.2 is reformulated to be consistent

with Section6.3. Sections6.4and6.5 present the key results of this chapter. In Section

6.4, the Bayesian sequential detection and estimation methodsare extended to multiple

elements (cells for detection, process for estimation). A risk-based sensor management

scheme for integrated detection and estimation of multipleelements is developed in Sec-

tion 6.5. Measures of expected information gain for both detection and estimation are

also discussed. The Rényi information divergence is introduced as a measure of the rela-

tive information loss, which is used to define the dynamic observation cost, in making a

suboptimal sensor allocation decision. In Section6.6, a numerical simulation is presented

to confirm the effectiveness of the proposed sensor management scheme.

6.1 Introduction

In the realm of sensor network management, detection and estimation in the presence of

uncertainties in both sensing and process dynamics are challenging tasks. Applications

include but are not limited to using UAVs for fire detection and temperature estimation in

aerial wild fire control [102], aerial search and tracking [82], space situational awareness

(SSA) for the detection and categorizing of critical space objects [141], and chemical leak

detection and concentration estimation in emergency responses to Chemical, Biological,

Radiological and Nuclear, Explosive (CBRNE) incidents. Inaerial wild fire control, for

example, given limited sensing capabilities, the prompt detection of multiple distributed
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fire sources and the accurate estimation of the heat equationthat governs the fire are key

to mission success1. It is crucial to manage sensors in a way such that detection and

estimation tasks are effectively assigned across search domain partitions and the detected

processes to be estimated. This is especially true when the sensing resources are limited.

More specifically, it is assumed that the sensors used for detection are the same ones

used for estimation, albeit operated in different sensing modes. At every point in time,

the sensor has to judge whether the currently available information is enough to make a

detection or estimation decision. Once such a decision is made, a specification of where

to search or what to estimate at the next time step has to be made. Considering the very

limited sensory resources, these decisions need to be made in order to minimize risk, i.e.,

the optimal tradeoffs between the desired detection/estimation accuracy and the sensing

costs paid to achieve it.

There is a rich literature on sensor management and task allocation. Among many

other ad hoc architectures, one large category utilizes market-based auction algorithms

for multi-robot coordination and task allocation (see [19,45,118] and references therein).

In that literature, the proposed algorithms are deterministic rules assuming perfect sensing

and communication links. The auction decisions across different tasks do not compete for

sensory and/or communications resources. Another category of sensor management for

multi-target tracking is driven by information theoretic measures [52,70,80]. The prob-

lem is formulated in a Bayesian framework and the sensor scheduling depends on the

corresponding expected gain in information. However, the objective in these approaches

is to maximize the expected information gain, or equivalently, to minimize the informa-

tion uncertainty, by optimally selecting the targets to be tracked. Hence, the risk (i.e., the

expected costs of the allocation decisions) associated with different sensing actions is not

1If the process represents an object’s position and velocitydynamics as in the domain search and object
tracking problems, then it is assumed that the object can notleave its search domain partition. Future
work will extend the results to the detection and tracking ofmobile objects that move from one partition to
another.
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taken into account.

Chapter5 investigates the problem of object search and classification treated as two

competing tasks, which only requires the detection with respect to discrete random vari-

ables based on the assumption of stationary objects. For theintegrated detection and

estimation problem presented in this chapter, a single or multiple sensors are used to per-

form the detection of discrete random variables concurrently with the estimation of some

other continuous random variables. First, the Bayesian sequential detection is utilized to

address the detection problem. For estimation, the Bayesian sequential detection is ex-

tended to the Bayesian sequential estimation for continuous random variables [46]. The

risk analysis for integrated detection and estimation requires the comparison of expected

information gains for a hybrid mix of discrete (for detection) and continuous (for estima-

tion) random variables. Here, the Rènyi information measures [52,108] is used to model

the information gained by making a certain sensor allocation decision. The relative in-

formation loss in making a suboptimal allocation decision is used to define the dynamic

observation cost.

The main contribution of this chapter isthe integration of Bayesian sequential detec-

tion and estimation for a risk-based sensor management scheme given limited sensory

resources and uncertainties in both state and observation models.

6.2 Bayesian Sequential Detection

6.2.1 Problem Formulation

Denote the existence state asX, which is equal to 1 if a process exists within a given

region and 0 if no process exists. The existence stateX is modeled as a discrete-time,

time independent Markov chain, where the transitional probability matrix is given by the
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identity matrix since it is assumed that the processes are with restricted mobility within the

domain partition they occupy. LetYt be the observation random variable. The Bernoulli

type sensor model in Section2.4.1is used with detection probabilityβ.

Denote the probability of process existence byProb(X = 1; t) ≡ pt. Let p̄t+1 ≡

Prob(X = 1; t + 1|Y1:t) be the predicted conditional probability andp̂t ≡ Prob(X =

1; t|Y1:t) be the updated conditional probability. The notationc̃ is omitted inX(c̃) with

the understanding that the state is associated with an element (cell for detection in this

section and object for estimation). Assuming identity transitional probability matrix, the

following prediction step holds:

p̄t+1 = p̂t. (6.1)

At time t, the update step is as follows:

p̂t =





βp̄t
(1−β)(1−p̄t)+βp̄t

if Yt = 1

(1−β)p̄t
β(1−p̄t)+(1−β)p̄t

if Yt = 0
. (6.2)

This is consistent with Equation (2.33).

