9,528 research outputs found

    A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data

    Get PDF
    Designing and pricing new products is one of the most critical activities for a firm, and it is well-known that taking into account consumer preferences for design decisions is essential for products later to be successful in a competitive environment (e.g., Urban and Hauser 1993). Consequently, measuring consumer preferences among multiattribute alternatives has been a primary concern in marketing research as well, and among many methodologies developed, conjoint analysis (Green and Rao 1971) has turned out to be one of the most widely used preference-based techniques for identifying and evaluating new product concepts. Moreover, a number of conjoint-based models with special focus on mathematical programming techniques for optimal product (line) design have been proposed (e.g., Zufryden 1977, 1982, Green and Krieger 1985, 1987b, 1992, Kohli and Krishnamurti 1987, Kohli and Sukumar 1990, Dobson and Kalish 1988, 1993, Balakrishnan and Jacob 1996, Chen and Hausman 2000). These models are directed at determining optimal product concepts using consumers' idiosyncratic or segment level part-worth preference functions estimated previously within a conjoint framework. Recently, Balakrishnan and Jacob (1996) have proposed the use of Genetic Algorithms (GA) to solve the problem of identifying a share maximizing single product design using conjoint data. In this paper, we follow Balakrishnan and Jacob's idea and employ and evaluate the GA approach with regard to the problem of optimal product line design. Similar to the approaches of Kohli and Sukumar (1990) and Nair et al. (1995), product lines are constructed directly from part-worths data obtained by conjoint analysis, which can be characterized as a one-step approach to product line design. In contrast, a two-step approach would start by first reducing the total set of feasible product profiles to a smaller set of promising items (reference set of candidate items) from which the products that constitute a product line are selected in a second step. Two-step approaches or partial models for either the first or second stage in this context have been proposed by Green and Krieger (1985, 1987a, 1987b, 1989), McBride and Zufryden (1988), Dobson and Kalish (1988, 1993) and, more recently, by Chen and Hausman (2000). Heretofore, with the only exception of Chen and Hausman's (2000) probabilistic model, all contributors to the literature on conjoint-based product line design have employed a deterministic, first-choice model of idiosyncratic preferences. Accordingly, a consumer is assumed to choose from her/his choice set the product with maximum perceived utility with certainty. However, the first choice rule seems to be an assumption too rigid for many product categories and individual choice situations, as the analyst often won't be in a position to control for all relevant variables influencing consumer behavior (e.g., situational factors). Therefore, in agreement with Chen and Hausman (2000), we incorporate a probabilistic choice rule to provide a more flexible representation of the consumer decision making process and start from segment-specific conjoint models of the conditional multinomial logit type. Favoring the multinomial logit model doesn't imply rejection of the widespread max-utility rule, as the MNL includes the option of mimicking this first choice rule. We further consider profit as a firm's economic criterion to evaluate decisions and introduce fixed and variable costs for each product profile. However, the proposed methodology is flexible enough to accomodate for other goals like market share (as well as for any other probabilistic choice rule). This model flexibility is provided by the implemented Genetic Algorithm as the underlying solver for the resulting nonlinear integer programming problem. Genetic Algorithms merely use objective function information (in the present context on expected profits of feasible product line solutions) and are easily adjustable to different objectives without the need for major algorithmic modifications. To assess the performance of the GA methodology for the product line design problem, we employ sensitivity analysis and Monte Carlo simulation. Sensitivity analysis is carried out to study the performance of the Genetic Algorithm w.r.t. varying GA parameter values (population size, crossover probability, mutation rate) and to finetune these values in order to provide near optimal solutions. Based on more than 1500 sensitivity runs applied to different problem sizes ranging from 12.650 to 10.586.800 feasible product line candidate solutions, we can recommend: (a) as expected, that a larger problem size be accompanied by a larger population size, with a minimum popsize of 130 for small problems and a minimum popsize of 250 for large problems, (b) a crossover probability of at least 0.9 and (c) an unexpectedly high mutation rate of 0.05 for small/medium-sized problems and a mutation rate in the order of 0.01 for large problem sizes. Following the results of the sensitivity analysis, we evaluated the GA performance for a large set of systematically varying market scenarios and associated problem sizes. We generated problems using a 4-factorial experimental design which varied by the number of attributes, number of levels in each attribute, number of items to be introduced by a new seller and number of competing firms except the new seller. The results of the Monte Carlo study with a total of 276 data sets that were analyzed show that the GA works efficiently in both providing near optimal product line solutions and CPU time. Particularly, (a) the worst-case performance ratio of the GA observed in a single run was 96.66%, indicating that the profit of the best product line solution found by the GA was never less than 96.66% of the profit of the optimal product line, (b) the hit ratio of identifying the optimal solution was 84.78% (234 out of 276 cases) and (c) it tooks at most 30 seconds for the GA to converge. Considering the option of Genetic Algorithms for repeated runs with (slightly) changed parameter settings and/or different initial populations (as opposed to many other heuristics) further improves the chances of finding the optimal solution.

