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Abstract

The major challenge in mobile agent path planning, within an uncertain environment, is
effectively determining an optimal control model to discover the target location as quickly
as possible and evaluating the control systems reliability. To address this challenge, we
introduce a learning-verification integrated mobile agent path planning method to achieve both
the effectiveness and the reliability. More specifically, we first propose a modified Q-learning
algorithm (a popular reinforcement learning algorithm), called QEA − learning algorithm, to find
the best Q-table in the environment. We then determine the location transition probability matrix,
and establish a probability model using the assumption that the agent selects a location with a
higher Q-value. Secondly, the learnt behaviour of the mobile agent based on QEA − learning
algorithm, is formalized as a Discrete-time Markov Chain (DTMC) model. Thirdly, the required
reliability requirements of the mobile agent control system are specified using Probabilistic
Computation Tree Logic (PCTL). In addition, the DTMC model and the specified properties
are taken as the input of the Probabilistic Model Checker PRISM for automatic verification. This
is preformed to evaluate and verify the control system’s reliability. Finally, a case study of a
mobile agent walking in a grids map is used to illustrate the proposed learning algorithm. Here
we have a special focus on the modelling approach demonstrating how PRISM can be used to
analyse and evaluate the reliability of the mobile agent control system learnt via the proposed
algorithm. The results show that the path identified using the proposed integrated method yields
the largest expected reward.

Keywords: Expected reward, mobile agent, uncertain environment, probabilistic model
checking, Q − learning

1. Introduction

An agent is an entity that can think independently and interact with its environment [1].
It has the characteristics of persistence, reactivity, sociality, and initiative. A mobile agent is
an entity that can reach a target location by location movement or state transfer in a certain
environment. Artificial intelligence research has made extensive use of mobile agents. Most of
the researches, particularly in the development of robotics, has been centred on mobile agents
[2, 3, 4]. The mobile agent control system is able to provide the corresponding strategies for the
agent movement so that it can complete the task in a better way, such as the shortest time and
the safest way. Strategies can be generated by collecting data, integrating information, etc [5, 6].
Preprint submitted to Elsevier January 18, 2023



Existing agent path planning algorithms, e.g., genetic algorithm [7], reinforcement learning [8],
and ant colony algorithm [9], are capable of locating the ideal path in a static environment.
Reinforcement Learning (RL) is one of the paradigms and methodologies of machine learning,
which is used to describe and address the issue of how an agent learns strategies to maximize
rewards or achieve specific goals while interacting with the environment. RL focuses on online
learning and attempts to maintain a balance between exploration-exploitation [10]. RL, in
contrast to supervised learning and unsupervised learning, does not require a large amount of
data to be collected beforehand; instead, it acquires learning information and modifies model
parameters by receiving rewards (feedback) from the environment in exchange for actions. RL
can successfully identify the quickest path to obtain the maximum reward value in a broad
context. Nevertheless, in a stochastic uncertain environment, some optimal paths might change
or encounter some unexpected events. Stochastic uncertainty refers to the potentials of anomalies
or emergencies to occur at specific locations in the environment as a result of a variety of
factors, including hardware and software failures, human interferences, and natural disasters.
Path planning for mobile agents in uncertain environments will thus become more challenging.

On the other hand, it is crucial to research the safety development of mobile agent control
systems. The usage of the formal methods to evaluate the credibility of intelligent control
systems is growing as a result of the shortcomings of testing and simulation techniques
[11]. The formal methods are techniques for mathematically exploring important computer
science problems and offering a framework for creating and mathematically verifying systems.
Through reasoning and verification, formal system development uses a predetermined language
to describe a system and make sure it satisfies all the requirements. For the creation of the
mobile agent control system to ensure accurate behaviour, interoperability, and safety, formal
methods are therefore required. Model checking is one of the primary and popular formal
verification technique, which verifies system specifications on finite-state concurrent systems.
In most cases, temporal logic is utilised to specify system requirements. Symbolic-based model
checking algorithms are then employed to determine whether those requirements are satisfied by
the system model. In addition, quantitative verification approaches such as probabilistic model
checking have lately gained popularity due to their ability to manage the uncertainty. Designers
can use probabilistic model checking to assess whether a system’s underlying probabilistic
behaviour is satisfied by a set of quantitative properties. PRISM [12] is a popular and powerful
symbolic model checker intended for the formal modelling and analysis of systems that exhibit
stochastic or probability behaviour. This present work benefits from the PRISM model checker
to complete the verification of Mobile Agent Path Planning (MAPP). DTMC is available to
represent a decentralized Markov model suitable for representing the state transfer of an agent.
Furthermore, DTMC models can be transformed into a customized input format to accomplish
probabilistic model checking in PRISM.

For the reasons stated above, the contributions of this paper are summarized below.

• A learning and verification integrated framework for mobile agent path planning and
control under stochastic uncertain environments is proposed with the aim of achieving
both the effectiveness and the reliability.

• The Expected Assignment Q-learning (QEA-learning) algorithm is proposed for effective
MAPP under uncertain environment, where the agent is allowed to explore the
environment and find the path to the target location with the maximum expected reward.

