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A Probabilistic One-Step Approach to the Optimal Product Line Design 

Problem 

Using Conjoint and Cost Data 

Long Abstract: Designing and pricing new products is one of the most critical activities for a 

firm, and it is well-known that taking into account consumer preferences for design decisions is 

essential for products later to be successful in a competitive environment (e.g., Urban and Hauser 

1993). Consequently, measuring consumer preferences among multiattribute alternatives has 

been a primary concern in marketing research as well, and among many methodologies 

developed, conjoint analysis (Green and Rao 1971) has turned out to be one of the most widely 

used preference-based techniques for identifying and evaluating new product concepts. 

Moreover, a number of conjoint-based models with special focus on mathematical programming 

techniques for optimal product (line) design have been proposed (e.g., Zufryden 1977, 1982, 

Green and Krieger 1985, 1987b, 1992, Kohli and Krishnamurti 1987, Kohli and Sukumar 1990, 

Dobson and Kalish 1988, 1993, Balakrishnan and Jacob 1996, Chen and Hausman 2000). These 

models are directed at determining optimal product concepts using consumers’ idiosyncratic or 

segment level part-worth preference functions estimated previously within a conjoint framework. 

Recently, Balakrishnan and Jacob (1996) have proposed the use of Genetic Algorithms (GA) to 

solve the problem of identifying a share maximizing single product design using conjoint data. In 

this paper, we follow Balakrishnan and Jacob’s idea and employ and evaluate the GA approach 

with regard to the problem of optimal product line design. Similar to the approaches of Kohli and 

Sukumar (1990) and Nair et al. (1995), product lines are constructed directly from part-worths 
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data obtained by conjoint analysis, which can be characterized as a one-step approach to product 

line design. In contrast, a two-step approach would start by first reducing the total set of feasible 

product profiles to a smaller set of promising items (reference set of candidate items) from which 

the products that constitute a product line are selected in a second step. Two-step approaches or 

partial models for either the first or second stage in this context have been proposed by Green 

and Krieger (1985, 1987a, 1987b, 1989), McBride and Zufryden (1988), Dobson and Kalish 

(1988, 1993) and, more recently, by Chen and Hausman (2000). 

Heretofore, with the only exception of Chen and Hausman’s (2000) probabilistic model, all 

contributors to the literature on conjoint-based product line design have employed a 

deterministic, first-choice model of idiosyncratic preferences. Accordingly, a consumer is 

assumed to choose from her/his choice set the product with maximum perceived utility with 

certainty. However, the first choice rule seems to be an assumption too rigid for many product 

categories and individual choice situations, as the analyst often won’t be in a position to control 

for all relevant variables influencing consumer behavior (e.g., situational factors). Therefore, in 

agreement with Chen and Hausman (2000), we incorporate a probabilistic choice rule to provide 

a more flexible representation of the consumer decision making process and start from segment-

specific conjoint models of the conditional multinomial logit type. Favoring the multinomial 

logit model doesn’t imply rejection of the widespread max-utility rule, as the MNL includes the 

option of mimicking this first choice rule. 

We further consider profit as a firm’s economic criterion to evaluate decisions and introduce 

fixed and variable costs for each product profile. However, the proposed methodology is flexible 

enough to accomodate for other goals like market share (as well as for any other probabilistic 
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choice rule). This model flexibility is provided by the implemented Genetic Algorithm as the 

underlying solver for the resulting nonlinear integer programming problem. Genetic Algorithms 

merely use objective function information (in the present context on expected profits of feasible 

product line solutions) and are easily adjustable to different objectives without the need for major 

algorithmic modifications. 

To assess the performance of the GA methodology for the product line design problem, we 

employ sensitivity analysis and Monte Carlo simulation. Sensitivity analysis is carried out to 

study the performance of the Genetic Algorithm w.r.t. varying GA parameter values (population 

size, crossover probability, mutation rate) and to finetune these values in order to provide near 

optimal solutions. Based on more than 1500 sensitivity runs applied to different problem sizes 

ranging from 12.650 to 10.586.800 feasible product line candidate solutions, we can recommend: 

(a) as expected, that a larger problem size be accompanied by a larger population size, with a 

minimum popsize of 130 for small problems and a minimum popsize of 250 for large problems, 

(b) a crossover probability of at least 0.9 and (c) an unexpectedly high mutation rate of 0.05 for 

small/medium-sized problems and a mutation rate in the order of 0.01 for large problem sizes.  

Following the results of the sensitivity analysis, we evaluated the GA performance for a large set 

of systematically varying market scenarios and associated problem sizes. We generated problems 

using a 4-factorial experimental design which varied by the number of attributes, number of 

levels in each attribute, number of items to be introduced by a new seller and number of 

competing firms except the new seller. The results of the Monte Carlo study with a total of 276 

data sets that were analyzed show that the GA works efficiently in both providing near optimal 

product line solutions and CPU time. Particularly, (a) the worst-case performance ratio of the GA 
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observed in a single run was 96.66%, indicating that the profit of the best product line solution 

found by the GA was never less than 96.66% of the profit of the optimal product line, (b) the hit 

ratio of identifying the optimal solution was 84.78% (234 out of 276 cases) and (c) it tooks at 

most 30 seconds for the GA to converge. Considering the option of Genetic Algorithms for 

repeated runs with (slightly) changed parameter settings and/or different initial populations (as 

opposed to many other heuristics) further improves the chances of finding the optimal solution. 

Key words: Conjoint Analysis, Product Line Design, Probabilistic Choice Modeling, Genetic 
Algorithms 
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A Probabilistic One-Step Approach to the Optimal Product Line Design 

Problem 

Using Conjoint and Cost Data 

1 Introduction 

Designing and pricing new products is one of the most critical activities for a firm, and it is well-

known that taking into account consumer preferences for design decisions is essential for 

products later to be successful in a competitive environment (e.g., Urban and Hauser 1993). 

