1,715 research outputs found

    Wireless communications in the new millennium and third generation wireless networks

    Get PDF
    At the end of the 20 century, and at the beginning of this one, wireless communications are making large advances. The new technologies are on the way to provide a high-speed, high-quality information exchange between handheld terminals, and information repositories. The so called 2,5 generation networks, using the techniques like the HSCSD1, GPRS2, EDGE3, and the 3r generation wireless systems will help the wireless world to reach those goals. In this thesis I will start from the first and second-generation wireless networks, and then look into the 2,5 generation and 3rd generation wireless communications more in detail. The latest advances in the wireless world are the main focus of this paper although a short history of wireless communications is also given. The various aspects related to 3rd generation systems will be explored in this thesis, for example the air interface discussions, its time scale, its elements like the mobile equipment, software and security, USLM4, services that will be offered, etc. In addition, the technical factors and key technologies that are likely to shape the wireless network environment of the future will be explored. This part is expected to help us to see beyond the 3rd generation

    Wireless Efficiency Versus Net Neutrality

    Get PDF
    Symposium: Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates, held at the University of Pennsylvania\u27s Center for Technology Innovation and Competition on May 6-7, 2010. This Article first addresses congestion and congestion control in the Internet. It shows how congestion control has always depended upon altruistic behavior by end users. Equipment failures, malicious acts, or abandonment of altruistic behavior can lead to severe congestion within the Internet. Consumers benefit when network operators are able to control such congestion. One tool for controlling such congestion is giving higher priority to some applications, such as telephone calls, and giving lower priority or blocking other applications, such as file sharing. The Article then turns to wireless networks and shows that in addition to congestion issues, priority routing in wireless can make available capacity that would otherwise go unused. Wireless systems that are aware of the application being carried in each packet can deliver more value to consumers than can dumb networks that treat all packets identically. Handsets are both complements to and substitutes for the network infrastructure of wireless networks and any analysis of handset bundling should consider this complementarity. Next, the Article reviews analogous issues in electrical power and satellite communications and shows how various forms of priority are used to increase the total value delivered to consumers by these systems. Finally, the Article observes that regulations that prohibit priority routing of packets and flows on the Internet will create incentives to operate multiple networks

    Multimedia in mobile networks: Streaming techniques, optimization and User Experience

    Get PDF
    1.UMTS overview and User Experience 2.Streaming Service & Streaming Platform 3.Quality of Service 4.Mpeg-4 5.Test Methodology & testing architecture 6.Conclusion

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions
    • …
    corecore