• After the optimal path is obtained by QEA-learning algorithm, the mobile agent control
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system is formalized as a DTMC model. The required properties are specified by PCTL,
and the system model is verified by PRISM in terms of properties.

• The applicability and effectiveness of the integrated method is demonstrated via the case
studies and comparative experimental results show the advantage of the proposed method
over the traditional methods.

The remainder of this paper is organized as follows. The background and related works
are provided in Section 2. Preliminaries are presented in Section 3. Section 4 describes the
learning-verification integrated framework for mobile agent path planning. A case study is
detailed to illustrate the proposed framework in Section 5. Section 6 discusses the effect of
the proposed method by comparing it with two other methods. Finally, Section 7 brings the
paper to a close while outlining potential future research.

2. Related works

In the literature, there has been a lot of work conducted on the agent’s movement. This
includes the use of learning algorithms to help the agent reach the target state rapidly [13].
Nevertheless, insufficient attention has been paid to statistically verifying the learned models
to account for agent state transition correlations. This section reviews current research on agent
movement and path planning and related research on model checking for verifying probabilistic
models in an uncertain environment.

2.1. Mobile agent path planning

There has been a lot of research on path planning for agent movement. Zhang et al.
conducted the modeling, optimization criteria, and solution algorithms for the path planning
of mobile agents [14]. Nestinger described a mobile agent-based architecture for dynamic
control algorithm and task placement in an automation system [15]. Nazarahari et al. provided
a hybrid solution for multiple mobile robot path planning in continuous situations [7]. Lamini
et al. presented an improved crossover operator for employing genetic algorithms to tackle path
planning problems [16]. Li et al. presented a unified model for robots navigating in confined
workspace that automatically synthesises local communication and decision-making policies
[17]. He and colleagues also proposed the Message-Aware Graph Attention neTwork (MAGAT)
that is comparable to that of a coupled centralized expert algorithm [18]. Wang et al. proposed
the globally Guided Reinforcement Learning approach (G2RL) where the agent is able to exploit
environmental spatio-temporal information [19]. The method can be used for path planning of
multiple agents, and the control of agents is completely distributed. Dai et al. presented an
improved ant colony algorithm for mobile robots to obtain efficient path planning capabilities in
intricate maps [20]. The A* algorithm and the MAX-MIN Ant system are used in the improved
ant colony algorithm. Chang et al. proposed an improved Dynamic Window Approach (DWA)
based on Q-learning to enhance the performance of the robot for global navigation [21]. Song
et al. suggested a real-time obstacle avoidance decision model based on Machine Learning (ML)
algorithms, an improved Smooth Rapidly exploring Random Tree (S-RRT) algorithm, and an
improved Hybrid Genetic Algorithm-Ant Colony Optimization (HGA-ACO) to improve the
accuracy of real-time obstacle avoidance prediction of local path planning [22]. Research on
path planning for agents in stochastic environments is still inadequate, and it is also critical to
assure the agent’s safety and temporal property during movement [23].
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2.2. Probabilistic model checking

As an automatic verification technique, model checking has been used to verify various
desirable properties, such as deadlock freedom, safety, and reachability. It is worth noting
that verification of quantitative properties of control systems in uncertain environments is as
important as verification of qualitative properties. Probabilistic model checking [24] extends
model checking, which enables the verification of quantitative assessment of the system, such
as probabilistic behaviour, constraint behaviour, and adaptiveness. Probabilistic model checking
has been effectively used in several fields. In the research area of robotics, Zhao et al. developed
a framework for probabilistic model checking on a layered Markov model to verifying the
safety and reliability requirements of robotics, both at permission stage and during runtime [25].
Depending on the type of knowledge about the uncertainties and imperfections in the operator
autonomy interactions, Feng et al. used abstractions based on Markov decision processes and
augmented these model to stochastic two-player games [26]. Wang et al. proposed to use
the method of probabilistic model checking to verify and quantitatively analyze the obstacle
avoidance strategy of mobile robots in non-deterministic environments [27]. Dimitrios et al.
demonstrated how time-bounded path property model checking can be preformed as a Bayesian
inference [28]. Compared with statistical model checking, the method has high accuracy and
significant computational power. Nathalie et al. provided an algorithm for performing Fault
Maintenance Trees (FMT) abstraction to reduce the size of its equivalent, as well as a framework
for modeling FMT using probability model checking [29].

For industrial applications, Zhu et al. formalized the fetch process of express delivery system
between business and customer in the form of DTMC and introduced the PCTL to the temporal
behaviour checking [30]. Franco et al. used a DTMC to create a probabilistic model that
accounted for various parameters linked to cloud-infrastructure execution traces and possible
tactics. For example, if there are at least two active servers and one of them fails, the system will
shut down the less trustworthy ones. After that, the model is sent into the PRISM model checker,
which verifies the infrastructure’s stability before recommending the optimum configuration
plan [31]. For online transactions, Gao and colleagues used a probabilistic model to verify the
uncertainty of user behaviours by computing probabilities for financial production risk evaluation
and control, and they formalised investor behaviour into a DTMC model that can accurately
describe the probability profiles of investors’ purchases and redemptions. They employed the
PCTL to predict whether users would engage in purchasing or redemption activity [32]. They
also took the method into the medical insurance. Gao et al. presented a probabilistic model
checking-based strategy for predicting Alzheimer’s patient actions and detecting anomalous
behaviour in accordance with mild cognitive impairment in order to assist patients in regaining
confidence [33].