Consequently, measuring consumer preferences among multiattribute alternatives has been a 

primary concern in marketing research as well, and among many methods developed, conjoint 

analysis (Green and Rao 1971) has turned out to be one of the the most widely used preference-

based techniques for identifying and evaluating new product concepts. This is reflected by a huge 

number of contributions in the marketing literature that have been devoted to both theoretical 

advances (for reviews, see Green and Srinivasan 1978, 1990, Green and Krieger 1996) and 

practical applications (e.g., see Cattin and Wittink 1982, Wittink and Cattin 1989) of conjoint 

analysis. Moreover, a number of conjoint-based models with special focus on mathematical 

programming techniques for optimal product (line) design have been developed (e.g., Zufryden 

1977, 1982, Green and Krieger 1985, 1987b, 1992, Kohli and Krishnamurti 1987, Kohli and 

Sukumar 1990, Dobson and Kalish 1988, 1993, Balakrishnan and Jacob 1996, Chen and 

Hausman 2000). These models seek to determine optimal product concepts using consumers’ 

idiosyncratic or segment level part-worth preference functions estimated previously within a 

conjoint framework. 
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Optimal product design models proposed so far can be classified according to the following three 

criteria: (1) the underlying objective function (maximizing profit, share of choices or welfare), 

(2) the type of choice rule employed (deterministic or probabilistic) and (3) whether only one or 

multiple items are considered for introduction or modification (single product or product line). 

As conjoint-based searching for optimal product designs results in combinatorial optimization 

problems because of the typically discrete nature of attributes used in conjoint studies, and nearly 

all of these problems are known to be mathematically intractable or NP-hard, mainly heuristic 

solution procedures have been proposed for the various problem types (for a comprehensive 

review of research in marketing on optimal product (line) design, see Kaul and Rao 1995). 

In the following, we focus on the product line design problem. As compared to almost all 

previous contributions on optimal product line design in which the first choice rule is used to 

model consumers’ choices, we start from segment-specific conjoint models of the conditional 

multinomial logit type (CMNL) and therefore incorporate probabilistic choice. To the best of our 

knowledge, only Chen and Hausman (2000) to date have employed a probabilistic choice rule in 

the context of conjoint-based optimal product line design but their approach (as opposed to ours) 

requires a reference set of candidate products from which the new product line is selected to be 

predetermined. We further consider profit contribution as a seller’s economic criterion to 

evaluate decisions. However, the proposed methodology is flexible enough to accomodate for 

other goals like market share. This model flexibility is provided by the use of a Genetic 

Algorithm (GA) that is employed to solve the resulting nonlinear integer programming problem. 

Genetic Algorithms, a probabilistic search technique from the field of artificial intelligence 

research, merely use objective function information (in the present context about expected profits 

of feasible product line solutions), and are easily adjustable to different objectives without the 
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need for major algorithmic modifications. An important feature of the GA approach is that it 

allows for constructing product line candidates directly from attribute level part-worths data 

which is preferable to reference set enumeration if the number of attributes and attribute levels is 

large and most multi-attribute items represented by different attribute level combinations are 

economically and technologically feasible (Kohli and Sukumar 1990, Nair et al. 1995). With our 

application of the GA methodology to product line design, we follow Balakrishnan and Jacob 

(1996) who recently introduced the use of Genetic Algorithms to the product design literature. 

They have dealt with the problem of identifying a share maximizing new single product design 

and have shown their algorithm to be of excellent performance (with an average 99,13% close-

to-optimal ratio across 192 data sets). 

The paper is organized as follows; in §2, we first briefly review some basic aspects of optimal 

product (line) design concerning the conjoint measurement methodology and choice modeling 

issues. It follows an overview of hitherto proposed profit-oriented models for product line design 

and selection. In §3, the new conjoint-based probabilistic product line design model is formalized 

as a nonlinear integer programming problem with special focus on profit maximizing firms. After 

a short introduction into the basic GA process, we then present the genetic algorithm developed 

for solving the seller’s problem. We further discuss some problems of GA implementation 

arising specifically with product line design. In $4, we describe the experimental methodology 

used to evaluate the performance of the proposed GA methodology and present the associated 

results. §5 summarizes the contents of the paper and draws an outlook onto future research 

perspectives. 

2 Background 
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2.1 Customer Preference Measurement 

Preference-based product (line) design requires customers’ preferences to be determined in the 

run-up. In the present context of conjoint analysis, one first selects attributes considered relevant 

in the customers’ eyes, and a discrete number of feasible levels is fixed for each attribute. The 

next step is to collect scaled preference evaluations from respondents with regard to a subset of 

multi-attribute product profiles (stimuli) constructed according to a fractional factorial design. 

From these preference data, idiosyncratic part-worth preference functions are estimated for each 

respondent applying decompositional methods (typically OLS regression). Alternatively, attribute 

level part-worths can be computed from respondents’ simulated choice data which is then called 

a choice-based conjoint analysis (CBC) and establishes a direct connection between preference 

and choice (e.g., see Louviere and Woodworth 1983). CBC involves the specification of a 

discrete choice model (like CMNL) and is usually conducted at the aggregate level resulting in 

pooled attribute level parameter estimations. No matter how, as the part-worth utilities have been 

estimated, composite utilities for any feasible product profile constructable from the underlying 

attribute levels can be predicted and used to evaluating new product concepts. Typically, only 

main effects (and, sometimes, a few two-way interaction effects) are estimated in conjoint studies 

to limit the loss of predictive power of the model from estimating too many parameters (Green 

and Srinivasan 1990, Green and Krieger 1996). 

As Wittink and Cattin (1989) have reported from a survey on commercial applications of 

conjoint analysis, market segmentation ranks among the primary purposes of suppliers in 

conjoint studies. If segmentation issues are of particular interest, individual level part-worth 

estimations might further be clustered to form market segments (post hoc segmentation). 
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Moreover, a number of procedures for simultaneously performing market segmentation and 

calibrating segment-level part-worths in conjoint analysis have been delevoped in recent years. 

Such methodes for simultaneous segmentation and estimation have been proposed for both the 

traditional conjoint and the CBC approach (see Wedel and Kamakura 1998 for a comprehensive 

review). 

2.2 Choice Modeling 

To model consumers’ choices, one needs to specify both a preference model (e.g., a main-effects 

part-worth model) and a choice rule. While the first one defines the functional relationship 

between attribute values of a product and a consumer’s or a segment’s overall utility attached to 

it, the latter relates preference to choice.  