6.2.2 Bayesian Sequential Detection

The goal of Bayesian sequential detection is to determine the actual state of process exis-

tenceX with minimum risk given a sequence of observations up to timet. The Bayesian

sequential detection method in Chapter5 is used here. Below, a brief review of the method

is given, however, with the formulation consistent with theBayesian sequential estima-

tion method to be developed in Section6.3. A set of simulation results are also provided

to study the characteristics of the proposed method.
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6.2.2.1 Decision Cost Assignment

First introduce the hypotheses:H0: the null hypothesis thatX = 0; andH1: the alterna-

tive hypothesis thatX = 1. Define the cost of accepting hypothesisHi when the actual

existence state isX = j asCij . Using a Uniform Cost Assignment (UCA), the decision

cost matrix is modified as follows

Cij =





0 if i = j

cd(τ) if i 6= j
, τ ≥ 0,

wherecd(τ) > 0 is the cost of making the wrong detection decision at timeτ ≥ 0

indicating the number of observations. To be consistent with the Bayesian sequential

estimation method developed later, here the deterministicdecision rule∆ is renamed as

the detection estimator̂Xt+τ . It maps a sequence of observationsY1:t+τ into a decision to

acceptH0 orH1, τ ≥ 0. Let the notationC(X̂t+τ (Y1:t+τ ), Xt+τ ) denote the cost of using

estimatorX̂t+τ given that the actual state of existence at timet+ τ isXt+τ .

6.2.2.2 Detection Decision-Making

Restrictingτ ≤ 1, there ends up to be six possible detection estimators and their corre-

sponding Bayes risksr follow the procedures provided in Section5.2.2:

r(X̂1
t , τ = 0) = cd(0)p̂t. (6.3)

r(X̂2
t , τ = 0) = cd(0)(1− p̂t). (6.4)

r(X̂1
t+1(Yt+1), τ = 1) = cd(1)p̄t+1 + cobs. (6.5)

r(X̂2
t+1(Yt+1), τ = 1) = cd(1)(1− p̄t+1) + cobs. (6.6)

r(X̂3
t+1(Yt+1), τ = 1) = cd(1)(1− β) + cobs. (6.7)

r(X̂4
t+1(Yt+1), τ = 1) = cd(1)β + cobs. (6.8)
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The goal is to choose a combination ofX̂t+τ and observation numberτ that minimizes

the Bayes risk. That is, the optimal decision is the one that gives the minimum risk:

r∗(p̄t+τ ) = minX̂t+τ ,τ
r(X̂t+τ (Yt+τ ), τ).

Here,r(X̂1
t , τ = 0) andr(X̂2

t , τ = 0) correspond to making a detection decision at cur-

rent cell without any further observation. Equations (6.5)-(6.8) correspond to postponing

the decision and taking one more observation.

6.2.2.3 Simulation Results

In this section, the proposed optimal detection method is studied by varying the initial

prior p̄t=0, sensor detection probabilityβ, and observation costcobs, respectively. The

actual state of existence is assumed to beX = 1 and random binary observations are

taken. For every parameter choice, 30 simulations were run.

Varying Initial Prior Probability Figure6.1(a)shows the minimum Bayes risk curve

with β = 0.6, cobs = 0.05 andcd(0) = 1, cd(1) = 0.3 under different choices of initial

priors p̄0 = 0.2, 0.5, 0.7. Figure6.1(b)shows the updated probabilitŷpt as a function of

time with initial prior probability0.2 (red),0.5 (blue), and0.7 (green), respectively. The

two magenta horizontal lines correspond to the threshold probabilitiesπL andπU . Table

6.1summarizes the statistical results of the simulation. Notethat the minimum Bayes risk

is the same in all the cases because the initial prior probability does not affect the value of

the Bayes risk functions. Comparing the results, it can be seen that with a relatively better

knowledge ofX initially, the number of missed detections is lower and optimal decisions

are made faster on average.
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Figure 6.1: Minimum Bayes risk curve and updated probability.

p̄0 πL πU E[p̂t] Prob(missed detection)Avg. observations
0.2 0.0714 0.9286 0.7330 16.67% 31.7667
0.5 0.0714 0.9286 0.9151 3.33% 33.0667
0.7 0.0714 0.9286 0.9169 3.33% 29.1333

Table 6.1: Varying initial prior probability.

Varying Sensor Detection Probability Table6.2 summarizes the statistical results of

varyingβ. Other parameters are set asp̄0 = 0.5, cobs = 0.05 andcd(0) = 1, cd(1) = 0.3.

As can be seen in Table6.2, a sensor with a very high detection probability (β = 0.8) or

a very low detection probability (β = 0.3) outperforms a sensor with a value ofβ close

to 0.5 and makes an optimal decision faster on average. This is because the proposed

method depends on the sensor model. If the sensor quality is low, the optimal decision

will be to accept the hypothesis that is opposite to the observed value ofY . However, if

the detection probability is close to0.5, i.e., the sensor returns a true or false observation

with equal probability, more observations need to be taken before an optimal decision

with minimum risk can be reached.

Varying Observation Cost Table6.3summarizes the statistical results of varyingcobs.