Several research apply probabilistic model checking in an indirect manner. Ouchani
et al. proposed a probabilistic abstraction framework to efficiently verifying SysML activity
diagrams [34]. Wan et al. analyzed quantitative and uncertain properties and presented a
new probabilistic model checking of epistemic multi-agent systems specified by Probabilistic
Computation Tree Logic and Knowledge (PCTLK) [35]. They transformed the PCTLK model
checking problem into the PCTL one. This work is performed in PRISM, and compared with
MCMAS and MCK, the results show the time efficient and scalability of the PRISM. Sultan et al.
verified Multi-agent Systems (MASs) where agents have knowledge and communicate through
manipulating uncertain social commitments via probabilistic model checking, especially when
the scope of commitments extends beyond the common agent-to-agent scheme [36].
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In this research, we use a learning method to pick the path of an agent operating in a stochastic
uncertain environment, then construct a DTMC model for the control system operating under that
path, and verify the model using PRISM.

3. Preliminaries

Some of the relevant backgrounds that we need to know are given in this section.

3.1. Q learning

Q learning is a typical algorithm of RLs for agents to learn how to act the correct actions
to achieve a goal [37]. Q-table in the Q-learning is a table where we calculate the maximum
expected future rewards for actions at each state. In the Q-learning, a reward matrix and a
Q-table with all zeros are presented first. The three fundamental components of learning are
states, actions, and rewards. Each state represents a location. As the agent explores with (1) [37],
the value of the Q-table is updated until the results converge, and the value of the Q-table no
longer varies.

Qnew(st, at)← Q(st, at) + α[r + γmaxaQ(st+1, at) − Q(s, at)] (1)

Where st denotes state at the time t. st+1 denotes a new state at the time t + 1. at indicates the
optional actions at the time t. α is the learning rate, while 0 < α < 1. γ is the discount factor,
indicating the influence of future states on the present state. The bigger γ indicates that the future
state has a greater influence on the current choice, and vice versa.

3.2. Markov model

When a stochastic process possesses the Markov property, the conditional probability
distribution of its future state depends solely on the current state, given the current state and
all previous states.

Definition 1. (Markov process)[38]. Suppose the {X(t), t ∈ T } is a stochastic process, E is the
state space, if {t1 < t2... < tn < t}, any x1, x2, ..., xn, x ∈ E, the conditional distribution function
of the random variable X(t) under the known variable X(t1) = x1, ..., X(tn) = xn is only related to
X(tn) = xn, but not related to X(t1) = x1, ..., X(tn−1) = xn−1. That is, the conditional distribution
function satisfies the equation (2). If X(t) is a discrete random variable, then the Markov property
satisfies the equation (3).

F(x, t|xn, xn−1, ..., x2, x1, tn, tn−1, ..., t2, t1) = F(x, t|xn, tn) (2)

P{X(t) = x|X(tn) = xn, ..., X(t1) = x1} = P{X(t) = x|X(tn)} (3)

DTMC is a special form of Markov process, which have discrete values in the general
definition by implementing the time parameters and the state space.

Definition 2. (DTMC)[39]. A DTMC is a tuple D = (S , s, P, L, AP). Where,

• S is a finite set of states.
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• s denotes the initial state.

• P is a probabilistic transition function, such that for every state s ∈ S , and Σs′∈S P(s, s′) = 1.

• L : S → 2AP is a labelling function that assigns a set of atomic propositions to each state
s ∈ S .

• AP is a finite set of atomic propositions.

3.3. Probabilistic model checking

The purpose of probabilistic model checking is to confirm that the probabilistic model
satisfies the appropriate qualitative and quantitative properties. It entails determining if several
certain properties are qualitatively satisfied as well as the probability that other properties are
quantitatively satisfied. The probability symbolic model checker PRISM [12] was created at
the University of Birmingham and improved at the University of Oxford. It is a useful tool for
formal modeling and the study of systems that behave in a stochastic or probabilistic way. It
has been used to examine systems in a variety of application domains, including e-business [40],
communication protocols [41], security protocols [42], etc [43]. The model in PRISM subsumes
some well-known temporal logics by including PCTL, Continuous Stochastic Logic (CSL) [44],
and Probabilistic Logic (PL) [45]. PCTL is a well-known temporal logic for probabilistic
verification of DTMC models. The safety and reliability properties to be checked can be specified
in PCTL.

Definition 3. (PCTL syntax). Given a set of atomic propositions AP, the PCTL formulae are
defined by the following BNF grammar [46]. Where,

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | P./ m(ψ)

ψ ::= Xϕ | Fϕ | ϕUψ | ϕU≤kψ

• p ∈ AP is a finite set of atomic propositions.

• ϕ and ψ are the state formulae and path formulae interpreted over the states and paths of
M, respectively.