Under a deterministic, first choice rule of preferences, a consumer is assumed to choose from 

her/his choice set the product with the highest associated utility with certainty. Consequently, an 

individual is expected to switch to a new product if it offers to her/him a higher utility than 

her/his current favorite brand. However, the first choice rule seems to represent an assumption 

too restrictive for many product categories and individual choice situations, as the analyst is 

possibly not able to consider all variables that influence consumer behavior (e.g., situational 

factors) and then cannot infer actual choice from preference with certainty. As a result, applying 

the first choice rule improperly leads to suboptimal results on the aggregate market level, as 

market shares of products with higher utilities across consumers would be overestimated.  

Consequently, the use of a probabilistic choice rule can often provide a more realistic 

representation of the consumer decision making process (e.g., see Kaul and Rao 1995). 

Moreover, some probabilistic choice rules (like the ones discussed below) offer high flexibility in 
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calibrating actual choice behavior including the option of mimicking the first choice rule. 

Reviewing the literature on optimal product design, two probabilistic choice rules have been 

employed so far: the generalized (or powered) Bradley-Terry-Luce share-of-utility rule (GBTL, 

α-rule) and the logit choice rule (CMNL). 

According to the GBTL model, a consumer i’s (segment i’s) choice probability Pij  w.r.t. a 

product j ( ,..., )j J=1  is defined by the ratio of its associated deterministic utility Vij  to the sum 

of associated deterministic utilities for the various alternatives considered for buying: 

P
V

V
ij

ij

im
m

J
=

=
∑

α

α

1

 (1) 

The GBTL model can be calibrated on actual market shares by post hoc optimization of the 

decision constant alpha (e.g., see Green and Krieger 1993). With α → ∞ , GBTL approximates 

the first-choice rule, and with α =1, the model mimics the traditional BTL share-of-utility rule.  

Starting from the assumption of independently and identically extreme value type I distributed 

error terms, one arrives at the logit choice rule, a discrete choice model (McFadden 1974). 

Considering a conditional multinomial logit (CMNL), the probability Pij  that a consumer i (a 

segment i’s consumer) will choose brand j from a set of J alternatives is: 

( )
( )

P
V

V
ij

ij

im
m

J
=

⋅

⋅
=
∑

exp

exp

µ

µ
1

 (2) 

Like with GBTL, calibration on actual market shares can be carried out subsequently to 

preference estimation by post hoc optimization of the scaling parameter µ (e.g., Choi and 
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DeSarbo 1993). As µ goes to infinity, the logit behaves like a deterministic model, and as µ 

approaches zero, it becomes a uniform distribution. However, discrete choice models are best 

suited to estimate consumers’ preferences directly from choice data (e.g., see Green and Krieger 

1996). In this case, preference estimation and model calibration perform simultaneously and tests 

for statistical inferences about a particular model and its parameters are available. Then, the 

scaling parameter µ is absorbed by the other parameters of Vij .  

2.3 Profit-Oriented Approaches to Product Line Design 

A number of researchers have proposed (part-worth) utility-based procedures for selecting a 

product line maximizing a seller’s profit. These approaches can be classified into two categories. 

One-step approaches solve the problem by constructing product lines directly from part-worth 

preference and cost/return functions. Two-step approaches, on the other hand, start by reducing 

the total set of feasible product profiles to a smaller set of promising items (reference set of 

candidate items) from which the products that constitute a product line are selected in a second 

step with the objective of maximum profit contribution. The final product line decision in the 

second step is made on the basis of total utility and total profit of each reference set item (as 

opposed to part-worth preferences and costs/returns at the individual attribute level). 

Most researchers dealing with the two-step approach have introduced partial models which are 

limited to the second step, i.e., the determination of a product line from a reference set of 

candidate items (e.g., Green and Krieger 1985, McBride and Zufryden 1988, Dobson and Kalish 

1988, 1993, Chen and Hausman 2000). Mainly, greedy and greedy-interchange heuristics have 

been proposed to solve these second step problems. Only Green and Krieger (1987a, 1987b, 

1989) have also considered the question of how to generate such a reference set in an appropriate 
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way and have presented several heuristic procedures. Kohli and Sukumar (1990) and Nair et al. 

(1995), on the other hand, have proposed one-step approaches to optimal product line design. 

Kohli and Sukumar solve the seller’s return problem via a dynamic programming heuristic, using 

attributes as stages and attribute levels as states, whereas Nair et al. have employed a beam 

search solution technique which originates from artificial intelligence.  

Two-step approaches are known to work well with problems in which the reference set contains a 

small number of candidate items or most product profiles in larger problems are technologically 

and economically infeasible. Otherwise, a one-step approach is preferable, as the intermediate 

step of enumerating utilities and profits of a huge number of reference set items could then be 

eliminated. However, as mentioned in the beginning, a substantial deficiency of presented 

approaches to optimal product line design and selection (except the recently developed model of 

Chen and Hausman 2000) is the assumption of a deterministic, first choice model of consumer 

choice. Whereas Chen and Hausman (2000) have closed this gap w.r.t. the two-step approach by 

presenting a probabilistic model for the second step problem, we now present a probabilistic  

one-step approach to the optimal product line design problem maximizing a seller’s profit. 

Afterwards, we propose the use and assess the performance of Genetic Algorithms (GA) to solve 

the problem. 

3 Description of Problem 

As typical for conjoint-based product (line) design models, the utility function is assumed to be 

an additive main effects part-worth model. We further model consumer behavior at the segment 

level which has become very popular in recent years (see section 2.1), although one could also 

assume individual level part-worth utilities without loss of generality. Thus, from a seller’s point 
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of view who wants to launch a new product line consisting of R new items, the conjoint utility 

function can be specified as follows: 

V eir ikl klr
l Lk K k

=
∈∈
∑∑ λ
$$

, ( $, $ )i I r R∈ ∈  (3) 

where 

$I  : set of segments ( i I= 1,..., ); 

$K  : set of relevant attributes ( ,..., )k K= +1 1  with price as attribute ( )K +1 ; 

$Lk  : set of feasible levels of attribute k ( ,..., )l Lk= 1 ; 

$R  : set of new items to be selected by the seller ( ,..., )r R= 1 ; 

Vir  : segment i’s (deterministic) utility for the seller’s item r; 

λ ikl  : segment i’s part-worth utility with respect to level l of attribute k; 

eklr  : a (0,1) variable that equals 1 if level l of attribute k is assigned to the seller’s item r. 