Other parameters are set asp̄0 = 0.5, β = 0.6 andcd(0) = 1, cd(1) = 0.3. As can be seen
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β πL πU E[p̂t] Prob(missed detection)Avg. observations
0.3 0.0714 0.9286 0.9362 3.33% 11.0667
0.6 0.0714 0.9286 0.8854 6.67% 35.8000
0.8 0.0714 0.9286 0.9118 3.33% 3.7333

Table 6.2: Varying sensor detection probability.

cobs πL πU E[p̂t] Prob(missed detection)Avg. observations
0.01 0.0143 0.9857 0.9886 0% 51.0000
0.05 0.0714 0.9286 0.8854 6.67% 27.4000
0.1 0.1429 0.8571 0.7558 16.67% 23.6667

Table 6.3: Varying observation cost.

in Table6.3, with lower observation cost, the threshold probability isclose to either0 or

1, which implies that the sensor tends to take more observations until it reaches higher

confidence level and ends up with more correct optimal decisions on average.

6.3 Bayesian Sequential Estimation

6.3.1 System Model: Single Sensor and a Single Process

In this section Bayesian risk analysis tools is developed for sequential Bayesian esti-

mation. Consider a linear system for a continuous random variable, which satisfies the

discrete-time Markov chain model:

xt+1 = Ftxt + vt,

yt = Htxt +wt,

where the first equation defines the evolution of the process state sequence{xt ∈ R
n, t ∈ N},

Ft ∈ R
n×n is the process state matrix,{vt ∈ R

n, t ∈ N} is the i.i.d. Gaussian pro-

cess noise sequence with zero mean and positive semi-definite covarianceQt ∈ R
n×n,
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{yt ∈ R
m, t ∈ N} is the measurement sequence,Ht ∈ R

m×n is the output matrix, and

{wt ∈ R
m, t ∈ N} is the i.i.d. Gaussian measurement noise sequence with zeromean

and positive definite covarianceRt ∈ R
m×m. The initial condition for the process state

is assumed Gaussian with meanx̄0 and positive definite covarianceP0 ∈ R
n×n. It is

assumed that the initial process state, process noise, and measurement noise are all un-

correlated.

6.3.2 Sequential State Estimation

In sequential estimation decision-making, it will be assumed that a suitable estimator has

been constructed (here will use the Kalman filter) and the only decision to be made is

whether to accept the estimate as the true state (and, hence,stop taking additional mea-

surements) or to take (at least) one more measurement. Hence, the list of decisions are: (1)

accept the estimate and stop taking measurements, and (2) take one more measurement.

6.3.3 The State Estimation Problem

For the estimation problem, the Kalman filter will be used since it is the optimal filter

for linear Gaussian systems. At time stept, the process state and error covariance matrix

prediction equations are given by [44]

x̄t = Ft−1x̂t−1,

P̄t = Qt−1 + Ft−1P̂t−1F
T
t−1, (6.9)

wherex̂t−1 is the process state estimate update at timet given measurements up to time

t−1 andP̂t−1 is the error covariance update up to timet−1. The posterior state estimate

168



is given by:

x̂t = x̄t +Kt (yt −Htx̄t) , (6.10)

and the posterior error covariance matrixP̂t is given by:

P̂t = (I−KtHt) P̄t. (6.11)

In the above equationsI is the identity matrix of dimensionn × n andKt is the Kalman

gain:

Kt = P̄tH
T
t

(
HtP̄tH

T
t +Rt

)−1
. (6.12)

6.3.3.1 Estimation Error Cost assignment

Let xe
t (yt) be an estimator, i.e., computed estimate, of the actual process statext based

on observationyt. Omit the dependence onyt for notational brevity. Define the cost of

accepting the estimatexe
t given the actual process statext asC(xe

t ,xt). SetC(xe
t ,xt) =

ce(τ) ‖xe
t − xt‖2 (quadratic cost withce(τ) > 0 being someτ -dependent cost value and

τ ≥ 0 indicating the number of future observations), or the Uniform Cost Assignment:

C(xe
t ,xt) =





0 ‖xe
t − xt‖ ≤ ε

ce(τ) ‖xe
t − xt‖ > ε

, (6.13)

whereε > 0 is some preset small interval. In this work, forxe
t , the updated Kalman Filter

estimatêx is used.
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6.3.3.2 Estimation Decision-Making

At time t, after making a measurementyt, if it is decided not to take any more measure-

ments, the Bayes risk is defined as the expected value (over all possible realizations of

the process state, conditioned on all previous measurements) of the cost of choosing the

estimatêxt:

r(x̂t, τ = 0) = Ext|y1:t [C(x̂t,xt)] =

∫
C(x̂t,xt)p(xt|y1:t)dxt. (6.14)

If assuming a quadratic cost assignment, it follows that

r(x̂t, τ = 0) =

∫
ce(0)‖x̂t − xt‖2p(xt|y1:t)dxt =

∫
ce(0)

n∑

i=1

(x̂it − xit)
2p(xt|y1:t)dxt

= ce(0)Tr
[
P̂t

]
,

wherece(0) > 0 is the estimation cost when the sensor does not take an observation (i,e.,

τ = 0), andx̂it andxit are theith component of̂xt andxt, respectively.