• ¬ and ∨ are the boolean connectives that are defined in the usual way.

• P./ m(ψ) is a probabilistic operator where ./∈ {<, ≤, ≥, >} and m ∈ [0, 1] is a probability
bound or threshold.

• k ∈ N+ is a positive integer number reflecting the maximum number of transitions needed
to reach a certain system.

• X, F,U are defined as ’next’, ’finally’, and ’until’, respectively.

A state s in a DTMC model meets an atomic proposition p if p ∈ AP. s satisfies a state
formula P./ m(ψ), denotes s |= P./ m(ψ), if the probability of taking a path starting from s and
satisfying ψ satisfies the bound ./ m. The path formula ϕU≤kψ is true on a path if ψ holds in the
state at several time steps i ≤ k and at all preceding states ϕ holds.
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4. Mobile Agent Path Planning Under Uncertainty

In the present work, we are interested in the MAPP system within uncertain environments
and the verification of the system’s reliability, i.e., how reliable it controls the behaviour of an
agent in an uncertain environment.

4.1. MAPP based on the modified Q-learning algorithm

In the traditional Q-learning algorithm, the designers set the reward of the target location to
the maximum, and the agent just keeps exploring the environment to find the target location that
can obtain the maximum reward as soon as possible. This encourages the agent to find the target
location as quickly as possible. However, agent path planning based solely on reward values is
no longer appropriate in stochastic uncertain environments. Fig. 1 illustrates a problem scenario.
An agent has two choices in the current scenario: If the agent chooses to go up, it gets 50 rewards.
If the agent goes down, it can get 25 rewards. However, at the beginning, it is not known how
many rewards can be obtained, and the agent can only gain experience by attempting. In most
cases, the agent will choose the path with the largest reward. It is worth noting that this is also
where the probability value reflecting the ability to pass the path is determined. For example, a
probability of 0.8 for the above path indicates that the agent has an 0.8 chance of successfully
completing the path and receiving the reward. The probability of successfully passing the bottom
path is only 0.6. Obviously, taking the above path has a higher probability of getting a reward.
However, in doing so will decrease the chances of getting a bigger reward. As a result, we must
make choice of which path to select, this will affect the learning performance.

Agent

Reward: 25
P:0.8

Reward: 50
P:0.6

High probability
of success

High reward

Figure 1: An agent finds a path in an uncertain environment.

To address this selection issue, we propose to use the concept of the expected reward, which
is the reward multiplied by the probability of success. The reward matrix in the Q-learning
algorithm is then updated using the expected rewards. The assignment method of expected
reward is inspired by the Expected Monetary Value (EMV) [47]. The total expected reward
value of a path can then be expressed as Eq.(4).

E[R] = Σpiri (4)

E[R] indicates the total expected reward of the planning path. pi represents the probability of
successfully passing the state i. ri signifies the reward that can be obtained by passing the state
i. This idea is based on expectation assignment, which leads to a modified Q-learning algorithm
based on the expected reward, called QEA − learning algorithm. The agent’s exploration in the
environment will follow the steps given in the QEA − learning algorithm, which are detailed
below, and its pseudo-code is given in Algorithm 1.
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Algorithm 1 Expectation Assignment QEA − learning algorithm
Require: Mobile agent, state, reward.
Ensure: QEA − table and probability value

1: Initial QEA(st, at) arbitrarily;
2: Expected reward matrix REA(st, at);
3: Repeat (for each episode):
4: Initialize s0;
5: Repeat (for each step of episode):
6: Choose a from s using policy derived from Q;
7: Take action a, observe r, st+1;
8: Qnew(st, at)← QEA(st, at) + α[r + γmaxaQEA(st+1, at) − QEA(s, at)]
9: s← s′;

10: until s is terminal;
11: Return QEA − table.

Step 1 : Given an initialized Q-table matrix with all zeros;
Step 2 : Each room’s expected reward value is computed, and REA(st, at) is listed based on the

successful probability and available rewards. REA(st, at) represents the expected reward matrix.
Step 3 : The agent stays at the initial state and chooses an action to move to the next state.

Observe the next state and the optional action of the next state. Use Eq. (1) to update the Q-table
once. If the target state is not found, then repeat this step until the target state is found, end the
episode once.

Step 4 : Each time after reaching the target state, it represents the completion of one
exploration. The agent returns to its initial position and starts a new round of exploration. The
QEA − table is updated once for each exploration until converges and stops.

Step 5 : Print the last QEA − table.
An DTMC model can be created to be utilised as an input model to the model checker

PRISM. The module defines the state transfer statements. First, all of the variables and comments
in this module are defined. The format of the comments is: [action]guard− > rate1 :
updated1 + ... + raten : updatedn [12]. The module synchronization is done using the action.
If the action synchronizes and the guard is fulfilled, one update based on the value of the rate
will occur. Each update demonstrates a change that occurred. To avoid code duplication, the
PRISM model defines formulas with names and expressions. The reliability related properties
are specified into logical formulas using PCTL, they are used to calculate the likelihood of the
occurrence of failed states. Then, we can use PRISM to perform reliability analysis for MAPP
by checking whether the system can satisfy reliability requirements.