Using the logit choice rule (CMNL) and taking into account existing brands of competitors, the 

choice probability of (an individual of) segment i w.r.t. the seller’s item r R' $∈  is: 

( )
( ) ( )P

V

V Vir
ir

ir ij
j Jr R

'
'

$$

exp

exp exp
=

⋅

⋅ + ⋅
∈∈
∑∑

µ

µ µ
 ( $, ' $ )i I r R∈ ∈  (4) 

where 

$J  : set of existing competitive brands ( j J=1,..., ); 

Pir '  : probability that (a consumer of ) segment i will choose the seller’s item r’; 

µ  : scaling parameter of the CMNL model ( µ > 0 ). 
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Assuming profit maximization as the seller’s goal, variable and fixed costs are to be included 

into the model as well. Following the SIMOPT model of Green and Krieger (1992), the variable 

unit cost function is assumed to be a linear-additive model that can be formulated as follows: 

c e c er klr kl klr
l

L

k

K k
(var) (var)( )r =

==
∑∑

11
, ( $ )r R∈  (5) 

where 

ckl
(var)  : the seller’s variable cost for level l of attribute k; 

reklr  : a (0,1) design vector of length L Lkk
K= =∑ 1 , indicating the presence/absence 

  of levels of the non-price attributes with respect to the seller’s item r; 

c er klr
(var) ( )r  : variable unit cost for the seller’s item r, represented by profile reklr . 

Consequently, variable costs are assumed to be available (estimable) at the individual attribute 

level which is quite a realistic premise if the seller has an operating cost accounting system. 

Likewise, a linear-additive fixed cost function c e c er
fix

klr kl
fix

klrl

L

k

K k( ) ( )( )r =
== ∑∑ 11

 is employed 

providing the opportunity to assign fixed costs to item r if these do also depend on its profile reklr . 

Notes on allocating fixed costs to products can be found in Dobson and Kalish (1993) and Moore 

et al. (1999). 

Let further re K lr( )+1  be a (0,1) vector of length LK+1  indicating the presence or absence of price 

level l w.r.t. the seller’s item r, and let [ ]rp p pLK
=

+1 1
,....,

'
 be the vector of feasible price levels, 

then p p er K lr= ⊗ +
r r

( )1  is the price assigned to item r. Finally, let Qi  denote the size of segment i, 

then the seller’s problem of designing a profit maximizing product line becomes the following 

nonlinear programming problem: 
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Maximize 

( )p c e Q P cr r klr i ir r
fix

i Ir R

− ⋅ ⋅ −
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( )r  (6) 

subject to 

eklr
l Lk

=
∈
∑ 1
$

,  ( $ , $ )k K r R∈ ∈ , (7) 

e eklr klr
l Lk K k

− >
∈∈
∑∑ '
$$

0 , ( , ' $ , ' )r r R r r∈ ≠ , (8) 

{ }eklr ∈ 0 1, , ( $ , $ , $ )k K l L r Rk∈ ∈ ∈ . (9) 

Objective function (6) maximizes the total profit the seller obtains by offering a product line of R 

items. Constraint (7) requires that exactly one level of each attribute is assigned to each item 

(exclusiveness condition). Constraint (8) ensures that several items of the seller pairwise must 

differ in at least one attribute level (divergence condition). Finally, constraint (9) represents the 

binary restrictions with regard to the decision variables of the optimization problem.  

4 Application of Genetic Algorithms to Product Line Design 

Genetic Algorithms (GA), first proposed by Holland (1975), are based on the principle of natural 

selection which results in ‘survival of the fittest’. Recently, Balakrishnan and Jacob (1996) 

introduced the use of GA to the product design literatur. They have dealt with the problem of 

finding a share maximizing new single product assuming a deterministic first choice behavior. 

As their GA implementation has shown to be of excellent performance (with an average 99.13% 

close-to-optimal ratio across 192 data sets), we now propose and evaluate the GA approach with 

respect to the above stated problem of optimal product line design. 
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GAs work on a coding of strings (chromosomes), particular string positions or substrings 

corresponding to variables (genes) which in turn can take on a number of values (alleles). Each 

string as a whole then represents a candidate solution of the underlying optimization problem. To 

connect the GA approach with our model, we consider a candidate product line solution to be 

specified in a binary string format. With R items to be selected by the seller ( ,..., )r R=1 , K+1 

attributes in the product category ( ,..., )k K= +1 1  and Lk  levels of attribute k ( ,..., )l Lk=1 , a 

string is defined to be composed of R K⋅ +( )1  substrings where substring k r K+ ⋅ +( )1  

corresponds to attribute k of item r and is made up of Lk  binary string positions reflecting the 

feasible levels of attribute k. Consequently, a one in a specific substring denotes the presence of a 

specific attribute level implying the other Lk −1 substring positions (i.e., attribute levels) to be 

zero at the same time.  

Following the basic GA process (e.g., see Goldberg 1989, Michalewicz 1996), the seller’s 

problem (6)-(9) is solved iteratively in the following way. First, an initial population P0  of G 

strings is randomly generated and each string is assigned a fitness value which corresponds to its 

profit value obtained by calculating (6), respectively. Then, evolution (optimization) starts by 

applying the standard genetic operators reproduction, crossover and mutation to create 

successively new generations of offspring ( Pt , t = 1 2, ,... ). By reproduction, strings are copied 

according to their fitness, i.e., strings with higher profit values are granted a higher probability to 

participate in the creation of offspring reflecting the idea of the ‘survival of the fittest’. To 

operationalize the reproduction operator, we employ a binary tournament selection procedure 

(Dawid 1996): G/2 pairs of strings are randomly chosen from the actual population (with 
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replacement) and from each pair of strings only the product line candidate solution with higher 

profit evaluation is selected for mating.  

After reproduction, each two of the parent strings in the mating pool are picked randomly 

(without replacement) and each pair of strings undergoes crossover with probability pcross . 

Specifically, crossover proceeds at the substring level (because the unit of interest is the attribute) 

in exchanging a number of substrings between two parent strings leading to two new product line 

candidate solutions. We use simple one-point crossover by randomly fixing one cross site and 

then swapping the partial strings to the right of this crossover point. With R new items and K+1 

attributes, there are R K⋅ + −( )1 1 feasible cross sites. 