The (expected) risk associated with taking more observations (τ ≥ 1) also needs to be

computed. Since there are no measurements over time periodt+ 1 : t+ τ yet, define the

conditional risk,Rxt+1:t+τ (x̂t+τ (yt+1:t+τ ), τ) over all possible measurement realizations

overt+ 1 : t+ τ given the process statext+τ at timet+ τ as

Rxt+1:t+τ (x̂t+τ (yt+1:t+τ , τ))

= Eyt+1:t+τ |xt+1:t+τ [C(x̂t+τ (yt+1:t+τ ),xt+τ )] + κτcobs

=

∫
C(x̂t+τ (yt+1:t+τ ),xt+τ )p(yt+1:t+τ |xt+1:t+τ )dyt+1:t+τ + κτcobs,

whereκ > 0 is some scaling parameter. The Bayes risk is defined as the weighted

conditional riskRxt+1:t+τ , weighted by the predicted density functionp(xt+1:t+τ |y1:t) at
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time t+ 1 : t+ τ :

r(x̂t+τ (yt+1:t+τ ), τ)

= Ext+1:t+τ |y1:t

[
Rxt+1:t+τ (x̂t+τ (yt+1:t+τ ), τ)

]

=

∫
Rxt+1::t+τ (x̂t+τ (yt+1:t+τ ), τ)p(xt+1:t+τ |y1:t)dxt+1:t+τ

=

∫ ∞

−∞

p(xt+1|xt+2:t+τ ,y1:t+τ )dxt+1 . . .p(xt+τ−1|xt+τ ,y1:t+τ )dxt+τ−1

C(x̂t+τ (yt+1:t+τ ),xt+τ )p(xt+τ |y1:t+τ )dxt+τp(yt+1:t+τ |y1:t)dyt+1:t+τ + κτcobs.(6.15)

If choosing a quadratic error cost assignment, the Bayes risk is given by

r(x̂t+τ (yt+1:t+τ ), τ) =

∫
ce(τ)‖x̂t+τ − xt+τ‖2p(xt+τ |y1:t+τ )dxt+τ + κτcobs

= ce(τ)Tr
[
P̂t+τ

]
+ κτcobs. (6.16)

Note that all the information required to computeP̂t+τ is available at timet.

If choosing a UCA, then there is no closed-form expression for r unless the dimension

of the process state is one, in which case the Bayes risk is given by

r(x̂t+τ (yt+τ ), τ) = ce(τ)


1− Erf


 ε

2

√
2P̂t+τ




 + κτcobs, τ = 0, 1, (6.17)

where

Erf(·) = 2√
π

∫ (·)

0

e−t2dt

is the error function andε is an error bound as indicated in Equation (6.13). For higher-

dimension process state under UCA, the computation ofr can be performed using Monte

Carlo approximation techniques.
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Since the optimal filter under linearity and normality assumptions is already deter-

mined by the Kalman filter, the only parameter to be optimizedover is the observation

numberτ . The optimal decision corresponds to a particular observation numberτ ∗ that

yields minimum Bayes risk:

τ ∗ = argminτr(x̂t+τ , τ).

Remark.

• Note that the Bayes risk is evaluated over all possible future realizations of the state

xt+1:t+τ since the current prior is a sufficient statistic [46].

• Under the quadratic cost assignment, since the Kalman filteris used for estimation,

an expression for the estimation risk forτ ≥ 1 is easily obtained (Equation (6.16)).

However, there is no general formula for detection risk. This is because the optimal

estimator for Bayesian sequential detection is unspecifiedand dynamically chosen

in real-time from multiple candidates based on observationvalues, and is itself a

function of the uncertainty in the detection process.

• To be consistent with Bayesian sequential detection, onlyτ = 0, 1 in Equation

(6.16) or Equation (6.17) will be used for estimation. •

6.3.3.3 Simulation Results

In this section, the Bayesian sequential estimation methodis applied on a time-invariant

linear process and the performance is studied by varying theprocess noise covariance

Q, measurement noise covarianceR, and observation costcobs, respectively. UCA is

assumed with error boundε = 0.1.
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Varying Process Noise Covariance Figure6.2shows the estimation error between the

actual process statex and the state estimatêx under different process noise covariances,

where the blue lines correspond toQ = 0.001, the red lines correspond toQ = 0.03, and

the black lines correspond toQ = 0.5. The initial mean and covariance of the state is

x̄0 = 5 andP0 = 1, respectively. The state matrix isF = 0.8, the output matrix isH = 1,

and the measurement noise covariance isR = 0.1. The observation cost iscobs = 0.02.

The process estimate gets updated when the sensor takes an observation. In the figure,

squares are used to indicate the time steps when observations are taken and switch to

circles when observations are no longer being taken. Beyondthe switching point, which

is indicated by a star, the state estimate is simply propagated without any state updates

(since no new observations are made). As seen from the figure,when the process noise is

larger, more observations need to be taken before an estimation could be accepted as the

actual state with minimum risk.
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Figure 6.2: Estimation error under differentQ.

Varying Measurement Noise Covariance Figure6.3 shows the estimation error be-

tween the actual statex and the estimate of the processx̂ under different measurement

noise covariances, where the blue line corresponds toR = 10, the red line corresponds

toR = 0.1, and the black line corresponds toR = 0.01. The initial mean and covariance
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of the state is̄x0 = 2 andP0 = 0.8, respectively. The state matrix isF = 0.7, the

output matrix isH = 1, and the process noise covariance isQ = 0.01. The observation

cost iscobs = 0.01. As seen from the figure, as the measurement noise gets larger, more

observations need to be taken before an estimation with minimum risk is accepted as the

optimal decision.
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Figure 6.3: Estimation error under differentR.