4.2. The integrated learning and verification framework

Path planning for mobile agents in uncertain environments is the subject of this work. Fig. 2
shows the framework of the proposed integrated method.

Path planning is firstly achieved through the modified Q-leaning algorithm. More
specifically, the initial values for the environment’s relevant parameters, such as the reward
for each state, the probability of successful passage, and the actions that the mobile agent can
take, are allocated randomly. Then, the expected reward for each state is calculated to derive
the expected R matrix and used as input to the Q algorithm. The algorithm which combines
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Property specification 
PCTL

Expected  
reward, R 

DTMC 
model

in
PRISM 

Model checking 
PRISM

Mobile agent 
 in uncertain environment

Probability
value

Result 
(States, probabilitic)

Finds the option
routes

(QEA_learning)

Figure 2: The integrated learning and verification framework for MAPP.

expectation assignment and Q-learning is called QEA − learning algorithm. A new QEA − table
will be generated after each episode. Once the QEA − table converges, the agent learns the best
path to find the target state. That is, the agent can look directly at the converged Q-table, choose
the action with best expected reward, enter the next state, and move forward gradually until it
reaches the target state.

Secondly, to verify the reliability properties of this MAPP, the selected path (i.e., the MAPP
behaviour) and probability statistics are specified into a DTMC model as the input of the model
checker PRISM. MAPP system reliability requirements are described as properties with PCTL.
They are used to calculate the likelihood of the occurrence of failed states during the execution
of the system. Then, we can perform reliability analysis for MAPP using PRISM by checking
whether the system can satisfy reliability requirements. The framework is further illustrated in
the implementation and experimental studies detailed in Section 5.

5. Implementation and Experimental Results

In this section, we demonstrate and evaluate the proposed framework using an example of
an agent walking in a grids map, as shown in Fig. 3. Each grid represents a room. Assume that
there are 16 rooms altogether, with Room0 being the starting point and Room15 being the ending
room. When the agent passes through each room, it will receive a reward value, which varies
depending on the room. ri indicates the rewards that can be obtained through Roomi, i is the
number of the room and i ∈ {0, 1, 2, ..., 15}. The likelihood that the agent will be able to pass
each room successfully varies because the rooms carry a random risk. pi denotes the probability
of an agent passing through Roomi.

5.1. Path planning using the QEA − learning algorithm
The agent’s objective is to reach Room15 as soon as possible. It cannot switch to a

non-adjacent room; it can only select the room next to the one it is currently in at a time. The
agent is first assigned the location S 0 and is situated in Room0. It can enter Room1 or Room4 in
the next state. The probability of successfully passing to Room1 is 0.504, and the agent can get
15 awards for doing so. The award that agent can get for successfully passing Room4 is 32 and
the probability of successfully passing is 0.138. If it enters Room4 from Room0, it can then enters
Room0, Room5, or Room8 in the next location. Passing through Room0 will get reward 1, pass
through Room5 to get reward 12, and pass through Room8 will earn reward 90. Assuming that it
enters Room8 in the third step, it can enter Room4, Room9, Room12 in the next location. Just keep
exploring until the agent reaches Room15. One task is completed when the agent enters Room15.
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Actor

p0: 1 
r0: 1

p1: 0.504 
r1: 15

p2: 0.472 
r2: 6

p3: 0.731 
r3: 29

p4: 0.138 
r4: 32

p5: 0.524 
r5: 12

p6: 0.637 
r6: 43

p7: 0.567 
r7: 44

p8: 0.111 
r8:90

p9: 0.612 
r9: 29

p10: 0.262 
r10: 44

p11: 0.477 
r11: 11

p12: 0.296 
r12: 57

p13: 0.743 
r13: 78

p14: 0.346 
r14: 17

p15: 1 
r15: 100

Figure 3: An agent exploring an uncertain grids map.

As mentioned in the Q − learning algorithm, we need to give an R-matrix that contains
the reward value before the agent starts the exploration. To determine the shortest path to
the greatest reward in a general environment, the designer only needs to let the agent explore
the environment on its own. Due to the inherent risks in each room in a stochastic uncertain
environment, it is vital to consider both the potential reward and the probability of successfully
passing a given room. Therefore, the R-matrix is given based on the expectation assignment
method proposed earlier in Section 4, denoted as REA-matrix, and shown in (5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15



−1 8 −1 −1 4 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 3 −1 −1 6 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 8 −1 21 −1 −1 27 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 3 −1 −1 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 6 −1 −1 10 −1 −1 −1 −1 −1 −1 −1
−1 8 −1 −1 4 −1 27 −1 −1 18 −1 −1 −1 −1 −1 −1
−1 −1 3 −1 −1 6 −1 25 −1 −1 12 −1 −1 −1 −1 −1
−1 −1 −1 21 −1 −1 27 −1 −1 −1 −1 5 −1 −1 −1 −1
−1 −1 −1 −1 4 −1 −1 −1 −1 18 −1 −1 17 −1 −1 −1
−1 −1 −1 −1 −1 6 −1 −1 10 −1 12 −1 −1 58 −1 −1
−1 −1 −1 −1 −1 −1 27 −1 −1 18 −1 5 −1 −1 6 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 100
−1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 58 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 17 −1 6 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 58 −1 100
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 100



(5)

The REA-matrix (5) is clarified in detail as below: row i represents the current room, and
column j represents the room to be entered next. Ri→ j represents the reward value that will be
obtained from the room i to j. For example, R1→2 = 3, which means that the agent can get 3
rewards value when moving from Room1 to Room2. A negative value of Ri→ j indicates that there
is no door between the two rooms and cannot be reached directly.