Subsequent to crossover, each offspring is provided a chance to mutate. Like crossover, mutation 

acts at the substring level by picking a single attribute with probability pmut  and then by altering 

the corresponding attribute level within this substring at random. Mutation is known as a 

background operator, as mutation rates too high would disturb the search process and would lead 

to some kind of random search. Empirical findings indicate a mutation probability pmut  on the 

order of one mutation per thousand “bits” as a rule of thumb to obtain good solutions (e.g., 

Goldberg 1989, Dawid 1996). Whereas reproduction reduces the diversity in the population, 

mutation maintains a certain degree of heterogeneity of string solutions which is necessary to 

avoid premature convergence of the GA process. 

Once the transition process from Pt  to Pt+1  is completed, the newly generated product line 

candidates are assigned their associated fitness values. Each time a new generation is created, the 

algorithm further checks whether or not an underlying stopping condition is met. Following 

Balakrishnan and Jacob (1996), we use a moving average rule as stopping criterion, as they have 
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shown this rule to provide a good indication of convergence to a solution. Specifically, the GA 

process terminates if the average fitness of the three best strings of the current generation has 

increased by less than x% (convergence rate) as compared to the average fitness of the three best 

strings over the three previous generations. We set the convergence rate to 0.2% to impose a 

sufficiently strong condition to convergence (Balakrishnan and Jacob 1996). Finally, in each 

generation the highest fitness value achieved so far and its corresponding string are updated and 

stored to make sure that the best product line solution found over all generations (and not only of 

the final generation) is returned at convergence. The GA implementation is fully described in 

Appendix A. 

We now discuss how the divergence condition (8) is implemented by the GA. Randomly 

generating an initial population can be repeated until the divergence condition is fulfilled by each 

string. The same principle can be used for crossover by repeatedly searching for one cross site 

until admissible offsprings are obtained. However, interchanging segments of two admissible 

parents may theoretically lead to at least one offspring violating the divergence condition. A way 

to deal with this problem is to accept the respective parents as members of the next generation 

without modifying them. To this end, we add an exit condition if a maximum number of 

crossover repetitions is exceeded. Mutation does not cause similar problems, as the random 

recoding of a substring does not necessarily result in a different binary substring vector. That is, 

for each of R K⋅ +( )1  substrings of an admissible offspring resulting from crossover, at least the 

given binary substring vector fullfills the divergence condition, respectively. Nevertheless, to 

avoid that an admissible binary coding is not found for the respective substring after repeated 

mutation, we have employed a maximum number of repeated mutations as another exit 

condition. 
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After convergence, the GA returns the product line with the highest fitness (profit) as well as 

related profits and segment-specific market shares of each of the new items. Moreover, 

intermediate results of each generation (like product line candidates and their fitness values) and 

some descriptive statistics (like number of crossovers and mutations, average population fitness, 

population standard deviation and best product line solution found so far) can be viewed. This 

way the decision maker may analyze the development of the GA and may have a look at other 

feasible product line solutions with high fitness evaluations. 

5 Performance Evaluation 

In this section, we evaluate the performance of the proposed GA by means of sensitivity analysis 

and Monte Carlo simulation. First, we study the sensitivity of the approximation of optimal 

solutions w.r.t. varying parameter values (population size, crossover probability, mutation rate) 

for different problem sizes. Second, based on the results of the sensitivity analysis, we employ a 

Monte Carlo simulation to obtain evidence on the approximation behavior and CPU time 

requirements of the GA. In particular, we provide degrees of approximation (relative to optimal 

solutions), hit rates and CPU times across a large set of problem instances. 

5.1 Parameter Selection for the Genetic Algorithm 

To recommend parameter values for population size, crossover and mutation probabilities which 

provide near optimal solutions we analyze sensitivity of GA solutions for various product market 

specifications with different problem sizes. This analysis may show that different problem sizes 

require different parameter values (e.g., it can be expected that population size varies with the 

number of feasible product line solutions, hence, with the size of the search space). 
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Hypothetical data used for GA configuration refer to the product category ‘sneakers’ and are 

based on sellers’ catalogues and a survey of retailing selling personnel. Attributes considered are 

price, cushioning system, stability and upper with 5, 5, 4 and 4 attibute levels, respectively. Part-

worth utilities of the corresponding attribute levels are generated in a way to reflect differences 

between up to four segments (A, B, C, D), e.g., with respect to price sensitivity (for more details, 

see Appendix B). 

To simplify interpretation of results, we assume for both sensitivity analysis and Monte Carlo 

simulation that (a) segment sizes Qi are identical and (2) fixed costs do not vary across feasible 

product profiles. Based on these assumptions optimal solutions are determined for problems with 

2 attributes (price and cushioning system), 3 attributes (price, cushioning system and stability) 

and 4 attributes (price, cushioning system, stability and upper) which are specified in table 1. The 

number of feasible product line solutions (i.e., the size of the search space) depends on the 

number K+1 of product attributes, the number Lk  of levels of attribute k and the number R of 

new items to be introduced by the seller in the following manner: 

L

R

k
k

K

=

+

∏















1

1

 (10) 

Table 1: Number of Product Line Candidate Solutions 

New Items Attributes Problem Size Segment Combination 

2             4*** 79.800     BC**** 

3                    3** 161.700     ABC**** 

3                    4*** 10.586.800     BCD**** 

4                    3** 3.921.225     ABCD 

4                    2* 12.650     ABCD 
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* Price and Cushioning System (5 Levels Each) 

** Price, Cushioning System and Stability (2 × 5 Levels, 1 × 4 Levels) 

*** Price, Cushioning System, Stability and Upper (2 × 5 Levels, 2 × 4 Levels) 

**** Chosen at Random Among the 4 Segments (A, B, C, D) 

The four segment combinations (BC, ABC, BCD, ABCD) represent the product markets 

analyzed in the various optimization runs. Problems are defined in such a way that their optimal 

solution can be found by complete enumeration. This allows to examine how well the solutions 

determined heuristically by the GA approximate the optimal solutions. 

Sensitivity analysis is based on a 12×5×3 factorial design with 12 values of population size (G) in 

the range [30; 250], at increments of 20 strings, 5 values of crossover probability pcross  

(0.6; 0.7; 0.8; 0.9; 1.0) and 3 different mutation rates pmut  (0.0; 0.01; 0.05). Values of crossover 

and mutation probabilities are set in accordance with experiences gained in previous GA 

applications which suggest a crossover probability of at least 0.6 and a very low mutation rate.1 

Because of the lack of comparable results, more values of population size are studied. 