Varying Observation Cost Figure6.4 shows the estimation error between the actual

statex and the estimate of the statex̂ under different observation costs, where the blue

line corresponds tocobs = 0.001, the red line corresponds tocobs = 0.01, and the black

line corresponds tocobs = 0.1. The measurement noise covariance isR = 0.1 and all

other system parameters are the same as those in the case of varyingR. As seen from the

figure, the sensor tends to take more observations before accepting an estimation as the

true state when the observation cost is lower.

6.4 Extension to Multiple Elements

Now apply the Bayesian sequential detection for a discrete random variable in Section

6.2to the detection of a possible process at cellc̃j in the domainD. That is, to determine
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Figure 6.4: Estimation error under differentcobs.

if X(c̃j) = 0 or 1. Similarly, the Bayesian sequential estimation for a continuous random

variable in Section6.3 is applied to decide whether to accept the estimates (the updated

process statêxj) of every detected processc̃j if the existence state at cellc̃j isX(c̃j) = 1.

Here, the discrete stateX(c̃j) = 1 could correspond, for example, to the existence of

a fire in a forest domain cell with the continuous process to beestimated being a finite

dimensional model of the diffusion equation within this cell.

First consider the Bayes detection risks at a cellc̃j. The risks associated with making

a detection decision at̃cj at the current time stept do not change in multi-element case

because this is the decision associated with cellc̃j itself. Hence, they are the same as

Equations (6.3) and (6.4). Given that the sensor is observingc̃j at t, the Bayes riskrk

associated with observing elementc̃k (including the possibility of choosing̃cj again) at

the next time stept+ 1 is defined as2:

rk(X̂k,t+1(Yk,t+1), τ = 1) = EXk,t+1|Yk,1:t [RXk,t+1
(X̂k,t+1(Yk,t+1), τ = 1)], (6.18)

2Here the subscriptj is added to emphasize the current cellc̃j while the equations follow the same
formulations as in Section6.2.
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where the conditional risk is given by:

RXk,t+1
(X̂k,t+1(Yk,t+1), τ = 1) = EYk,t+1|Xk,t+1

[C(X̂k,t+1(Yk,t+1), Xk,t+1)] + ck,obs,

whereck,obs is the observation cost assigned for cellc̃j if it decides to take an observation

at element̃ck at the next time stept + 1. The optimal decision is then to choose a com-

bination ofX̂k,t+τ , τ = 0, 1, element̃ck and observation numberτ that minimizes Bayes

risk:

r∗j,min = minX̂j,k,t+τ ,k,τ

(
rj(X̂j,t, τ = 0), rk(X̂k,t+1(Yk,t+1), τ = 1)

)
. (6.19)

For the estimation of a detected processc̃j , the Bayes risk of not taking any more mea-

surements is the same as Equation (6.14). Next, for process̃cj, compute the (expected)

risk of taking one more measurement associated with some elementc̃k:

rk(x̂k,t+1(yk,t+1), τ = 1)

=

∫ ∫
C(x̂k,t+1(yk,t+1),xk,t+1)p(xk,t+1|yk,1:t+1)dxk,t+1p(yk,t+1|yk,1:t)dyk,t+1

+κck,obs. (6.20)

If under a quadratic cost assignment, the expected Bayes risk is given by

rk(x̂k,t+1(yk,t+1), τ = 1) = cke(1)Tr
[
P̂k,t+1

]
+ κck,obs,

wherecke(1) > 0 is the estimation cost with 1 observation associated with elementk. If

under UCA and assuming a 1 dimensional state, the Bayes risk is given by

rk(x̂k,t+1(yk,t+1), τ = 1) = cke(1)


1− Erf


 ε

2
√
2P̂k,t+1




+ κck,obs.
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The Bayesian sequential estimation method finds a particular combination of element

c̃k and observation number (τ = 0 or τ = 1) that yields the decision with minimum Bayes

risk r∗j,min for each given observation.

r∗j,min = mink,τ (rj(x̂j,t, τ = 0), rk(x̂k,t+1, τ = 1)) . (6.21)

6.5 Risk-based Sensor Management

6.5.1 Problem Statement

In this section, a sensor management scheme is developed forintegrated detection and

estimation based on Bayesian sequential detection and estimation introduced in Sections

6.2 and6.3 and their extension to multiple-element case in Section6.4. Assume that a

single sensor is capable of searching cells, and detecting and estimating processes, but not

both at the same time. The Bayesian sequential detection andestimation methods are inte-

grated into a unified risk analysis framework such that whenever a sensor chooses among

multiple elements (cells for detection, processes for estimation), the resulting decision

yields a minimum Bayes risk.

6.5.2 Detection and Estimation Sets

Let QD(t) ⊆ D be the set of cells for which no detection decision has been made up to

time t (i.e., r∗j,min 6= rj(X̂j,t, τ = 0) according to Equation (6.19)) and that are expected

to be within the sensor’s coverage area at the next time stept + 1. LetQT (t) be the set

of detected processes (X(c̃j) = 1) that still need further measurements for an acceptable

estimate with minimum risk (i.e.,r∗j,min 6= rj(x̂j,t, τ = 0) according to Equation (6.21))

and that will be within the sensor’s coverage area at the nexttime stept + 1. LetQ(t) =
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QD(t) ∪ QT (t). Let E(t) be the set of all cells in which it has been decided that no

processes exist up to timet (X(c̃j) = 0). Let T (t) be the set of all processes that have

the minimum Bayes risk based on all available observations up to timet and for which

no further measurements are required (i.e.,r∗j,min = rj(x̂j,t, τ = 0) according to Equation

(6.21)).