The QEA − learning algorithm (Algorithm 1) yields the best route for Room0 →

Room1 → Room5 → Room9 → Room13 → Room14 → Room15. The reward obtained is
(1+15+12+29+78+17+100=)252. The expected reward is calculated by Eq. (4) is 197.
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5.2. Formal modelling of MAPP
Based on the proposed QEA − learning algorithm, the path of the agent has been determined

as Room0 → Room1 → Room5 → Room9 → Room13 → Room14 → Room15. In this section, we
demonstrate the way to construct the DTMC model for the MAPP.

Fig. 4 illustrates the location transfer process, which is explained in detail below.

F

Room0 Room1 Room5 Room13 Room14 Room15Room91

0

0.504

0.496

0.524

0.476

0.612

0.388

0.743

0.257

0.346

0.654

Figure 4: DTMC diagram of a robot navigating in the grids map.

First, the agent arrives at Room1 from Room0. The probability that the agent passes through
Room1 is 0.504, and there is a 0.496 probability that it encounters a hazard and falls into a fault
state. Point F denotes an abnormality has occurred and the system is in failure. If a failure
occurs, the task fails, and the agent starts again from the beginning.

If the agent passes Room1 successfully, it will go to Room5 (in Fig. 4). The probability that
the agent passes through Room5 is 0.524, and there is a 0.476 probability that it encounters a
hazard and falls into a fault state. After passing through Room5, the agent can enter to Room9.
The agent has a 0.612 chance of passing through Room9, and it has a 0.388 chance that it may
run into a hazard and enter a fault state. After passing through Room9, the agent can enter into
Room13. After entering room 13, the agent has a 0.743 chance of successfully passing Room13,
and a 0.257 chance of having an anomaly and falling into a fault state. After passing through
Room13, the agent will enter into Room14. The probability that the agent passes through Room14
is 0.346, and there is a 0.654 probability that it encounters a hazard and falls into a fault state.

After passing through Room14, the agent can enter to Room15. Upon entering Room15, a task
is completed, and the maximum reward is available. Based on the entire process analysis, we
develop the DTMC model as the input to PRISM, which is detailed below.

Model 1 :
dtmc
module Agent walking in the gripmap
s : [0..6] init 0;
d : [0..2] init 0;
[]s = 0→ 0.504 : (s′ = 1) + 0.496 : (s′ = 6)&(d′ = 1);
[]s = 1→ 0.524 : (s′ = 2) + 0.476 : (s′ = 6)&(d′ = 1);
[]s = 2→ 0.612 : (s′ = 3) + 0.388 : (s′ = 6)&(d′ = 1);
[]s = 3→ 0.743 : (s′ = 4) + 0.257 : (s′ = 6)&(d′ = 1);
[]s = 4→ 0.346 : (s′ = 5) + 0.654 : (s′ = 6)&(d′ = 1);
[]s = 5→ 1 : (s′ = 6)&(d′ = 2);
[]s = 6→ (s′ = 6);
end module
Explanation: this model has an initial state 0 and 6 states, states 1 to 5 indicate the agent is

in Room1, Room5, Room9, Room13, and Room14, respectively. State 6 represents the termination
state, which may be a fault state or the arrival in Room15. d : [0..2] denotes the goal value is 0, 1,
2. 0 is the initial value, 1 for failure, and 2 denotes it has entered Room15. There are 7 sentences
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here. The left side of the ”→” represents the current room, and the right side represents the
room and probability that may be entered in the next step. For example, []s = 2 → 0.612 :
(s′ = 3) + 0.388 : (s′ = 6)&(d′ = 1) means that the agent is now in Room5, The probability of
successfully passing Room5 and getting to Room9 is 0.612, and the failure probability is 0.388.

5.3. Required properties specification and verification
The purpose of MAPP is to allow the agent to explore the uncertain environment and reach

the target location. Given a DTMC model created based on MAPP, it then needs to describe its
required properties for quantitative verification. First, we explain how to specify the required
properties with PCTL including a probability formula and a reward formula. For example, the
following property can be specified as a PCTL formula.

const int InitState
P =?[F s = 6 ∧ d = x]

The first formula expresses a constant given the initial state. The second formula means
”what is the probability, from the InitState of the model, of terminal enter the state 6 and obtain
a d value”. For example, suppose x=1 is considered. The P =?[F s = 6 ∧ d = 1] means ”What
is the probability that from the initial state to the final state of 6 and d takes a value of 1”. As we
mentioned previously, d equals 1 to indicate that the agent fails. Therefore, this formula can also
be interpreted as the probability that the final state of the agent is fail.