    When is multidimensional screening a convex program?

    Full text link
    A principal wishes to transact business with a multidimensional distribution of agents whose preferences are known only in the aggregate. Assuming a twist (= generalized Spence-Mirrlees single-crossing) hypothesis and that agents can choose only pure strategies, we identify a structural condition on the preference b(x,y) of agent type x for product type y -- and on the principal's costs c(y) -- which is necessary and sufficient for reducing the profit maximization problem faced by the principal to a convex program. This is a key step toward making the principal's problem theoretically and computationally tractable; in particular, it allows us to derive uniqueness and stability of the principal's optimum strategy -- and similarly of the strategy maximizing the expected welfare of the agents when the principal's profitability is constrained. We call this condition non-negative cross-curvature: it is also (i) necessary and sufficient to guarantee convexity of the set of b-convex functions, (ii) invariant under reparametrization of agent and/or product types by diffeomorphisms, and (iii) a strengthening of Ma, Trudinger and Wang's necessary and sufficient condition (A3w) for continuity of the correspondence between an exogenously prescribed distribution of agents and of products. We derive the persistence of economic effects such as the desirability for a monopoly to establish prices so high they effectively exclude a positive fraction of its potential customers, in nearly the full range of non-negatively cross-curved models.Comment: 23 page

    Online Learning and Profit Maximization from Revealed Preferences

    Full text link
    We consider the problem of learning from revealed preferences in an online setting. In our framework, each period a consumer buys an optimal bundle of goods from a merchant according to her (linear) utility function and current prices, subject to a budget constraint. The merchant observes only the purchased goods, and seeks to adapt prices to optimize his profits. We give an efficient algorithm for the merchant's problem that consists of a learning phase in which the consumer's utility function is (perhaps partially) inferred, followed by a price optimization step. We also consider an alternative online learning algorithm for the setting where prices are set exogenously, but the merchant would still like to predict the bundle that will be bought by the consumer for purposes of inventory or supply chain management. In contrast with most prior work on the revealed preferences problem, we demonstrate that by making stronger assumptions on the form of utility functions, efficient algorithms for both learning and profit maximization are possible, even in adaptive, online settings

    STRATEGIC PRODUCT DESIGN DECISIONS FOR UNCERTAIN, CONVERGING AND SERVICE ORIENTED MARKETS

    Get PDF
    Market driven product design decisions are receiving increasing attention in the engineering design research literature. Econometric models and marketing research techniques are being integrated into engineering design in order to assist with profit maximizing product design decisions. This stream of research is referred to as "Design for Market Systems" (DMS). The existing DMS approaches fall short when the market environment is complex. The complexity can be incurred by the uncertain action-reactions of market players which impose unexpected market responses to a new design. The complexity can originate from the emergence of a niche product which creates a new product market by integrating the features of two or more existing products categories. The complexity can also arise when the designer is challenged to handle the couplings of outsourced subsystems from suppliers and explore the integration of the product with service providers. The objective of the thesis is to overcome such limitations and facilitate design decisions by modeling and interpreting the complex market environment. The research objective is achieved by three research thrusts. Thrust 1 examines the impact of action-reactions of market players on the long and short term design decisions for single category products using an agent based simulation approach. Thrust 2 concerns the design decisions for "convergence products". A convergence product physically integrates two or more existing product categories into a common product form. Convergence products make the consumer choice behavior and profit implications of design alternatives differ significantly from the situation where only a single product market is involved. Thrust 3 explores product design decisions while considering the connection to the upstream suppliers and downstream service providers. The connection is achieved by a quantitative understanding of interoperability of physical product modules as well as between a physical product and a service provider

    Credit rationing by loan size in commercial loan markets

    Get PDF
    The authors present a theoretical model in which a profit-maximizing lender may ration credit to businesses by restricting loan size. Such credit rationing occurs despite the absence of differences across borrowers in default risk or loan administration costs. Moreover, the model predicts an interest rate-loan size pattern that matches that observed in U.S. commercial loan markets.Credit ; Bank loans
    corecore