Computations are performed for two randomly generated starting configurations of existing items 

of incumbent firms for each of the five problems contained in table 1.  

Table 2 shows recommended parameter values for the GA on the basis of more than 1500 test 

runs and associated average degrees of approximation (Avg_Appr) of the optimal solutions (e.g., 

for problem 4 the highest average degree of approximation w.r.t. crossover was achieved for a 

crossover probability of 1.0).2 For the smaller problems 1 and 2, even population sizes of 130 and 

150, respectively, lead to very high degrees of approximation. That is why we do without test 

runs with higher populations sizes for these problems. 
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Table 2: Recommended GA Parameter Values 

No. Problem Size G Avg_App
r 

 pcross Avg_App
r 

 pmut Avg_App
r 

Test Runs 

1 12.650 130  99.5%  1.0  99.0%  0.05 98.9% 180 

2 79.800 150  99.0%  0.9  98.4%  0.05 98.8% 300 

3 161.700 230  98.3%  1.0  97.6%  0.05 97.7% 360 

4 3.921.225 250  99.2%  1.0  98.6%  0.01 98.5% 360 

5 10.586.800 250  97.5%  1.0  96.8%  0.01 96.8% 360 

As expected, a larger problem size (search space) requires a larger population size in order to 

capture the higher diversity of product line candidate solutions. In other words, a sufficient 

degree of heterogeneity of string solutions (especially w.r.t. the initial population) is necessary to 

guarantee that the solution space is explored thoroughly and a satisfactory high degree of 

approximation can be attained. On the other hand, a population size which is too large increases 

CPU time, but may improve approximation to only a modest extent. Similar to the elbow 

criterion known from cluster analysis, population sizes can be set to a value after which 

improvements of approximation level off. Especially for problems of type 5, even higher values 

of population size ( G > 250 ) can be expected to lead to still better approximations (see figure 1). 

Figure 1: Average Approximation Levels for Problem Type 5 Depending on Population Size 
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Unequivocal recommendations can be given for crossover probabilities. Without exception, 

crossover probabilities greater equal 0.9 (in four out of five cases even equal to 1.0) are 

appropriate. On the whole, we see a clear tendency that higher crossover probabilities lead to 

better approximations. 

Results w.r.t. mutation rates are somewhat surprising. For the small and medium problems 1, 2 

and 3 the recommended value of 0.05 is unexpectedly high (despite the fact that mutation acts at 

the substring level). For the larger problems 4 and 5, on the other hand, high mutation rates have 

a negative effect on approximation and seem to disturb the search process by putting too much 

weight on the random component. For large problems the recommended mutation rate of 1% at 

the substring level lies within the usual range. 

5.2 Monte Carlo Simulation 

In view of our experiences with the GA w.r.t. sensitivity to changes in parameter values, we 

employed a Monte Carlo study to assess the GA performance for a large set of systematically 
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varying market scenarios and associated problem sizes. We generated problems using a 3×3×3×3 

factorial experimental design which varied by the number of attributes (including price) in the 

product category (3, 4, 5), number of levels in each attribute (2, 3, 4), number of items to be 

introduced by a new seller (2, 3, 4) and number of competitors (1, 2, 3) except the new seller. In 

order not to go beyond the scope of the study, we further coupled the number of segments as well 

as the number of existing items of the incumbent firms to the number of new items to be 

introduced by the seller.3 Of the 81 possible problems, we solved a subset of 69 problems. The 

remaining problems are not solved because of exorbitant CPU time requirements for complete 

enumeration which is once again used to identify optimal product line solutions. Four 

replications were solved for each of the 69 problems leading to a total of 276 data sets that were 

analyzed.  

For each replication, segment-specific part-worth utilities and variable costs of attribute levels 

were generated randomly from uniform distributions. Moreover, starting configurations of 

existing items of competitors were fixed at random each time. As for most products consumers 

are price-sensitive, we additionally ensured that higher price levels were assigned lower part-

worth utilities. 

Following the results of the GA configuration, we set GA parameter values w.r.t. to the various 

problems depending on the respective problem size, as is shown in table 3: 

Table 3: GA Parameter Settings for Different Problem Sizes (Compare Table 2) 

Problem size G pcross pmut  

≤  12.650 130 1.0 0.05 

]12.650; 79.800] 150 0.9 0.05 
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]79.800; 161.700] 230 1.0 0.05 

]161.700; 3.921.225] 250 1.0 0.01 

Table 4 gives an overview of the Monte Carlo study and shows the associated simulation results. 

For a clear representation, we summarized results from 12 simulation runs w.r.t. each problem 

size (4 replications with 1, 2 or 3 competitors, respectively). Remember that the problem size 

which results according to expression (10) does not depend on the number of competing firms in 

a product market. 

As the simulation results indicate, the GA provided near optimal solutions for nearly all data sets 

analyzed, with a worst-case average performance ratio of 99.55% w.r.t. the various problem sizes 
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Table 4: Experimental Design and Simulation Results (Monte Carlo Study) 

 
Market Parameters 

   Parameter Values  
of the GA  

 Generations 
(= Iterations) 

 
Ratio of GA Solution Value 
to Optimal Solution Value 
(%) (Performance Ratio) 

   
 

