30 research outputs found

    A Proof-Theoretic Approach to Certifying Skolemization

    Get PDF
    International audienceWhen presented with a formula to prove, most theorem provers for classical first-order logic process that formula following several steps, one of which is commonly called skolemization. That process eliminates quantifier alternation within formulas by extending the language of the underlying logic with new Skolem functions and by instantiating certain quantifiers with terms built using Skolem functions. In this paper, we address the problem of checking (i.e., certifying) proof evidence that involves Skolem terms. Our goal is to do such certification without using the mathematical concepts of model-theoretic semantics (i.e., preservation of satisfiability) and choice principles (i.e., epsilon terms). Instead , our proof checking kernel is an implementation of Gentzen's sequent calculus, which directly supports quanti-fier alternation by using eigenvariables. We shall describe deskolemization as a mapping from client-side terms, used in proofs generated by theorem provers, into kernel-side terms, used within our proof checking kernel. This mapping which associates skolemized terms to eigenvariables relies on using outer skolemization. We also point out that the removal of Skolem terms from a proof is influenced by the polarities given to propositional connectives

    Encoding TLA+ set theory into many-sorted first-order logic

    Get PDF
    We present an encoding of Zermelo-Fraenkel set theory into many-sorted first-order logic, the input language of state-of-the-art SMT solvers. This translation is the main component of a back-end prover based on SMT solvers in the TLA+ Proof System

    Soundly Proving B Method Formulae Using Typed Sequent Calculus

    Get PDF
    International audienceThe B Method is a formal method mainly used in the railway industry to specify and develop safety-critical software. To guarantee the consistency of a B project, one decisive challenge is to show correct a large amount of proof obligations, which are mathematical formulae expressed in a classical set theory extended with a specific type system. To improve automated theorem proving in the B Method, we propose to use a first-order sequent calculus extended with a polymorphic type system, which is in particular the output proof-format of the tableau-based automated theorem prover Zenon. After stating some modifications of the B syntax and defining a sound elimination of comprehension sets, we propose a translation of B formulae into a polymorphic first-order logic format. Then, we introduce the typed sequent calculus used by Zenon, and show that Zenon proofs can be translated to proofs of the initial B formulae in the B proof system

    Encoding TLA+ into Many-Sorted First-Order Logic

    Get PDF
    International audienceThis paper presents an encoding of a non-temporal fragment of the TLA+ language, which includes untyped set theory, functions, arithmetic expressions, and Hilbert's ε operator, into many-sorted first-order logic, the input language of state-of-the-art SMT solvers. This translation, based on encoding techniques such as boolification, injection of unsorted expressions into sorted languages, term rewriting, and abstraction, is the core component of a back-end prover based on SMT solvers for the TLA+ Proof System

    A formalized general theory of syntax with bindings: extended version

    Get PDF
    We present the formalization of a theory of syntax with bindings that has been developed and refined over the last decade to support several large formalization efforts. Terms are defined for an arbitrary number of constructors of varying numbers of inputs, quotiented to alpha-equivalence and sorted according to a binding signature. The theory contains a rich collection of properties of the standard operators on terms, including substitution, swapping and freshness—namely, there are lemmas showing how each of the operators interacts with all the others and with the syntactic constructors. The theory also features induction and recursion principles and support for semantic interpretation, all tailored for smooth interaction with the bindings and the standard operators

    Harnessing SMT Solvers for TLA+ Proofs

    Get PDF
    International audienceTLA+ is a language based on Zermelo-Fraenkel set theory and linear temporal logic designed for specifying and verifying concurrent and distributed algorithms and systems. The TLA+ proof system TLAPS allows users to interactively verify safety properties of these systems. At the core of TLAPS, a proof manager interprets the proof language, generates corresponding proof obligations and passes them to backend provers. We recently developed a backend that relies on a typing discipline to encode (untyped) TLA+ formulas into multi-sorted first-order logic for SMT solvers. In this paper we present a different encoding of TLA+ formulas that does not require explicit type inference for TLA+ expressions. We also present a number of techniques based on rewriting in order to simplify the resulting formulas

    A Semantic Framework for Proof Evidence

    Get PDF
    International audienceTheorem provers produce evidence of proof in many different formats, such as proof scripts, natural deductions, resolution refutations, Herbrand expansions, and equational rewritings. In implemented provers, numerous variants of such formats are actually used: consider, for example, such variants of or restrictions to resolution refu-tations as binary resolution, hyper-resolution, ordered-resolution, paramodulation, etc. We propose the foundational proof certificates (FPC) framework for defining the semantics of a broad range of proof evidence. This framework allows both producers of proof certificates and the checkers of those certificates to have a clear formal definition of the semantics of a wide variety of proof evidence. Employing the FPC framework will allow one to separate a proof from its provenance and to allow anyone to construct their own proof checker for a given style of proof evidence. The foundation on which FPC relies is that of proof theory, particularly recent work into focused proof systems: such proof systems provide protocols by which a checker extracts information from the certificate (mediated by the so called clerks and experts) as well as performs various deterministic and non-deterministic computations. While we shall limit ourselves to first-order logic in this paper, we shall not limit ourselves in many other ways. The FPC framework is described for both classical and intuitionistic logics and for proof structures as diverse as resolution refutations, natural deduction, Frege proofs, and equality proofs

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah
    corecore