We demonstrate and evaluate our framework by using the PRISM simulation module. Table
1 shows the probabilities for different sample volumes. The row (1) denotes the probability of
the agent ultimately failing, which contains the verification results and simulation results under
different samples. The verification results show that in the learned model, the probability of the
agent finally failing is 0.958, and the probability of entering Room15 is 0.042. The simulation
method is adopted to explain that the verification result is consistent with real-life conditions. The
simulated samples represent distinct states, and the flows of several transitional paths represent
the choices made by the agent. In this experiment, the number of samples used in the simulation
procedure ranged from 50 to 10000. We can see from the findings that as the number of
simulation samples grows, the experimental result approaches the verification result. Fig. 5
presents this concept.

Table 1: Simulation results for the robot system

Room Number of Simulation Samples Verify Prob
50 100 500 1000 5000 10000

(1) 0.980 0.940 0.942 0.949 0.962 0.959 0.958
(2) 0.020 0.060 0.058 0.051 0.038 0.041 0.042

6. Discussions

To demonstrate the applicability and effectiveness of our method, we compare it with two
traditional methods. The first method is the probabilistic model, which means that the agent
explores the environment without learning, while from one room, the probability of entering
an adjacent room is equal. The second method uses the traditional Q-learning algorithm to
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Figure 5: Simulations with different samples.

determine the path, which implies that the agent considers only the reward value earned by
passing the room rather than the probability of successfully traversing the room. These two
methods are briefly presented in the following sections.

6.1. MAPP based on the probability model

When the agent has not engaged in any learning or exploration, it has the same probability of
moving from its current location to any adjacent location.

Agent

Room0 Room1 Room2 Room3

Room4 Room5 Room6 Room7

Room8 Room9 Room10 Room11

Room12 Room13 Room14 Room15

Agent

Figure 6: An agent random exploring in the grids map.

For example, as shown in Fig. 6, when the agent is in Room5, the probability of entering
Room1, Room4, Room6, and Room9 is 1/4. Assuming that the agent chooses to enter Room6, the
probability of successfully passing through Room6 is 1/4× 0.637 ≈ 0.159. The situation in other
rooms is similar.

Model 2 : The state transition probability matrix of an agent that has not engaged learning
is presented in Table 2. The DTMC model can be established according to Table 2 and PRISM
is used to complete the verification. The verification result shows the probability of P =?[F s =

15∧ d = 1] is 0.9993 and the probability of P =?[F s = 15∧ d = 2] is 0.0007. It is clear that the
probability of the agent failing is higher than the result in Model 1.
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Table 2: The probability of robot transition
CR NR Prob CR NR Prob CR NR Prob CR NR Prob

0
1 0.252 4 8 0.151

8

4 0.046 11 15 0.333

4 0.069 F 0.341 9 0.204 F 0.390

F 0.679

5

1 0.126 12 0.099
12

8 0.227

1

2 0.157 6 0.159 F 0.651 13 0.372

1 0.333 9 0.153

9

5 0.131 F 0.401

5 0.175 4 0.035 10 0.066

13

9 0.204

F 0.335 F 0.527 13 0.186 14 0.115

2

3 0.244

6

2 0.118 8 0.114 12 0.099

6 0.212 7 0.142 F 0.504 F 0.582

1 0.168 10 0.066

10

6 0.159

14

10 0.087

F 0.376 5 0.131 11 0.119 13 0.248

3
2 0.236 F 0.544 14 0.087 15 0.333

7 0.284

7

3 0.244 9 0.153 F 0.332

F 0.320 6 0.212 F 0.482 15 15 1

4

1 0.333 11 0.159 11 7 0.189

5 0.175 F 0.385 10 0.087

6.2. MAPP based on the Q − learning
The QEA − learning algorithm suggested in this paper adds the concept of expected

assignment to the general Q-learning. For comparison, here we analyze the case of the maximum
reward value and use basic Q-learning to find the shortest path to the maximum reward. The input
R-matrix is given as:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16



−1 15 −1 −1 32 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 6 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 15 −1 29 −1 −1 43 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 6 −1 −1 −1 −1 44 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 12 −1 −1 90 −1 −1 −1 −1 −1 −1 −1
−1 15 −1 −1 32 −1 43 −1 −1 29 −1 −1 −1 −1 −1 −1
−1 −1 6 −1 −1 12 −1 44 −1 −1 44 −1 −1 −1 −1 −1
−1 −1 −1 29 −1 −1 43 −1 −1 −1 −1 11 −1 −1 −1 −1
−1 −1 −1 −1 32 −1 −1 −1 −1 29 −1 −1 57 −1 −1 −1
−1 −1 −1 −1 −1 12 −1 −1 90 −1 44 −1 −1 78 −1 −1
−1 −1 −1 −1 −1 −1 43 −1 −1 29 −1 11 −1 −1 17 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 44 −1 −1 −1 −1 100
−1 −1 −1 −1 −1 −1 −1 −1 90 −1 −1 −1 −1 78 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 29 −1 −1 57 −1 17 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 44 −1 −1 78 −1 100
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 100



(6)

Accordingly, the Q − learning algorithm yields the best route for Room0 → Room4 →

Room8 → Room12 → Room13 → Room14 → Room15. The reward obtained is
14



(1+32+90+57+78+17+100)=375. According to the chosen location transfer path, we develop
the following DTMC model.