 Average  
CPU Time 

# Attr # Lev # Items  Problem Size  Pop Co Mut  Min/Ma
x 

Avg σ (Gen)  MinRatio (%) AvgRatio (%)  σ (Appr)  Hits  Sec 

3 2 2  28  130 1.0 0.05  3/4 3.17 0.39  100 100  0.00  12  1 

3 2 3  56  130 1.0 0.05  3/5 3.33 0.65  100 100  0.00  12  2 

3 2 4  70  130 1.0 0.05  3/6 4.25 0.97  100 100  0.00  12  4 

3 3 2  351  130 1.0 0.05  5/8 6.33 0.89  100 100  0.00  12  1 

3 3 3  2.925  130 1.0 0.05  6/9 8 1.04  100 100  0.00  12  4 

3 3 4  17.550  150 1.0 0.05  4/13 8.25 1.87  98.39 99.83  0.46  9  7 

3 4 2  2.016  130 1.0 0.05  6/11 7.92 1.50  100 100  0.00  12  2 

3 4 3  41.664  150 1.0 0.05  7/17 10.25 2.96  100 100  0.00  12  5 

3 4 4  635.376  250 1.0 0.01  7/14 10.83 1.95  98.41 99.74  0.45  6  16 

4 2 2  120  130 1.0 0.05  3/7 4.25 1.36  100 100  0.00  12  1 

4 2 3  560  130 1.0 0.05  3/8 5.83 1.53  100 100  0.00  12  3 

4 2 4  1.820  130 1.0 0.05  4/10 6.50 2.19  99.57 99.96  0.12  11  7 

4 3 2  3.240  130 1.0 0.05  5/13 8.66 2.61  100 100  0.00  12  2 

4 3 3  85.320  230 1.0 0.05  4/18 10.66 3.82  97.49 99.55  0.78  7  9 

4 3 4  1.663.740  250 1.0 0.01  7/17 13.16 2.41  98.79 99.70  0.38  4  24 

4 4 2  32.640  150 1.0 0.05  6/15 10.58 2.64  98.46 99.84  0.45  10  3 

4 4 3  2.736.520  250 1.0 0.01  8/14 11.75 1.76  98.72 99.76  0.43  8  11 

5 2 2  496  130 1.0 0.05  4/9 5.91 1.44  100 100  0.00  12  2 

5 2 3  4.960  130 1.0 0.05  3/12 7.83 2.33  98.32 99.86  0.48  11  5 

5 2 4  35.960  150 1.0 0.05  6/15 9.66 2.71  98.55 99.87  0.42  10  12 

5 3 2  29.403  150 1.0 0.05  7/19 13.25 4.14  96.66 99.55  1.00  9  4 

5 3 3  2.362.041  250 1.0 0.01  6/17 12.08 3.82  97.49 99.65  0.74  8  12 

5 4 2  523.776  250 1.0 0.05  10/21 14.83 3.88  97.99 99.67  0.73  9  9 

GA: Genetic Algorithm; #### Attr/Lev/Items: Number of Attributes/Attribute Levels/Items to Introduce; Pop/Co/Mut: Population Size/Crossover Probability/Mutation Rate; 

Min/Max/Avg: Minimum/Maximum/Average Number of Generations (= Iterations) until Convergence; σσσσ (Gen): Standard Deviation of Generations (= Iterations) until Convergence; 

27Steiner and Hruschka: One-Step Approach to the Optimal Product Line Design Problem

Produced by The Berkeley Electronic Press, 2011



 

 28

MinRatio (%)/AvgRatio (%): Minimum/Average Ratio of the Best Product Line Identified by the GA to the Profit-Maximizing Product Line (Average Performance Ratio refers to 12 Replications);  

σσσσ(Appr): Standard Deviation of GA Performance Ratio (for 12 Replications); Hits: Number of Cases (of 12 Replications) in which the optimal solution was identified by the GA; 
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(i.e., averaged across 12 replications, respectively) and a minimum performance ratio of 96.66 % 

in a single run. That is, the profit of the best product line found by the GA across 276 data sets 

was never less than 96.66 % of the profit of the optimal product line. In addition, the standard 

deviations σ (Appr) of performance ratios w.r.t. the various problems always lie within a 1% 

range indicating a high robustness of the GA. Figure 2 shows the fraction of problems with a 

performance ratio within a specified interval and the number of cases in which the optimal 

solution was found by the GA. The performance ratio was at least 99% in 272 cases (98% in 244 

cases) out of a total of 276 cases and the hit rate was 84.78% (i.e., the optimal solution was 

identified in 234 cases). Depending on problem size, it tooks on average between 3.17 and 14.83 

generations and not more than 30 seconds in a single run for the GA to reach convergence.4 

Figure 2: Histogram of Performance Ratio Across 276 Simulated Problems 
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Analyses of variances were performed to assess the impact of the four factors (number of 

attributes, number of attribute levels, number of new items, number of competitors) on both the 

number of generations and CPU time. W.r.t. the number of generations, only main effects turned 

out to be statistically significant (with an overall R2  of 0.64) indicating that the GA requires 

29Steiner and Hruschka: One-Step Approach to the Optimal Product Line Design Problem

Produced by The Berkeley Electronic Press, 2011



 

 

more generations to converge as the number of attributes, the number of attribute levels or the 

number of new items to be introduced increases ( p < 0 001. , respectively). However, the number 

of new items is clearly of less importance (with an associated eta-squared value of η = 0124. ) 

than the number of attributes and attribute levels ( η = 0 418. ; η = 0 571. ), and the number of 

competitors had no significant main effect ( . )p > 0 05 . W.r.t. CPU times, all four main effects 

( p < 0 001. , respectively) and even all two-way interactions ( p < 0 025. , respectively) proved to 

be statistically significant resulting in an R2  of 0.872. Among the main effects, the number of 

new items shows the strongest influence on CPU times ( η = 0 796. ), whereas the number of 

competitors and related interaction terms are by far of least importance. 

6 Conclusions 

In this paper, we proposed a new probabilistic approach to the optimal product line design 

problem using conjoint and cost data. The model allows the inclusion of consumers’ preferences, 

counterpart products of competitors as well as variable and fixed costs. Product lines are 

constructed directly from attribute level part-worths utilities and attribute level costs. To model 

consumers’ choices, we employed segment-specific conjoint models of the conditional 

multinomial logit type, but it would also be possible to start from part-worths data estimated at 

the individual level and/or to incorporate another probabilistic choice rule like the generalized 

Bradley-Terry-Luce share-of-utility rule (GBTL). We developed and applied a genetic algorithm 

to solve the optimal product line design problem and carried out sensitivity analysis and Monte 

Carlo simulation to assess the performance of the GA methodology. Similar to results obtained 

by Balakrishnan and Jacob (1996) who solved the problem of identifying a share maximizing 

single product design via Genetic Algorithms, our study indicates that the GA works efficiently 
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in both providing near optimal product line solutions (with a worst-case solution of 96.66% 

relative to the optimal) and CPU time (with a maximum CPU time of 30 seconds in a single run). 

