11 research outputs found

    Software and Hardware Control Robotic Lawnmowers

    Get PDF
    The article presents a method for forming the trajectory of an automatic lawnmower, describes the architecture of mobile robot control and suggests a method for estimating the productivity of its work

    A Probabilistic Approach to Mixed Open-loop and Closed-loop Control, with Application to Extreme Autonomous Driving

    No full text
    Abstract — We consider the task of accurately controlling a complex system, such as autonomously sliding a car sideways into a parking spot. Although certain regions of this domain are extremely hard to model (i.e., the dynamics of the car while skidding), we observe that in practice such systems are often remarkably deterministic over short periods of time, even in difficult-to-model regions. Motivated by this intuition, we develop a probabilistic method for combining closed-loop control in the well-modeled regions and open-loop control in the difficult-to-model regions. In particular, we show that by combining 1) an inaccurate model of the system and 2) a demonstration of the desired behavior, our approach can accurately and robustly control highly challenging systems, without the need to explicitly model the dynamics in the most complex regions and without the need to hand-tune the switching control law. We apply our approach to the task of autonomous sideways sliding into a parking spot, and show that we can repeatedly and accurately control the system, placing the car within about 2 feet of the desired location; to the best of our knowledge, this represents the state of the art in terms of accurately controlling a vehicle in such a maneuver. I

    Hierarchical models of goal-directed and automatic actions

    Get PDF
    Decision-making processes behind instrumental actions can be divided into two categories: goal-directed actions, and automatic actions. The structure of automatic actions, their interaction with goal-directed actions, and their behavioral and computational properties are the topics of the current thesis. We conceptualize the structure of automatic actions as sequences of actions that form a single response unit and are integrated within goal-directed processes in a hierarchical manner. We represent this hypothesis using the computational framework of reinforcement learning and develop a new normative computational model for the acquisition of action sequences, and their hierarchical interaction with goal-directed processes. We develop a neurally plausible hypothesis for the role of neuromodulator dopamine as a teaching signal for the acquisition of action sequences. We further explore the predictions of the proposed model in a two-stage decision-making task in humans and we show that the proposed model has higher explanatory power than its alternatives. Finally, we translate the two-stage decision-making task to an experimental protocol in rats and show that, similar to humans, rats also use action sequences and engage in hierarchical decision-making. The results provide a new theoretical and experimental paradigm for conceptualizing and measuring the operation and interaction of goal-directed and automatic actions

    Hierarchical models of goal-directed and automatic actions

    Get PDF
    Decision-making processes behind instrumental actions can be divided into two categories: goal-directed actions, and automatic actions. The structure of automatic actions, their interaction with goal-directed actions, and their behavioral and computational properties are the topics of the current thesis. We conceptualize the structure of automatic actions as sequences of actions that form a single response unit and are integrated within goal-directed processes in a hierarchical manner. We represent this hypothesis using the computational framework of reinforcement learning and develop a new normative computational model for the acquisition of action sequences, and their hierarchical interaction with goal-directed processes. We develop a neurally plausible hypothesis for the role of neuromodulator dopamine as a teaching signal for the acquisition of action sequences. We further explore the predictions of the proposed model in a two-stage decision-making task in humans and we show that the proposed model has higher explanatory power than its alternatives. Finally, we translate the two-stage decision-making task to an experimental protocol in rats and show that, similar to humans, rats also use action sequences and engage in hierarchical decision-making. The results provide a new theoretical and experimental paradigm for conceptualizing and measuring the operation and interaction of goal-directed and automatic actions

    Konzeption, Umsetzung und Evaluation eines Manöverassistenzsystems mit haptischer Fahrerunterstützung

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2014von Florian Belse
    corecore