6.5.3 Decision List

At some timet, a sensor makes one of two types of measurements of an elementc̃j:

(1) a detection measurement or (2) an estimation measurement. Based on the decisions

made, an element̃cj ∈ Q(t) (the grey dotted ellipse encompassing bothQD andQT ) can

transition between the above mentioned sets at timet as shown in Figure6.5.
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Figure 6.5: Element transition.

In general, there are two main possible transitions:

• The current element̃cj is a cell inQD(t).

1. Transition arrow 1: If no further observation is requiredand it is believed that
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the cell contains no process (hypothesisH0 is accepted),̃cj is removed from

QD(t) and added toE(t) .

2. Transition arrow 2: If no further observation is requiredand it is believed that

the cell contains a process (hypothesisH1 is accepted),̃cj is removed from

QD(t) and added toQT (t) as a detected process that needs to be estimated.

3. If more observations are required before making a detection decision, the sen-

sor could either choose to take an observation a) at the current cell c̃j (transi-

tion arrow 3), b) at another cell̃ck ∈ QD(t + 1) (transition arrow 3), or c) at

another process̃ck ∈ QT (t+ 1) (transition arrow 2). Note that the cellc̃j still

remains inQD(t + 1) at the next time stept + 1.

4. Also note that an element inE can transition back toQD (as indicated by

the dashed transition arrow 4) if the previous detection result is no longer

satisfactory. This also applies to an already detected process inQT (dashed

transition arrow 5).

• The current element is a processc̃j ∈ QT (t).

1. Transition arrow 6: If no further observation is required, i.e., the process yields

the minimum Bayes risk and the process estimate is accepted,c̃j can be re-

moved fromQT (t) and added toT (t) .

2. If more observations are required before making an estimation decision, the

sensor could either choose to take an observation a) at the current process̃cj

(transition arrow 7), b) at another processc̃k ∈ QT (t+1) (transition arrow 7),

or c) at another cell̃ck ∈ QD(t + 1) (transition arrow 8).

3. If the estimation decision associated with processc̃j does not give minimum

Bayes risk any more, i.e., the process estimate can not be accepted as the true

state any longer, this process is marked as “lost” and removed from QT (t)
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and added toQD(t) (dashed transition arrow 5). Moreover, as in detection,

an element inT (t) can transition back toQT (t) (dashed transition arrow 9) or

evenQD (dashed transition arrow 10) directly if the previous estimated result

is no longer acceptable3.

At time stept, after taking an observation at an elementc̃j, if r∗j = rkj (τ = 1), k ∈

Q(t), then it is less risky to take more observations than to stop detection or estimation at

c̃j. The sensor is then allocated to elementc̃k at the next time stept+ 1.

6.5.4 Observation Decision Costs

The observation cost considered in this chapter is the relative loss of information gain that

results from making a suboptimal sensor allocation decision. For each sensor allocation

decision, associate with it a measure of gain in information. The decision yielding the

maximum gain in information gives the optimal sensor allocation scheme and there is

no loss. For each suboptimal decision, define the observation cost as the loss of gain in

information relative to the optimum. Note that here suboptimal is in the sense of max-

imizing information gain only (e.g., not suboptimal with respect to risk minimization).

Mathematically, the observation cost associated with element c̃j is defined as

cj,obs = E[Ij∗]−E[Ij ], (6.22)

whereE[Ij ] is the expected information gain when measuringc̃j and c̃j∗ is the element

with the highest value of expected information gain.

The Rényi information divergence [108] will be used to compute the gain in infor-

3For future research, each decision will be associated with arisk function (both solid and dashed arrows
shown in Figure6.5) made at an element in the above sets. The corresponding Bayes risks will be evaluated
at every time step. When it is decided that a process should beremoved fromQT (t) toQD(t) (or fromT (t)
to QT (t) or QD(t)), it is because that the Bayes risk associated with this decision is lower than keeping
them in their previous sets.
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mation when comparing two probability densities, each belonging to either a cell (for

detection) or a detected process (for estimation).

Rényi Information Divergence for Discrete Random Variables For detection, the

divergence is computed between two probability mass functions: the expected posterior

probability mass function{p̂j,t+1, 1− p̂j,t+1} (given a measurement made at timet + 1)

and the predicted probability mass function{p̄j,t, 1− p̄j,t} [108]:

Ij,α ({p̂j,t+1, 1− p̂j,t+1} | {p̄j,t, 1− p̄j,t}) =
1

α− 1
log2

(
p̂αj,t+1

p̄α−1
j,t+1

+
(1− p̂j,t+1)

α

(1− p̄j,t+1)α−1

)
.

Hereα = 0.5 is used because this choice is reported as being most sensitive to the differ-

ence between two probability density functions [54].

