31 research outputs found

    A Type-Theoretic Foundation of Delimited Continuations

    Get PDF
    International audienceThere is a correspondence between classical logic and programming language calculi with first-class continuations. With the addition of control delimiters, the continuations become composable and the calculi become more expressive. We present a fine-grained analysis of control delimiters and formalise that their addition corresponds to the addition of a single dynamically-scoped variable modelling the special top-level continuation. From a type perspective, the dynamically-scoped variable requires effect annotations. In the presence of control, the dynamically-scoped variable can be interpreted in a purely functional way by applying a store-passing style. At the type level, the effect annotations are mapped within standard classical logic extended with the dual of implication, namely subtraction. A continuation-passing-style transformation of lambda-calculus with control and subtraction is defined. Combining the translations provides a decomposition of standard CPS transformations for delimited continuations. Incidentally, we also give a direct normalisation proof of the simply-typed lambda-calculus with control and subtraction

    Proving termination of evaluation for System F with control operators

    Full text link
    We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step operational semantics with explicit representation of evaluation contexts) for System F with control operators. We introduce a modified version of Girard's proof method based on reducibility candidates, where the reducibility predicates are defined on values and on evaluation contexts as prescribed by the reduction semantics format. We address both abortive control operators (callcc) and delimited-control operators (shift and reset) for which we introduce novel polymorphic type systems, and we consider both the call-by-value and call-by-name evaluation strategies.Comment: In Proceedings COS 2013, arXiv:1309.092

    Control Reduction Theories: the Benefit of Structural Substitution

    Get PDF
    L'article contient une annexe historique par Matthias Felleisen sur la génèse des opérateurs de contrôle à l'université d'Indiana à la fin des années 80.International audienceThe historical design of the call-by-value theory of control relies on the reification of evaluation contexts as regular functions and on the use of ordinary term application for jumping to a continuation. To the contrary, the lambda-C-tp control calculus, developed by the authors, distinguishes between jumps and terms. This alternative calculus, which derives from Parigot's lambda-mu-calculus, works by direct "structural substitution" of evaluation contexts. We review and revisit the legacy theories of control and argue that lambda-C-tp provides an observationally equivalent but smoother theory. In an additional note contributed by Matthias Felleisen, we review the story of the birth of control calculi during the mid to late eighties at Indiana University

    Logical relations for coherence of effect subtyping

    Full text link
    A coercion semantics of a programming language with subtyping is typically defined on typing derivations rather than on typing judgments. To avoid semantic ambiguity, such a semantics is expected to be coherent, i.e., independent of the typing derivation for a given typing judgment. In this article we present heterogeneous, biorthogonal, step-indexed logical relations for establishing the coherence of coercion semantics of programming languages with subtyping. To illustrate the effectiveness of the proof method, we develop a proof of coherence of a type-directed, selective CPS translation from a typed call-by-value lambda calculus with delimited continuations and control-effect subtyping. The article is accompanied by a Coq formalization that relies on a novel shallow embedding of a logic for reasoning about step-indexing

    λμ-calculus and Λμ-calculus: a Capital Difference

    Get PDF
    Since Parigot designed the λμ-calculus to algorithmically interpret classical natural deduction, several variants of λμ-calculus have been proposed. Some of these variants derived from an alteration of the original syntax due to de Groote, leading in particular to the Λμ-calculus of the second author, a calculus truly different from λμ-calculus since, in the untyped case, it provides a Böhm separation theorem that the original calculus does not satisfy. In addition to a survey of some aspects of the history of λμ-calculus, we study connections between Parigot's calculus and the modified syntax by means of an additional toplevel continuation. This analysis is twofold: first we relate λμ-calculus and Λμ-calculus in the typed case using λμtp-calculus, which contains a toplevel continuation constant tp, and then we use calculi of the family of λμtp-calculi, containing a toplevel continuation variable tp, to study the untyped setting and in particular relate calculi in the modified syntax