Model 3 :
dtmc
module Agent walking in the gripmap
s : [0..6] init 0;
d : [0..2] init 0;
[]s = 0→ 0.138 : (s′ = 1) + 0.862 : (s′ = 6)&(d′ = 1);
[]s = 1→ 0.111 : (s′ = 2) + 0.889 : (s′ = 6)&(d′ = 1);
[]s = 2→ 0.296 : (s′ = 3) + 0.704 : (s′ = 6)&(d′ = 1);
[]s = 3→ 0.743 : (s′ = 4) + 0.257 : (s′ = 6)&(d′ = 1);
[]s = 4→ 0.346 : (s′ = 5) + 0.654 : (s′ = 6)&(d′ = 1);
[]s = 5→ 1 : (s′ = 6)&(d′ = 2);
[]s = 6→ (s′ = 6);
end module
The verification result shows the value of P =?[Fs = 6 ∧ d = 1] is 0.9988 and the value of

P =?[Fs = 6∧d = 2] is 0.0012. It is clear that the probability of the agent fails is higher than the
result in Model 1. The maximum possible reward for Model 1 is 252, and the maximum possible
reward for Model 3 is 375.

Agent

Room0 Room1 Room2 Room3

Room4 Room5 Room6 Room7

Room8 Room9 Room10 Room11

Room12 Room13 Room14 Room15

Model 1

Model 3

Figure 7: Two different paths for two models.

Table 3 shows the experimental comparison of the results of the three DTMC models created
based on the three different methods respectively. We can find that Model 2 has the lowest
probability of successfully reaching Room15 because it has not been learnt and the agent shifts
its location randomly until it reaches Room15. Since it is not possible to determine the route it
took, it is not possible to calculate the reward it could obtain. Model 3 specifically has a lower
probability compared to Model 1, but may gain a larger reward. Therefore, if the probability of
success is more significant, choose path Room0 → Room1 → Room5 → Room9 → Room13 →

Room14 → Room15 . On the other hand, if the focus is likely to yield the greatest reward, choose
path Room0 → Room4 → Room8 → Room12 → Room13 → Room14 → Room15.

The experiments were completed on a Intel(R) Core(TM) i5-7200U CPU with 2.50GHz and
2.71 GHz. The Algorithm were completed in Python 3.10, and the PRISM that we used for
verification was PRISM 4.7 (GUI mode).

15



Table 3: Experimental comparisons for the three models
NO. Room15 Failure Reward Expected Reward

Model 1 0.0420 0.9580 252 197
Model 2 0.0007 0.9993 * *
Model 3 0.0012 0.9988 375 196

7. Conclusions and Future Work

MAPP and control system reliability must be confirmed in order for agent technology to
improve and intelligence to rise. Because the real environment is unpredictable and complex,
an agent may come across a number of anomalies. The randomness and uncertainty of the
environment must be taken into account in the MAPP. Using RL methods, such as Q-learning
algorithm, as a key intelligent technique in the field of agent and multi-agent research, can
significantly improve an agent’s ability to finish a task. However, this has not yet worked well in
the uncertain environment. The modified Q-learning algorithm, called QEA − learning algorithm
suggested in this paper enabled the agent to efficiently explore an uncertain environment and
generate an optimal path. Nevertheless, for the learnt model, reliability analysis cannot be
ignored. Model checking is a typical formal verification technique that plays a key role in
assuring the control system’s safety and has also been increasingly applied in industrial contexts.
Compared with traditional model checking, probabilistic model checking adds the verification
function of quantitative properties. The application of probabilistic model checking allows for the
verification of system models in uncertain environments, with the results being used to evaluate
whether the required properties are met, as well as the extent to which they are fulfilled.

This paper presented an easy-to-understand path planning and control system modelling
framework of the mobile agent within uncertain environments. First, randomly assign success
probability and reward values for all locations aside from the beginning and target locations.
According to the probability value and the reward of each location, the expected reward is
calculated, and the expected R-matrix is generated. The expected R-matrix will be used as
input to the QEA − learning algorithm to select the fastest and highest expected reward path.
Moreover, a DTMC model was created for the control system under the selected path, and
the model was verified with PRISM. Finally, in the discussion section, two DTMC models are
constructed for the paths selected by Q − learning and general probability, respectively, and
the same properties are verified to demonstrate the effectiveness of the path planning method
proposed in this paper under stochastic uncertainty environments. The results show that our
method has a higher probability of obtaining the maximum expected reward.

This paper primarily considers scenarios involving only a single agent’s movement. Most
industrial application environments, such as automated driving and smart warehousing, have
multiple agents moving simultaneously. More complex issues, such as collision-free control,
need to be considered in multiple agent applications, which is also more application-worthy.
Therefore, multi-agent movement in uncertain environments is the predominant direction for our
future research.
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