12,382 research outputs found

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels

    Challenges for an Ontology of Artificial Intelligence

    Get PDF
    Of primary importance in formulating a response to the increasing prevalence and power of artificial intelligence (AI) applications in society are questions of ontology. Questions such as: What “are” these systems? How are they to be regarded? How does an algorithm come to be regarded as an agent? We discuss three factors which hinder discussion and obscure attempts to form a clear ontology of AI: (1) the various and evolving definitions of AI, (2) the tendency for pre-existing technologies to be assimilated and regarded as “normal,” and (3) the tendency of human beings to anthropomorphize. This list is not intended as exhaustive, nor is it seen to preclude entirely a clear ontology, however, these challenges are a necessary set of topics for consideration. Each of these factors is seen to present a 'moving target' for discussion, which poses a challenge for both technical specialists and non-practitioners of AI systems development (e.g., philosophers and theologians) to speak meaningfully given that the corpus of AI structures and capabilities evolves at a rapid pace. Finally, we present avenues for moving forward, including opportunities for collaborative synthesis for scholars in philosophy and science

    Art and Medicine: A Collaborative Project Between Virginia Commonwealth University in Qatar and Weill Cornell Medicine in Qatar

    Get PDF
    Four faculty researchers, two from Virginia Commonwealth University in Qatar, and two from Weill Cornell Medicine in Qatar developed a one semester workshop-based course in Qatar exploring the connections between art and medicine in a contemporary context. Students (6 art / 6 medicine) were enrolled in the course. The course included presentations by clinicians, medical engineers, artists, computing engineers, an art historian, a graphic designer, a painter, and other experts from the fields of art, design, and medicine. To measure the student experience of interdisciplinarity, the faculty researchers employed a mixed methods approach involving psychometric tests and observational ethnography. Data instruments included pre- and post-course semi-structured audio interviews, pre-test / post-test psychometric instruments (Budner Scale and Torrance Tests of Creativity), observational field notes, self-reflective blogging, and videography. This book describes the course and the experience of the students. It also contains images of the interdisciplinary work they created for a culminating class exhibition. Finally, the book provides insight on how different fields in a Middle Eastern context can share critical /analytical thinking tools to refine their own professional practices

    Foundation to Promote Scholarship and Teaching 2009-2010 Awards

    Get PDF
    Proposal abstracts of 2009-2010 award recipients in a wide range of disciplinary areas

    Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment

    Get PDF
    Gibson's ecological theory of perception has received considerable attention within psychology literature, as well as in computer vision and robotics. However, few have applied Gibson's approach to agent-based models of human movement, because the ecological theory requires that individuals have a vision-based mental model of the world, and for large numbers of agents this becomes extremely expensive computationally. Thus, within current pedestrian models, path evaluation is based on calibration from observed data or on sophisticated but deterministic route-choice mechanisms; there is little open-ended behavioural modelling of human-movement patterns. One solution which allows individuals rapid concurrent access to the visual information within an environment is an 'exosomatic visual architecture" where the connections between mutually visible locations within a configuration are prestored in a lookup table. Here we demonstrate that, with the aid of an exosomatic visual architecture, it is possible to develop behavioural models in which movement rules originating from Gibson's principle of affordance are utilised. We apply large numbers of agents programmed with these rules to a built-environment example and show that, by varying parameters such as destination selection, field of view, and steps taken between decision points, it is possible to generate aggregate movement levels very similar to those found in an actual building context

    The Michigan Robotics Undergraduate Curriculum: Defining the Discipline of Robotics for Equity and Excellence

    Full text link
    The Robotics Major at the University of Michigan was successfully launched in the 2022-23 academic year as an innovative step forward to better serve students, our communities, and our society. Building on our guiding principle of "Robotics with Respect" and our larger Robotics Pathways model, the Michigan Robotics Major was designed to define robotics as a true academic discipline with both equity and excellence as our highest priorities. Understanding that talent is equally distributed but opportunity is not, the Michigan Robotics Major has embraced an adaptable curriculum that is accessible through a diversity of student pathways and enables successful and sustained career-long participation in robotics, AI, and automation professions. The results after our planning efforts (2019-22) and first academic year (2022-23) have been highly encouraging: more than 100 students declared Robotics as their major, completion of the Robotics major by our first two graduates, soaring enrollments in our Robotics classes, thriving partnerships with Historically Black Colleges and Universities. This document provides our original curricular proposal for the Robotics Undergraduate Program at the University of Michigan, submitted to the Michigan Association of State Universities in April 2022 and approved in June 2022. The dissemination of our program design is in the spirit of continued growth for higher education towards realizing equity and excellence. The most recent version of this document is also available on Google Docs through this link: https://ocj.me/robotics_majorComment: 49 pages, approximately 25 figure

    Grounding robot motion in natural language and visual perception

    Get PDF
    The current state of the art in military and first responder ground robots involves heavy physical and cognitive burdens on the human operator while taking little to no advantage of the potential autonomy of robotic technology. The robots currently in use are rugged remote-controlled vehicles. Their interaction modalities, usually utilizing a game controller connected to a computer, require a dedicated operator who has limited capacity for other tasks. I present research which aims to ease these burdens by incorporating multiple modes of robotic sensing into a system which allows humans to interact with robots through a natural-language interface. I conduct this research on a custom-built six-wheeled mobile robot. First I present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports learning the meanings of nouns and prepositions from sentential descriptions of paths driven by the robot, as well as using such meanings to both generate a sentential description of a path and perform automated driving of a path specified in natural language. One limitation of this framework is that it requires as input the locations of the (initially nameless) objects in the floor plan. Next I present a method to automatically detect, localize, and label objects in the robot’s environment using only the robot’s video feed and corresponding odometry. This method produces a map of the robot’s environment in which objects are differentiated by abstract class labels. Finally, I present work that unifies the previous two approaches. This method detects, localizes, and labels objects, as the previous method does. However, this new method integrates natural-language descriptions to learn actual object names, rather than abstract labels

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session
    • …
    corecore