If let Ij,α;Yj,t+1=1 andIj,α,Yj,t+1=0 denote the Rényi information gain for the two pos-

sible types of sensor outputs at timet + 1, the expected Rényi information gain is then

given by

EYj,t+1|Yj,1:tIj,α;Yj,t+1
(p̂j,t+1‖p̄j,t+1)

=
1∑

i=0

Prob(Yj,t+1 = i|Yj,1:t)Ij,α;Yj,t+1=i

=
[
(1− β)(1− p̄j,t+1|Yj,t+1=1) + βp̄j,t+1|Yj,t+1=1

]
Ij,α;Yj,t+1=1

+
[
β(1− p̄j,t+1|Yj,t+1=0) + (1− β)p̄j,t+1|Yj,t+1=0

]
Ij,α;Yj,t+1=0. (6.23)

Rényi Information Divergence for Continuous Random Variables For estimation,

the Rényi information divergence at timet is computed between two probability density

functions: (a) the expected posterior probability densityfunctionp(xj,t+1|yj,1:t+1) after

another (unknown) measurementyj,t+1 is made, and (b) the predicted densityp(xj,t+1|yj,1:t)
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given the measurements up toyj,t [52,108]

Ij,α (p(xj,t+1|yj,1:t+1)|p(xj,t+1|yj,1:t)) (6.24)

=
1

α− 1
log2

∫
p(xj,t+1|yj,1:t)

(
p(xj,t+1|yj,1:t+1)

p(xj,t+1|yj,1:t)

)α

dxj,t+1.

For linear Guassian models combined with a Kalman filter, it follows that [52]:

Eyj,t+1|yj,1:tIj,α(pj(xt+1|y1:t+1)‖pj(xt+1|y1:t))

=
1

2(1− α)
log

(
|αR−1

j HjP̄j,t+1H
T
j + I|

|R−1
j HjP̄j,t+1H

T
j + I|α

)
+

1

2
Tr
[
I−

(
αR−1

j HjP̄j,t+1H
T
j + I

)−1
]

6.5.5 Solution Approach

Figure6.6summarizes the solution algorithm as a general flow chart. Attime stept, the

sensor takes an observation (Yj,t for detection oryj,t for estimation) at the current element

c̃j ∈ Q(t − 1). Based on this real-time observation and the prior probability/estimate

(p̄j,t for detection or̄xj,t for estimation), the updated (posterior) probability/estimate (̂pj,t

for detection and̂xj,t for estimation) and the predicted probability/estimate (p̄j,t+1 for

detection and̄xj,t+1 for estimation) are obtained via a recursive implementation (Bayesian

update Equations (6.2) and (6.1) for detection and Kalman filter Equations (6.10)-(6.12)

and (6.9) for estimation). Note that the predicted probability/estimate is treated as the

prior probability/estimate at the next time stept + 1. Then the corresponding Bayes

risk are computed, where the updated probability/estimateis used to compute the Bayes

risk rj(τ = 0) of making a direct detection or estimation decision withouttaking any

further observations (i.e., future observation lengthτ = 0) (Equation (6.3) or (6.4) for

detection and Equation (6.14) for estimation), and the predicted probability/estimateis

used to compute the Bayes riskrj(τ = 1) associated with taking one more observation

(τ = 1) for a possibly better decision (Equations (6.5-6.8) for detection and Equation
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(6.15) for estimation). Bayesian sequential decision-making isthen employed as follows.

If the minimum Bayes riskr∗j,min is giving by taking future observations (τ = 1), then

the sensor will take an observation at some elementc̃k ∈ Q(t) (including the possibility

of choosingc̃j) that minimizes the Bayes risk at the next time stept + 1 (according to

Equation (6.18) for detection and Equation (6.20) for estimation). Otherwise (τ = 0), the

sensor makes a detection or estimation decision atc̃j, and moves to somẽck ∈ Q(t)\{c̃j}

that minimizes the Bayes risk and takes an observation at that element at the next time

stept+1 (Equation (6.18) for detection and Equation (6.20) for estimation). This process

is repeated until a detection or estimation decision can be made at every element inQ(t).

6.6 Simulation Results

Assume there areNtot = 10 cells initially, among which there are7 processes (Cell

1-7) to be detected and estimated. Both the number of processes and their cell num-

bers are unknown to the algorithm beforehand. A limited-range sensor is used, which

is capable of taking either a detection or an estimation observation on any one cell or

process at every time step. The initial predicted probability p̄j,t=0 for j = 3 is set to

be 0.1 and that for all the other cells is0.5. The value of the sensor detection prob-

ability β associated with each cell follows a Gaussian distribution with mean0.6 and

variance0.1. The process states are assumed to be time-invariant Gaussian processes

with zero mean and positive definite covariance0.1. Same parameters are used for the

processes:F = 1,H = 1,R = 1,Q = 0.1. For both detection and estimation,

UCA is assumed andε is set to be0.1. The probability of the existence state or the

estimate of the process state will be updated when the sensordecides to take a mea-

surement of this element. When there is no observation, either because that a detec-

tion/estimation decision has been made at the current element or the sensor decides to
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k
∗
→
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t
+
1
→

t

k∗ = argminkrk(τ = 1)

Figure 6.6: Decision flowchart.
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postpone the decision and makes a measurement elsewhere, the probability/estimate is

propagated based on the predictions. The decision costs fordetection and estimation are

cd(0) = 1, cd(1) = 0.3, ce(0) = 1, ce(1) = 0.16. The information gain scaling parameter

κ is chosen to be 0.06.