    Bisimulations for Delimited-Control Operators

    Full text link
    We present a comprehensive study of the behavioral theory of an untyped λ\lambda-calculus extended with the delimited-control operators shift and reset. To that end, we define a contextual equivalence for this calculus, that we then aim to characterize with coinductively defined relations, called bisimilarities. We consider different styles of bisimilarities (namely applicative, normal-form, and environmental) within a unifying framework, and we give several examples to illustrate their respective strengths and weaknesses. We also discuss how to extend this work to other delimited-control operators

    An Approach to Call-by-Name Delimited Continuations

    Get PDF
    International audienceWe show that a variant of Parigot's λμ-calculus, originally due to de Groote and proved to satisfy Böhm's theorem by Saurin, is canonically interpretable as a call-by-name calculus of delim- ited control. This observation is expressed using Ariola et al's call-by-value calculus of delimited control, an extension of λμ-calculus with delimited control known to be equationally equivalent to Danvy and Filinski's calculus with shift and reset. Our main result then is that de Groote and Saurin's variant of λμ-calculus is equivalent to a canonical call-by-name variant of Ariola et al's calculus. The rest of the paper is devoted to a comparative study of the call-by-name and call-by-value variants of Ariola et al's calculus, covering in particular the questions of simple typing, operational semantics, and continuation-passing-style semantics. Finally, we discuss the relevance of Ariola et al's calculus as a uniform framework for representing different calculi of delimited continuations, including "lazy" variants such as Sabry's shift and lazy reset calculus

    Foundations for programming and implementing effect handlers

    Get PDF
    First-class control operators provide programmers with an expressive and efficient means for manipulating control through reification of the current control state as a first-class object, enabling programmers to implement their own computational effects and control idioms as shareable libraries. Effect handlers provide a particularly structured approach to programming with first-class control by naming control reifying operations and separating from their handling. This thesis is composed of three strands of work in which I develop operational foundations for programming and implementing effect handlers as well as exploring the expressive power of effect handlers. The first strand develops a fine-grain call-by-value core calculus of a statically typed programming language with a structural notion of effect types, as opposed to the nominal notion of effect types that dominates the literature. With the structural approach, effects need not be declared before use. The usual safety properties of statically typed programming are retained by making crucial use of row polymorphism to build and track effect signatures. The calculus features three forms of handlers: deep, shallow, and parameterised. They each offer a different approach to manipulate the control state of programs. Traditional deep handlers are defined by folds over computation trees, and are the original con-struct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather than folds) over computation trees. Parameterised handlers are deep handlers extended with a state value that is threaded through the folds over computation trees. To demonstrate the usefulness of effects and handlers as a practical programming abstraction I implement the essence of a small UNIX-style operating system complete with multi-user environment, time-sharing, and file I/O. The second strand studies continuation passing style (CPS) and abstract machine semantics, which are foundational techniques that admit a unified basis for implementing deep, shallow, and parameterised effect handlers in the same environment. The CPS translation is obtained through a series of refinements of a basic first-order CPS translation for a fine-grain call-by-value language into an untyped language. Each refinement moves toward a more intensional representation of continuations eventually arriving at the notion of generalised continuation, which admit simultaneous support for deep, shallow, and parameterised handlers. The initial refinement adds support for deep handlers by representing stacks of continuations and handlers as a curried sequence of arguments. The image of the resulting translation is not properly tail-recursive, meaning some function application terms do not appear in tail position. To rectify this the CPS translation is refined once more to obtain an uncurried representation of stacks of continuations and handlers. Finally, the translation is made higher-order in order to contract administrative redexes at translation time. The generalised continuation representation is used to construct an abstract machine that provide simultaneous support for deep, shallow, and parameterised effect handlers. kinds of effect handlers. The third strand explores the expressiveness of effect handlers. First, I show that deep, shallow, and parameterised notions of handlers are interdefinable by way of typed macro-expressiveness, which provides a syntactic notion of expressiveness that affirms the existence of encodings between handlers, but it provides no information about the computational content of the encodings. Second, using the semantic notion of expressiveness I show that for a class of programs a programming language with first-class control (e.g. effect handlers) admits asymptotically faster implementations than possible in a language without first-class control
    corecore