Although we used our model to solve the seller’s problem of introducing a new product line with 

the objective of maximum profit contribution, the proposed framework could easily be adjusted 

to handle the less complex problem of maximizing share-of-choices and/or the problem of 

extending an existing product line (i.e., allowing for the case of already existing items owned by 

a seller). This is supported by the high flexibility of the GA which merely uses objective function 

information and, therefore, could accomodate for different fitness criteria without the need for 

(major) algorithmic modifications. 

If interactions between attributes are to be considered, the additive main-effects utility model, as 

defined by expression (1), could easily be extended to that effect. Including interaction terms 

would not require the specification of additional decision variables. Interaction terms would 

merely have an effect on a string’s fitness evaluation by taking into account the associated part-

worth utilities for preference evaluation. A way to deal with technological infeasibility of 

attribute level combinations would be to incorporate related interaction terms into the variable or 

fixed cost functions and to penalize them with high cost values. 

An important feature of Genetic Algorithms is their ability to carry out repeated runs with 

(slightly) changed parameter values and/or different initial populations, thus improving the 

chances of finding the optimal or at least a near optimal solution. As Balakrishnan and Jacob 

(1996) have already pointed out, another important characteristic of the GA approach is that 

solutions obtained from other techniques can be inserted in the initial population. Thus, rather 

than generating all the members of the initial population at random, the GA could use knowledge 
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about potential optima in arranging the initial population and improve on an existing solution 

which then defines a kind of lower bound or benchmark for GA performance. The GA 

methodology also provides high flexibility with regard to the final product line decision, as the 

decision maker may be provided by quite a number of solutions with similar high fitness values 

just as she/he wants. This way, the decision maker can additionally impose, e.g., strategic fit 

criteria for selecting the best product line. 

For future research, this approach needs to be extended to consider retaliatory responses from 

incumbent firms. This may be verified by explicitly modeling competitive reactions within a 

game theoretic framework. For single brand firms, Choi and DeSarbo (1993) and Green and 

Krieger (1997) have already worked in this direction and have illustrated how to derive 

competitive strategies in conjoint analysis under the Nash equilibrium concept. 

Footnotes 

1 Mutation rates analyzed for sensitivity refer to the substring level and, consequently, are 

higher than in most GA applications in which mutation applies to individual string positions. 

2 The corresponding average value of 98.6% is the arithmetic mean of approximations attained 

over 36 runs of the GA (12 values of population size times three values of mutation rates). 

3 For example, if two new items are to be introduced, we assume a product market to consist of 

two segments and two items currently being offered by each of the incumbent firms. 

4 The current implementation is on a 366 MHz personal computer. 
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Appendix A: Description of the Genetic Algorithm 

1. Initialization 

Set τ:= 0  and randomly generate an initial population P0  consisting of G strings with length 

L R Lkk
K= ⋅ =

+∑ 1
1  which all satisfy constraints (7), (8) and (9). Determine fitness values (profits) 

of these strings (product line candidate solutions) according to objective function (6). 

2. Generations (Iterations) 

Repeat until the average fitness of the three best strings of generation τ  has increased by less 

than x% (convergence rate) as compared to the moving average fitness (i.e., the average fitness 

of the three best strings of generations τ − 1, τ − 2 , τ − 3): 

(a) Reproduction (Binary Selection) 

Randomly select (with replacement) two strings out of the G members of generation Pτ  and 

choose from this pair of strings the one with higher fitness to become a member of the mating 

pool. Repeat this selection process G times (= population size). 

(b) Crossover (One-Point Crossover) 

Randomly pick (without replacement) each two of the reproduced parent strings of the mating 

pool and cross each pair with probability pcross . Crossover proceeds at the substring level by 

randomly fixing one of R K⋅ +( )1  feasible cross sites and swapping the partial stings to the right 

of the crossover point leading to two new offsprings.  

Repeat crossover for any selected pair until both offsprings fulfill the divergence condition (8) or 

a maximum number of repeated crossovers is exceeded. In the latter case, accept both parent 

strings unmodified as members of generation τ + 1. 
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(c) Mutation 

Replace each of R K⋅ +( )1  substrings of each of the G offsprings with probability pmut  by a 

new, randomly generated binary vector which fulfills the exclusivness condition (7). 

Repeat mutation until divergence condition (8) is fulfilled or a maximum number of repeated 

mutations is exceeded. 

(d) Fitness Evaluation 

Set τ τ:= +1 and determine the fitness values of the newly generated product line candidate 

solutions of generation Pτ+1  according to objective function (6). Store the best string found so far 

together with its associated fitness. 
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Appendix B: Part-Worth Utilities and Variable Cost Data Used for GA Configuration 

Table 5 shows product attributes and feasible attribute levels. Figure 3 illustrates part-worth 

utilities of attribute levels for each of four segments. Table 6 contains variable cost data at the 

individual attribute level for the non-price attributes. 

Table 5: Product Attributes and Attribute Levels in the Product Category Sneakers 

Attributes Levels Shortcut 

1. Price $45 
$55 
$65 
$75 
$85 

45 
55 
65 
75 
85 

2. Cushioning System Leightweight Cushioning 
Air Cushioning 
Hexalite Cushioning 
Gel Cushioning 
Variable Fit Cushioning 

LEI 
AIR 
HEX 
GEL 
VAR 

3. Stability a. Base Support * 
b. Rearfoot/Forefoot Stability 
c. Pronation/Supination Control 
d. Full Support 

BAS 
RFS 
PSC 
FUL 

4. Upper a. Nylon 
b. Synthetic Leather 
c. Mesh 
d. Leather 

NYL 
SYN 
MES 
LEA 

* without exceptional stability and motion control features 
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Figure 3: Representation of Segment Level Part-Worth Utilities λ ikl  
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Table 6: Variable Costs ($) at the Individual Attribute Level Depending on the Number 
of Non-Price Attributes Considered (1, 2 or 3) 

Attributes Cushioning System Stability Upper 
Levels LEI AIR HEX GEL VAR BAS RFS PSC FUL NYL SYN MES LEA

Number of Attributes in the Product Category (except Price) 

1 Attribute 26 43 44.5 46 57         
2 Attributes 12.5 21.5 22.5 23.5 29 13 21 24.5 28.5     
3 Attributes 9.5 16 16.5 17 21.5 10 15.5 18 21 7 11 13.5 15 
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