Remark about parameter sensitivity. Simulation results were very sensitive to param-

eter choices. Some parameter choices lead to excessive detection observations and others

to exhaustive estimations for a single detected process. Future work will focus on the

effective scaling of information measures and cost assessment to resolve this issue. •

The results of running the algorithm until the stopping criteria is met, i.e., the detec-

tion decisions for all cells and estimation decisions for all detected processes are made

with minimum Bayes risk, are shown in Figures6.7and6.8. All the processes have been

detected and satisfactorily estimated except that there isa missed detection at Cell 4. Fig-

ure 6.7 shows the assigned observing cell at each time step according to the proposed

integrated decision-making strategy. The green dots represent the detection stopping time

when the hypothesisH1 is accepted. The green squares indicate the detection stopping

time when the alternate hypothesisH0 is accepted. For example, there is a missed de-

tection at Cell 4, no estimation is performed after the detection decisionX4 = 0 is made

at time step 137. Note that an already detected process can beestimated before other

processes have been detected, however, a process must first be detected before being es-

timated. Figures6.8(a), 6.8(b)and6.8(c)show the actual probabilitypj,t (blue) and the

updated probabilitŷpj,t (red), the actual process statex (blue) and the estimate of the

statex̂ (red) for Cell 4, 6, and 8, respectively. Figure6.8(d)enlarges the estimation per-

formance of Cell 1 during time period 1-300. The horizontal lines in the figure correspond

to the moments when the sensor decides to stop taking observations and the estimates of

the state propagate based on the predictions (F = 1).
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Figure 6.8: Actual and updated probability, actual and estimate of the process state.
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Chapter 7

Conclusion and Future Work

In this dissertation, real-time decision-making strategies are investigated for domain search

and object classification using MAVs under limited sensory resources over large-scale

domains. Domain search is treated as a coverage control problem which aims at con-

structing a high-confidence awareness map of the entire mission domain. Lyapunov-

based, awareness-based, and Bayesian-based dynamic coverage control strategies are in-

troduced in sequence. The proposed Lyapunov-based coverage control law is applied to

seafloor mapping using multiple AUVs. Given limited sensoryresources, a deterministic

awareness-based decision-making strategy is developed, which guarantees the detection

of all unknown objects of interest and the classification of each found object by at least

a desired amount of time. In order to take into account sensorerrors, a probabilistic

Bayesian-based decision-making strategy is then developed. To further consider the cost

of taking each new observation, a risk-based decision-making strategy based on Bayesian

sequential detection method is presented. The binary decision-making strategy is further

extended to more general ternary settings. The results are applied to the SSA problem

in SBSS systems. Combining both Bayesian sequential detection and its extension to

Bayesian sequential estimation, an optimal risk-based sensor management scheme is pro-
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posed for integrated detection and estimation. Simulationresults are provided to illustrate

the performance of the proposed strategies.

A summary of future research directions is as follows.

Search vs. Tracking Decision-Making for Mobile Objects. The mobility of the ob-

jects may be modeled according to Markov chains with non-identity transition probability

matrix. This technique can be used to develop strategies forthe search and tracking of

space objects on non-geosynchronous orbits in the SSA problem.

Sequential Risk Analysis. In cases where no prior information is available, SPRT,

Neyman-Pearson, SR and CUSUM based hypothesis testings will be adopted for the risk

analysis associated with decision-making. Both centralized and decentralized versions

of Bayesian sequential detection and SPRT methods can be developed for sequential de-

tection as well as estimation. The integration of these approaches will provide a general

scheme for unified detection and estimation.

Applications on SSA. The proposed risk-based sensor management scheme may be

applied to the SSA problem by incorporating nonlinear Keplerian spacecraft dynamics.

Computationally efficient (approximate) algorithms will be a necessity to tackle the issue

of large amount of data raised in this case.

Vehicle Dynamics. Vehicle dynamics can also be taken into account into the system

model. To be more specific, vehicle motion control strategies for second-order nonlinear

vehicle dynamics including motion uncertainties and nonholonomic constraints can be

considered. Application of the coverage control laws to underwater sea floor mapping

can be modified to incorporate both vehicle dynamics and ocean fluid dynamics.
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MAV Decision Fusion. For MAV cooperative decision-making, besides the sensor fu-

sion algorithm introduced in Section2.4.5, the decision fusion technique offers a more

affordable approach for MAV communications. This is because decision fusion only re-

quires the transmission of a made decision from each cooperative vehicle instead of the

relatively large amount of observation data for sensor fusion.

Nonlinear Systems. The Bayesian sequential estimation method can be extended to

nonlinear systems via, for example, Gaussian sum filters.

Domain Discretization. In this dissertation, it is assumed that the domain discretization

is fine enough such that there is at most one object at a single cell. This assumption can

be relaxed by allowing more than a single object per cell via target discrimination and

data association.

Unknown Environment Geometries. Current work assumes mission domains with

known geometries. The problem of unknown environment exploration is of interest for

realistic implementations. This problem may be solved by predicting a vehicle sensor’s

position at the next time step, which will be utilized to estimate the dynamic search space.

Uncertainty in Vehicle Actions. Besides the uncertainty in sensor perception, the Par-

tially Observable Markov Decision Process (POMDP) may be used to model the uncer-

tainty in the outcomes of vehicle actions. The solution of POMDP yields an optimal

action that maximizes the expected rewards.
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