1 research outputs found

    Mobile agent path planning under uncertain environment using reinforcement learning and probabilistic model checking

    Get PDF
    The major challenge in mobile agent path planning, within an uncertain environment, is effectively determining an optimal control model to discover the target location as quickly as possible and evaluating the control system's reliability. To address this challenge, we introduce a learning-verification integrated mobile agent path planning method to achieve both the effectiveness and the reliability. More specifically, we first propose a modified Q-learning algorithm (a popular reinforcement learning algorithm), called Q EA−learning algorithm, to find the best Q-table in the environment. We then determine the location transition probability matrix, and establish a probability model using the assumption that the agent selects a location with a higher Q-value. Secondly, the learnt behaviour of the mobile agent based on Q EA−learning algorithm, is formalized as a Discrete-time Markov Chain (DTMC) model. Thirdly, the required reliability requirements of the mobile agent control system are specified using Probabilistic Computation Tree Logic (PCTL). In addition, the DTMC model and the specified properties are taken as the input of the Probabilistic Model Checker PRISM for automatic verification. This is preformed to evaluate and verify the control system's reliability. Finally, a case study of a mobile agent walking in a grids map is used to illustrate the proposed learning algorithm. Here we have a special focus on the modelling approach demonstrating how PRISM can be used to analyse and evaluate the reliability of the mobile agent control system learnt via the proposed algorithm. The results show that the path identified using the proposed integrated method yields the largest expected reward.</p
    corecore